
GUROBI OPTIMIZER
REFERENCE MANUAL

Version 9.1, Copyright c© 2021, Gurobi Optimization, LLC

Contents

1 Introduction 1

2 C API Overview 3
2.1 Environment Creation and Destruction . 8

GRBloadenv . 8
GRBemptyenv . 8
GRBstartenv . 8
GRBloadclientenv . 9
GRBloadcloudenv . 11
GRBfreeenv . 12
GRBgetconcurrentenv . 12
GRBgetmultiobjenv . 13
GRBdiscardconcurrentenvs . 13
GRBdiscardmultiobjenvs . 13

2.2 Model Creation and Modification . 15
GRBloadmodel . 15
GRBnewmodel . 17
GRBcopymodel . 18
GRBaddconstr . 18
GRBaddconstrs . 19
GRBaddgenconstrXxx . 20
GRBaddgenconstrMax . 21
GRBaddgenconstrMin . 22
GRBaddgenconstrAbs . 23
GRBaddgenconstrAnd . 23
GRBaddgenconstrOr . 24
GRBaddgenconstrIndicator . 25
GRBaddgenconstrPWL . 26
GRBaddgenconstrPoly . 27
GRBaddgenconstrExp . 28
GRBaddgenconstrExpA . 28
GRBaddgenconstrLog . 29
GRBaddgenconstrLogA . 30
GRBaddgenconstrPow . 31
GRBaddgenconstrSin . 32
GRBaddgenconstrCos . 33
GRBaddgenconstrTan . 33
GRBaddqconstr . 34
GRBaddqpterms . 36

i

GRBaddrangeconstr . 37
GRBaddrangeconstrs . 38
GRBaddsos . 39
GRBaddvar . 40
GRBaddvars . 41
GRBchgcoeffs . 42
GRBdelconstrs . 43
GRBdelgenconstrs . 43
GRBdelq . 43
GRBdelqconstrs . 44
GRBdelsos . 44
GRBdelvars . 45
GRBsetobjectiven . 45
GRBsetpwlobj . 46
GRBupdatemodel . 47
GRBfreemodel . 47
GRBXaddconstrs . 48
GRBXaddrangeconstrs . 49
GRBXaddvars . 50
GRBXchgcoeffs . 51
GRBXloadmodel . 52

2.3 Model Solution . 55
GRBoptimize . 55
GRBoptimizeasync . 55
GRBcomputeIIS . 56
GRBfeasrelax . 57
GRBfixmodel . 58
GRBreset . 59
GRBsync . 59

2.4 Model Queries . 60
GRBgetcoeff . 60
GRBgetconstrbyname . 60
GRBgetconstrs . 61
GRBgetenv . 61
GRBgetgenconstrMax . 62
GRBgetgenconstrMin . 63
GRBgetgenconstrAbs . 64
GRBgetgenconstrAnd . 64
GRBgetgenconstrOr . 65
GRBgetgenconstrIndicator . 66
GRBgetgenconstrPWL . 67
GRBgetgenconstrPoly . 68
GRBgetgenconstrExp . 69
GRBgetgenconstrExpA . 70
GRBgetgenconstrLog . 71

ii

GRBgetgenconstrLogA . 72
GRBgetgenconstrPow . 72
GRBgetgenconstrSin . 73
GRBgetgenconstrCos . 74
GRBgetgenconstrTan . 74
GRBgetjsonsolution . 75
GRBgetpwlobj . 76
GRBgetq . 76
GRBgetqconstr . 77
GRBgetqconstrbyname . 78
GRBgetsos . 78
GRBgetvarbyname . 79
GRBgetvars . 80
GRBsinglescenariomodel . 80
GRBXgetconstrs . 81
GRBXgetvars . 82

2.5 Input/Output . 84
GRBreadmodel . 84
GRBread . 84
GRBwrite . 85

2.6 Attribute Management . 86
GRBgetattrinfo . 86
GRBgetintattr . 86
GRBsetintattr . 87
GRBgetintattrelement . 87
GRBsetintattrelement . 88
GRBgetintattrarray . 88
GRBsetintattrarray . 89
GRBgetintattrlist . 90
GRBsetintattrlist . 90
GRBgetdblattr . 91
GRBsetdblattr . 91
GRBgetdblattrelement . 92
GRBsetdblattrelement . 92
GRBgetdblattrarray . 93
GRBsetdblattrarray . 93
GRBgetdblattrlist . 94
GRBsetdblattrlist . 95
GRBgetcharattrelement . 95
GRBsetcharattrelement . 96
GRBgetcharattrarray . 96
GRBsetcharattrarray . 97
GRBgetcharattrlist . 97
GRBsetcharattrlist . 98
GRBgetstrattr . 98

iii

GRBsetstrattr . 99
GRBgetstrattrelement . 100
GRBsetstrattrelement . 100
GRBgetstrattrarray . 101
GRBsetstrattrarray . 101
GRBgetstrattrlist . 102
GRBsetstrattrlist . 103
GRBgetbatchattrinfo . 103

2.7 Parameter Management and Tuning . 105
GRBtunemodel . 105
GRBgettuneresult . 105
GRBgetdblparam . 106
GRBgetintparam . 106
GRBgetstrparam . 107
GRBsetdblparam . 107
GRBsetintparam . 108
GRBsetstrparam . 108
GRBgetdblparaminfo . 109
GRBgetintparaminfo . 110
GRBgetstrparaminfo . 110
GRBreadparams . 111
GRBwriteparams . 111

2.8 Monitoring Progress - Logging and Callbacks . 113
GRBmsg . 113
GRBsetcallbackfunc . 113
GRBgetcallbackfunc . 114
GRBcbget . 114
GRBversion . 115

2.9 Modifying Solver Behavior - Callbacks . 116
GRBcbcut . 116
GRBcblazy . 117
GRBcbsolution . 118
GRBcbstoponemultiobj . 118
GRBterminate . 120

2.10 Batch Requests . 121
GRBabortbatch . 121
GRBdiscardbatch . 121
GRBfreebatch . 121
GRBgetbatch . 122
GRBgetbatchenv . 122
GRBgetbatchintattr . 123
GRBgetbatchjsonsolution . 123
GRBgetbatchstrattr . 124
GRBoptimizebatch . 124
GRBretrybatch . 125

iv

GRBupdatebatch . 125
GRBwritebatchjsonsolution . 126

2.11 Error Handling . 127
GRBgeterrormsg . 127

2.12 Advanced simplex routines . 128
GRBFSolve . 128
GRBBSolve . 128
GRBBinvColj . 129
GRBBinvRowi . 129
GRBgetBasisHead . 130

3 C++ API Overview 131
3.1 GRBEnv . 137

GRBEnv() . 137
GRBEnv::get() . 140
GRBEnv::getErrorMsg() . 141
GRBEnv::getParamInfo() . 141
GRBEnv::message() . 142
GRBEnv::readParams() . 142
GRBEnv::resetParams() . 143
GRBEnv::set() . 143
GRBEnv::start() . 144
GRBEnv::writeParams() . 144

3.2 GRBModel . 145
GRBModel() . 145
GRBModel::addConstr() . 146
GRBModel::addConstrs() . 148
GRBModel::addGenConstrXxx() . 148
GRBModel::addQConstr() . 158
GRBModel::addRange() . 160
GRBModel::addRanges() . 160
GRBModel::addSOS() . 160
GRBModel::addVar() . 161
GRBModel::addVars() . 162
GRBModel::chgCoeff() . 164
GRBModel::chgCoeffs() . 164
GRBModel::computeIIS() . 165
GRBModel::discardConcurrentEnvs() . 165
GRBModel::discardMultiobjEnvs() . 165
GRBModel::feasRelax() . 166
GRBModel::fixedModel() . 168
GRBModel::get() . 168
GRBModel::getCoeff() . 172
GRBModel::getCol() . 172
GRBModel::getConcurrentEnv() . 173
GRBModel::getConstrByName() . 173

v

GRBModel::getConstrs() . 173
GRBModel::getGenConstrXxx() . 174
GRBModel::getGenConstrs() . 181
GRBModel::getJSONSolution() . 181
GRBModel::getMultiobjEnv() . 181
GRBModel::getObjective() . 182
GRBModel::getPWLObj() . 182
GRBModel::getQCRow() . 183
GRBModel::getQConstrs() . 183
GRBModel::getRow() . 183
GRBModel::getSOS() . 184
GRBModel::getSOSs() . 184
GRBModel::getTuneResult() . 184
GRBModel::getVarByName() . 185
GRBModel::getVars() . 185
GRBModel::optimize() . 185
GRBModel::optimizeasync() . 185
GRBModel::optimizeBatch() . 186
GRBModel::presolve() . 186
GRBModel::read() . 186
GRBModel::remove() . 187
GRBModel::reset() . 188
GRBModel::setCallback() . 188
GRBModel::set() . 188
GRBModel::setObjective() . 192
GRBModel::setObjectiveN() . 193
GRBModel::setPWLObj() . 194
GRBModel::singleScenarioModel() . 194
GRBModel::sync() . 194
GRBModel::terminate() . 195
GRBModel::tune() . 195
GRBModel::update() . 195
GRBModel::write() . 195

3.3 GRBVar . 197
GRBVar::get() . 197
GRBVar::index() . 198
GRBVar::sameAs() . 198
GRBVar::set() . 198

3.4 GRBConstr . 200
GRBConstr::get() . 200
GRBConstr::index() . 201
GRBConstr::sameAs() . 201
GRBConstr::set() . 201

3.5 GRBQConstr . 203
GRBQConstr::get() . 203

vi

GRBQConstr::set() . 204
3.6 GRBSOS . 205

GRBSOS::get() . 205
3.7 GRBGenConstr . 206

GRBGenConstr::get() . 206
GRBGenConstr::set() . 206

3.8 GRBExpr . 208
GRBExpr::getValue() . 208

3.9 GRBLinExpr . 209
GRBLinExpr() . 209
GRBLinExpr::addTerms() . 210
GRBLinExpr::clear() . 210
GRBLinExpr::getConstant() . 210
GRBLinExpr::getCoeff() . 211
GRBLinExpr::getValue() . 211
GRBLinExpr::getVar() . 211
GRBLinExpr::operator= . 211
GRBLinExpr::operator+ . 212
GRBLinExpr::operator- . 212
GRBLinExpr::operator+= . 212
GRBLinExpr::operator-= . 212
GRBLinExpr::operator*= . 213
GRBLinExpr::remove() . 213
GRBLinExpr::size() . 213

3.10 GRBQuadExpr . 214
GRBQuadExpr() . 215
GRBQuadExpr::addTerm() . 215
GRBQuadExpr::addTerms() . 216
GRBQuadExpr::clear() . 216
GRBQuadExpr::getCoeff() . 216
GRBQuadExpr::getLinExpr() . 217
GRBQuadExpr::getValue() . 217
GRBQuadExpr::getVar1() . 217
GRBQuadExpr::getVar2() . 217
GRBQuadExpr::operator= . 218
GRBQuadExpr::operator+ . 218
GRBQuadExpr::operator- . 218
GRBQuadExpr::operator+= . 218
GRBQuadExpr::operator-= . 219
GRBQuadExpr::operator*= . 219
GRBQuadExpr::remove() . 219
GRBQuadExpr::size() . 219

3.11 GRBTempConstr . 220
3.12 GRBColumn . 221

GRBColumn() . 221

vii

GRBColumn::addTerm() . 221
GRBColumn::addTerms() . 221
GRBColumn::clear() . 221
GRBColumn::getCoeff() . 222
GRBColumn::getConstr() . 222
GRBColumn::remove() . 222
GRBColumn::size() . 222

3.13 GRBCallback . 223
GRBCallback() . 223
GRBCallback::abort() . 223
GRBCallback::addCut() . 223
GRBCallback::addLazy() . 224
GRBCallback::getDoubleInfo() . 225
GRBCallback::getIntInfo() . 225
GRBCallback::getNodeRel() . 226
GRBCallback::getSolution() . 226
GRBCallback::getStringInfo() . 227
GRBCallback::setSolution() . 227
GRBCallback::stopOneMultiObj() . 227
GRBCallback::useSolution() . 228

3.14 GRBException . 230
GRBException() . 230
GRBException::getErrorCode() . 230
GRBException::getMessage() . 230

3.15 GRBBatch . 231
GRBBatch() . 231
GRBBatch::abort() . 232
GRBBatch::discard() . 232
GRBBatch::getJSONSolution() . 232
GRBBatch::get() . 232
GRBBatch::retry() . 233
GRBBatch::update() . 233
GRBBatch::writeJSONSolution() . 234

3.16 Non-Member Functions . 235
operator== . 235
operator<= . 235
operator>= . 235
operator+ . 236
operator- . 237
operator* . 238
operator/ . 240

3.17 Attribute Enums . 241
GRB_CharAttr . 241
GRB_DoubleAttr . 241
GRB_IntAttr . 241

viii

GRB_StringAttr . 241
3.18 Parameter Enums . 242

GRB_DoubleParam . 242
GRB_IntParam . 242
GRB_StringParam . 242

4 Java API Overview 243
4.1 GRBEnv . 249

GRBEnv() . 249
GRBEnv.dispose() . 252
GRBEnv.get() . 252
GRBEnv.getErrorMsg() . 253
GRBEnv.getParamInfo() . 253
GRBEnv.message() . 254
GRBEnv.readParams() . 254
GRBEnv.release() . 255
GRBEnv.resetParams() . 255
GRBEnv.set() . 255
GRBEnv.start() . 256
GRBEnv.writeParams() . 257

4.2 GRBModel . 258
GRBModel() . 258
GRBModel.addConstr() . 259
GRBModel.addConstrs() . 261
GRBModel.addGenConstrXxx() . 262
GRBModel.addQConstr() . 272
GRBModel.addRange() . 274
GRBModel.addRanges() . 275
GRBModel.addSOS() . 275
GRBModel.addVar() . 275
GRBModel.addVars() . 277
GRBModel.chgCoeff() . 279
GRBModel.chgCoeffs() . 279
GRBModel.computeIIS() . 280
GRBModel.discardConcurrentEnvs() . 280
GRBModel.discardMultiobjEnvs() . 280
GRBModel.dispose() . 281
GRBModel.feasRelax() . 281
GRBModel.fixedModel() . 282
GRBModel.get() . 283
GRBModel.getCoeff() . 298
GRBModel.getCol() . 298
GRBModel.getConcurrentEnv() . 298
GRBModel.getConstrByName() . 299
GRBModel.getConstrs() . 299
GRBModel.getGenConstrXxx() . 299

ix

GRBModel.getGenConstrs() . 306
GRBModel.getJSONSolution() . 307
GRBModel.getMultiobjEnv() . 307
GRBModel.getObjective() . 307
GRBModel.getPWLObj() . 308
GRBModel.getQCRow() . 308
GRBModel.getQConstrs() . 308
GRBModel.getRow() . 309
GRBModel.getSOS() . 309
GRBModel.getSOSs() . 309
GRBModel.getTuneResult() . 310
GRBModel.getVarByName() . 310
GRBModel.getVars() . 310
GRBModel.optimize() . 310
GRBModel.optimizeasync() . 311
GRBModel.optimizeBatch() . 311
GRBModel.presolve() . 312
GRBModel.read() . 312
GRBModel.remove() . 312
GRBModel.reset() . 313
GRBModel.setCallback() . 314
GRBModel.set() . 314
GRBModel.setObjective() . 327
GRBModel.setObjectiveN() . 328
GRBModel.setPWLObj() . 328
GRBModel.singleScenarioModel() . 329
GRBModel.sync() . 329
GRBModel.terminate() . 329
GRBModel.tune() . 330
GRBModel.update() . 330
GRBModel.write() . 330

4.3 GRBVar . 331
GRBVar.get() . 331
GRBVar.index() . 332
GRBVar.sameAs() . 332
GRBVar.set() . 332

4.4 GRBConstr . 334
GRBConstr.get() . 334
GRBConstr.index() . 335
GRBConstr.sameAs() . 335
GRBConstr.set() . 335

4.5 GRBQConstr . 337
GRBQConstr.get() . 337
GRBQConstr.set() . 338

4.6 GRBSOS . 339

x

GRBSOS.get() . 339
4.7 GRBGenConstr . 340

GRBGenConstr.get() . 340
GRBGenConstr.set() . 340

4.8 GRBExpr . 342
GRBExpr.getValue() . 342

4.9 GRBLinExpr . 343
GRBLinExpr() . 343
GRBLinExpr.add() . 343
GRBLinExpr.addConstant() . 344
GRBLinExpr.addTerm() . 344
GRBLinExpr.addTerms() . 344
GRBLinExpr.clear() . 345
GRBLinExpr.getConstant() . 345
GRBLinExpr.getCoeff() . 345
GRBLinExpr.getValue() . 345
GRBLinExpr.getVar() . 346
GRBLinExpr.multAdd() . 346
GRBLinExpr.remove() . 346
GRBLinExpr.size() . 347

4.10 GRBQuadExpr . 348
GRBQuadExpr() . 348
GRBQuadExpr.add() . 349
GRBQuadExpr.addConstant() . 349
GRBQuadExpr.addTerm() . 349
GRBQuadExpr.addTerms() . 350
GRBQuadExpr.clear() . 351
GRBQuadExpr.getCoeff() . 351
GRBQuadExpr.getLinExpr() . 352
GRBQuadExpr.getValue() . 352
GRBQuadExpr.getVar1() . 352
GRBQuadExpr.getVar2() . 352
GRBQuadExpr.multAdd() . 353
GRBQuadExpr.remove() . 353
GRBQuadExpr.size() . 353

4.11 GRBColumn . 354
GRBColumn() . 354
GRBColumn.addTerm() . 354
GRBColumn.addTerms() . 354
GRBColumn.clear() . 355
GRBColumn.getCoeff() . 355
GRBColumn.getConstr() . 355
GRBColumn.remove() . 356
GRBColumn.size() . 356

4.12 GRBCallback . 357

xi

GRBCallback() . 357
GRBCallback.abort() . 357
GRBCallback.addCut() . 357
GRBCallback.addLazy() . 358
GRBCallback.getDoubleInfo() . 359
GRBCallback.getIntInfo() . 359
GRBCallback.getNodeRel() . 359
GRBCallback.getSolution() . 360
GRBCallback.getStringInfo() . 361
GRBCallback.setSolution() . 361
GRBCallback.stopOneMultiObj() . 361
GRBCallback.useSolution() . 362

4.13 GRBException . 364
GRBException() . 364
GRBException.getErrorCode() . 364

4.14 GRBBatch . 365
GRBBatch() . 365
GRBBatch.abort() . 366
GRBBatch.discard() . 366
GRBBatch.dispose() . 366
GRBBatch.getJSONSolution() . 367
GRBBatch.get() . 367
GRBBatch.retry() . 367
GRBBatch.update() . 368
GRBBatch.writeJSONSolution() . 368

4.15 GRB . 369
Constants . 369
GRB.CharAttr . 374
GRB.DoubleAttr . 375
GRB.DoubleParam . 375
GRB.IntAttr . 375
GRB.IntParam . 375
GRB.StringAttr . 375
GRB.StringParam . 375

5 .NET API Overview 376
5.1 GRBEnv . 382

GRBEnv() . 382
GRBEnv.Dispose() . 385
GRBEnv.ErrorMsg . 385
GRBEnv.Get() . 385
GRBEnv.GetParamInfo() . 386
GRBEnv.Message() . 387
GRBEnv.ReadParams() . 387
GRBEnv.Release() . 387
GRBEnv.ResetParams() . 388

xii

GRBEnv.Set() . 388
GRBEnv.Start() . 389
GRBEnv.WriteParams() . 389

5.2 GRBModel . 390
GRBModel() . 390
GRBModel.AddConstr() . 391
GRBModel.AddConstrs() . 391
GRBModel.AddGenConstrXxx() . 392
GRBModel.AddQConstr() . 402
GRBModel.AddRange() . 403
GRBModel.AddRanges() . 403
GRBModel.AddSOS() . 404
GRBModel.AddVar() . 404
GRBModel.AddVars() . 405
GRBModel.ChgCoeff() . 407
GRBModel.ChgCoeffs() . 408
GRBModel.ComputeIIS() . 408
GRBModel.DiscardConcurrentEnvs() . 409
GRBModel.DiscardMultiobjEnvs() . 409
GRBModel.Dispose() . 409
GRBModel.FeasRelax() . 409
GRBModel.FixedModel() . 411
GRBModel.Get() . 411
GRBModel.GetCoeff() . 423
GRBModel.GetCol() . 423
GRBModel.GetConcurrentEnv() . 423
GRBModel.GetConstrByName() . 424
GRBModel.GetConstrs() . 424
GRBModel.GetGenConstrXxx() . 424
GRBModel.GetGenConstrs() . 431
GRBModel.GetJSONSolution() . 431
GRBModel.GetMultiobjEnv() . 431
GRBModel.GetObjective() . 431
GRBModel.GetPWLObj() . 432
GRBModel.GetQConstr() . 432
GRBModel.GetQConstrs() . 432
GRBModel.GetQCRow() . 433
GRBModel.GetRow() . 433
GRBModel.GetSOS() . 433
GRBModel.GetSOSs() . 434
GRBModel.GetTuneResult() . 434
GRBModel.GetVarByName() . 434
GRBModel.GetVars() . 434
GRBModel.Optimize() . 434
GRBModel.OptimizeAsync() . 435

xiii

GRBModel.OptimizeBatch() . 435
GRBModel.Presolve() . 435
GRBModel.Read() . 436
GRBModel.Remove() . 436
GRBModel.Reset() . 437
GRBModel.SetCallback() . 437
GRBModel.Set() . 437
GRBModel.SetObjective() . 449
GRBModel.SetObjectiveN() . 450
GRBModel.SetPWLObj() . 450
GRBModel.SingleScenarioModel() . 451
GRBModel.Sync() . 451
GRBModel.Terminate() . 451
GRBModel.Tune() . 451
GRBModel.Update() . 452
GRBModel.Write() . 452

5.3 GRBVar . 453
GRBVar.Get() . 453
GRBVar.Index . 453
GRBVar.SameAs() . 454
GRBVar.Set() . 454

5.4 GRBConstr . 455
GRBConstr.Get() . 455
GRBConstr.Index . 455
GRBConstr.SameAs() . 456
GRBConstr.Set() . 456

5.5 GRBQConstr . 458
GRBQConstr.Get() . 458
GRBQConstr.Set() . 458

5.6 GRBSOS . 460
GRBSOS.Get() . 460

5.7 GRBGenConstr . 461
GRBGenConstr.Get() . 461
GRBGenConstr.Set() . 461

5.8 GRBExpr . 463
GRBExpr.Value . 463

5.9 GRBLinExpr . 464
GRBLinExpr() . 464
GRBLinExpr.Add() . 465
GRBLinExpr.AddConstant() . 465
GRBLinExpr.AddTerm() . 465
GRBLinExpr.AddTerms() . 465
GRBLinExpr.Clear() . 466
GRBLinExpr.Constant . 466
GRBLinExpr.GetCoeff() . 466

xiv

GRBLinExpr.GetVar() . 466
GRBLinExpr.MultAdd() . 467
GRBLinExpr.Remove() . 467
GRBLinExpr.Size . 467
GRBLinExpr.Value . 467

5.10 GRBQuadExpr . 468
GRBQuadExpr() . 469
GRBQuadExpr.Add() . 469
GRBQuadExpr.AddConstant() . 469
GRBQuadExpr.AddTerm() . 470
GRBQuadExpr.AddTerms() . 470
GRBQuadExpr.Clear() . 471
GRBQuadExpr.GetCoeff() . 471
GRBQuadExpr.GetVar1() . 472
GRBQuadExpr.GetVar2() . 472
GRBQuadExpr.LinExpr() . 472
GRBQuadExpr.MultAdd() . 472
GRBQuadExpr.Remove() . 473
GRBQuadExpr.Size . 473
GRBQuadExpr.Value . 473

5.11 GRBTempConstr . 474
5.12 GRBColumn . 475

GRBColumn() . 475
GRBColumn.AddTerm() . 475
GRBColumn.AddTerms() . 475
GRBColumn.Clear() . 476
GRBColumn.GetCoeff() . 476
GRBColumn.GetConstr() . 476
GRBColumn.Remove() . 476
GRBColumn.Size . 477

5.13 Overloaded Operators . 478
operator <= . 478
operator >= . 478
operator == . 478
operator + . 479
operator - . 480
operator * . 481
operator / . 483
implicit cast . 483

5.14 GRBCallback . 485
GRBCallback() . 485
GRBCallback.Abort() . 485
GRBCallback.AddCut() . 485
GRBCallback.AddLazy() . 486
GRBCallback.GetDoubleInfo() . 487

xv

GRBCallback.GetIntInfo() . 487
GRBCallback.GetNodeRel() . 487
GRBCallback.GetSolution() . 488
GRBCallback.GetStringInfo() . 488
GRBCallback.SetSolution() . 489
GRBCallback.StopOneMultiObj() . 489
GRBCallback.UseSolution() . 490

5.15 GRBException . 491
GRBException() . 491
GRBException.ErrorCode . 491

5.16 GRBBatch . 492
GRBBatch() . 492
GRBBatch.Abort() . 493
GRBBatch.Discard() . 493
GRBBatch.GetJSONSolution() . 493
GRBBatch.Get() . 493
GRBBatch.Retry() . 494
GRBBatch.Update() . 494
GRBBatch.WriteJSONSolution() . 494

5.17 GRB . 495
Constants . 495
GRB.CharAttr . 498
GRB.DoubleAttr . 498
GRB.DoubleParam . 498
GRB.IntAttr . 498
GRB.IntParam . 499
GRB.StringAttr . 499
GRB.StringParam . 499

6 Python API Overview 500
6.1 Global Functions . 506

models() . 506
disposeDefaultEnv() . 506
multidict() . 506
paramHelp() . 507
quicksum() . 507
read() . 508
readParams() . 508
resetParams() . 508
setParam() . 508
system() . 509
writeParams() . 509

6.2 Model . 510
Model() . 510
Model.addConstr() . 510
Model.addConstrs() . 511

xvi

Model.addGenConstrXxx() . 512
Model.addGenConstrMax() . 513
Model.addGenConstrMin() . 514
Model.addGenConstrAbs() . 514
Model.addGenConstrAnd() . 515
Model.addGenConstrOr() . 516
Model.addGenConstrIndicator() . 516
Model.addGenConstrPWL() . 517
Model.addGenConstrPoly() . 517
Model.addGenConstrExp() . 518
Model.addGenConstrExpA() . 519
Model.addGenConstrLog() . 519
Model.addGenConstrLogA() . 520
Model.addGenConstrPow() . 520
Model.addGenConstrSin() . 521
Model.addGenConstrCos() . 522
Model.addGenConstrTan() . 522
Model.addLConstr() . 523
Model.addMConstr() . 523
Model.addMQConstr() . 524
Model.addMVar() . 525
Model.addQConstr() . 525
Model.addRange() . 526
Model.addSOS() . 527
Model.addVar() . 527
Model.addVars() . 527
Model.cbCut() . 529
Model.cbGet() . 530
Model.cbGetNodeRel() . 530
Model.cbGetSolution() . 530
Model.cbLazy() . 531
Model.cbSetSolution() . 532
Model.cbStopOneMultiObj() . 532
Model.cbUseSolution() . 533
Model.chgCoeff() . 533
Model.computeIIS() . 534
Model.copy() . 534
Model.discardConcurrentEnvs() . 535
Model.discardMultiobjEnvs() . 535
Model.dispose() . 536
Model.feasRelaxS() . 536
Model.feasRelax() . 537
Model.fixed() . 538
Model.getA() . 538
Model.getAttr() . 539

xvii

Model.getCoeff() . 539
Model.getCol() . 539
Model.getConcurrentEnv() . 540
Model.getConstrByName() . 540
Model.getConstrs() . 541
Model.getGenConstrMax() . 541
Model.getGenConstrMin() . 541
Model.getGenConstrAbs() . 542
Model.getGenConstrAnd() . 542
Model.getGenConstrOr() . 542
Model.getGenConstrIndicator() . 543
Model.getGenConstrPWL() . 543
Model.getGenConstrPoly() . 544
Model.getGenConstrExp() . 544
Model.getGenConstrExpA() . 544
Model.getGenConstrLog() . 545
Model.getGenConstrLogA() . 545
Model.getGenConstrPow() . 545
Model.getGenConstrSin() . 546
Model.getGenConstrCos() . 546
Model.getGenConstrTan() . 546
Model.getGenConstrs() . 547
Model.getJSONSolution() . 547
Model.getMultiobjEnv() . 547
Model.getObjective() . 548
Model.getParamInfo() . 548
Model.getPWLObj() . 549
Model.getQConstrs() . 549
Model.getQCRow() . 549
Model.getRow() . 549
Model.getSOS() . 550
Model.getSOSs() . 550
Model.getTuneResult() . 550
Model.getVarByName() . 551
Model.getVars() . 551
Model.message() . 551
Model.optimize() . 551
Model.optimizeBatch() . 552
Model.presolve() . 552
Model.printAttr() . 553
Model.printQuality() . 553
Model.printStats() . 553
Model.read() . 554
Model.relax() . 554
Model.remove() . 554

xviii

Model.reset() . 555
Model.resetParams() . 555
Model.setAttr() . 555
Model.setMObjective() . 556
Model.setObjective() . 557
Model.setObjectiveN() . 557
Model.setPWLObj() . 558
Model.setParam() . 558
Model.singleScenarioModel() . 559
Model.terminate() . 559
Model.tune() . 559
Model.update() . 559
Model.write() . 560

6.3 Var . 561
Var.getAttr() . 561
Var.sameAs() . 561
Var.index . 562
Var.setAttr() . 562

6.4 MVar . 563
MVar() . 563
MVar.copy() . 564
MVar.tolist() . 564
MVar.getAttr() . 564
MVar.setAttr() . 565
MVar.sum() . 565

6.5 Constr . 566
Constr.getAttr() . 566
Constr.index . 566
Constr.sameAs() . 567
Constr.setAttr() . 567

6.6 MConstr . 568
MConstr.tolist() . 568
MConstr.getAttr() . 568
MConstr.setAttr() . 569

6.7 QConstr . 570
QConstr.getAttr() . 570
QConstr.setAttr() . 570

6.8 SOS . 572
SOS.getAttr() . 572

6.9 GenConstr . 573
GenConstr.getAttr() . 573
GenConstr.setAttr() . 573

6.10 LinExpr . 573
LinExpr() . 574
LinExpr.add() . 575

xix

LinExpr.addConstant() . 575
LinExpr.addTerms() . 575
LinExpr.clear() . 575
LinExpr.copy() . 576
LinExpr.getConstant() . 576
LinExpr.getCoeff() . 576
LinExpr.getValue() . 576
LinExpr.getVar() . 577
LinExpr.remove() . 577
LinExpr.size() . 577
LinExpr.__eq__() . 577
LinExpr.__le__() . 578
LinExpr.__ge__() . 578

6.11 QuadExpr . 579
QuadExpr() . 579
QuadExpr.add() . 580
QuadExpr.addConstant() . 580
QuadExpr.addTerms() . 580
QuadExpr.clear() . 581
QuadExpr.copy() . 581
QuadExpr.getCoeff() . 581
QuadExpr.getLinExpr() . 581
QuadExpr.getValue() . 582
QuadExpr.getVar1() . 582
QuadExpr.getVar2() . 582
QuadExpr.remove() . 582
QuadExpr.size() . 583
QuadExpr.__eq__() . 583
QuadExpr.__le__() . 583
QuadExpr.__ge__() . 583

6.12 GenExpr . 584
6.13 MLinExpr . 585

MLinExpr.copy() . 585
MLinExpr.getValue() . 585
MLinExpr.__eq__() . 586
MLinExpr.__le__() . 586
MLinExpr.__ge__() . 586

6.14 MQuadExpr . 587
MQuadExpr.copy() . 587
MQuadExpr.getValue() . 587
MQuadExpr.__eq__() . 587
MQuadExpr.__le__() . 588
MQuadExpr.__ge__() . 588

6.15 TempConstr . 589
6.16 Column . 591

xx

Column() . 591
Column.addTerms() . 591
Column.clear() . 592
Column.copy() . 592
Column.getCoeff() . 592
Column.getConstr() . 592
Column.remove() . 592
Column.size() . 593

6.17 Callbacks . 594
6.18 GurobiError . 595
6.19 Env . 596

Env() . 596
Env.ClientEnv() . 597
Env.CloudEnv() . 599
Env.resetParams() . 600
Env.setParam() . 600
Env.start() . 600
Env.writeParams() . 601
Env.dispose() . 601

6.20 Batch . 602
Batch() . 602
Batch.abort() . 603
Batch.discard() . 603
Batch.dispose() . 603
Batch.getJSONSolution() . 603
Batch.retry() . 604
Batch.update() . 604
Batch.writeJSONSolution() . 604

6.21 GRB . 606
Constants . 606
GRB.Attr . 606
GRB.Param . 606

6.22 tuplelist . 607
tuplelist() . 607
tuplelist.select() . 607
tuplelist.clean() . 608
tuplelist.__contains__() . 608

6.23 tupledict . 609
tupledict() . 609
tupledict.select() . 609
tupledict.sum() . 610
tupledict.prod() . 610
tupledict.clean() . 611

6.24 General Constraint Helper Functions . 612
abs_() . 612

xxi

and_() . 612
max_() . 612
min_() . 613
or_() . 613

7 MATLAB API Overview 614
7.1 Common Arguments . 617

The model argument . 617
The params argument . 630
The env argument . 631

7.2 Solving a Model . 633
gurobi() . 633
gurobi_iis() . 636
gurobi_feasrelax() . 638
gurobi_relax() . 639

7.3 Input/Output . 640
gurobi_read() . 640
gurobi_write() . 640

7.4 Using Gurobi within MATLAB’s Problem-Based Optimization 641
7.5 Setting up the Gurobi MATLAB interface . 643

8 R API Overview 644
8.1 Common Arguments . 647

The model argument . 647
The params argument . 661
The env argument . 661

8.2 Solving a Model . 664
gurobi() . 664
gurobi_iis() . 667
gurobi_feasrelax() . 669
gurobi_relax() . 670

8.3 Input/Output . 671
gurobi_read() . 671
gurobi_write() . 671

8.4 Installing the R package . 672

9 Variables and Constraints and Objectives 673
9.1 Variables . 673
9.2 Constraints . 674
9.3 Objectives . 681
9.4 Tolerances and Ill Conditioning -- A Caveat . 687

10 Environments 688
10.1 Session boundaries . 688
10.2 Configuration parameters . 689
10.3 Algorithmic parameters . 691

xxii

10.4 Concurrent environments . 691
10.5 Multi-objective environments . 692

11 Attributes 693
11.1 Model Attributes . 699

NumConstrs . 699
NumVars . 699
NumSOS . 700
NumQConstrs . 700
NumGenConstrs . 700
NumNZs . 700
DNumNZs . 700
NumQNZs . 700
NumQCNZs . 701
NumIntVars . 701
NumBinVars . 701
NumPWLObjVars . 701
ModelName . 701
ModelSense . 701
ObjCon . 702
Fingerprint . 702
ObjVal . 702
ObjBound . 702
ObjBoundC . 702
PoolObjBound . 703
PoolObjVal . 703
MIPGap . 703
Runtime . 703
Status . 704
SolCount . 704
IterCount . 704
BarIterCount . 704
NodeCount . 704
IsMIP . 704
IsQP . 705
IsQCP . 705
IsMultiObj . 705
IISMinimal . 705
MaxCoeff . 705
MinCoeff . 706
MaxBound . 706
MinBound . 706
MaxObjCoeff . 706
MinObjCoeff . 706
MaxRHS . 706
MinRHS . 706

xxiii

MaxQCCoeff . 707
MinQCCoeff . 707
MaxQCLCoeff . 707
MinQCLCoeff . 707
MaxQCRHS . 707
MinQCRHS . 707
MaxQObjCoeff . 708
MinQObjCoeff . 708
Kappa . 708
KappaExact . 708
FarkasProof . 708
TuneResultCount . 709
NumStart . 709
LicenseExpiration . 709
Server . 709

11.2 Variable Attributes . 709
LB . 710
UB . 710
Obj . 710
VarName . 710
VTag . 710
VType . 711
X . 711
Xn . 711
RC . 711
BarX . 712
Start . 712
VarHintVal . 713
VarHintPri . 713
BranchPriority . 714
Partition . 714
VBasis . 714
PStart . 715
IISLB . 715
IISUB . 715
PWLObjCvx . 715
SAObjLow . 716
SAObjUp . 716
SALBLow . 716
SALBUp . 716
SAUBLow . 716
SAUBUp . 717
UnbdRay . 717

11.3 Linear Constraint Attributes . 717
Sense . 717

xxiv

RHS . 717
ConstrName . 717
CTag . 718
Pi . 718
Slack . 719
CBasis . 719
DStart . 719
Lazy . 719
IISConstr . 720
SARHSLow . 720
SARHSUp . 721
FarkasDual . 721

11.4 SOS Attributes . 721
IISSOS . 721

11.5 Quadratic Constraint Attributes . 722
QCSense . 722
QCRHS . 722
QCName . 722
QCPi . 722
QCSlack . 722
QCTag . 723
IISQConstr . 723

11.6 General Constraint Attributes . 723
FuncPieceError . 723
FuncPieceLength . 723
FuncPieceRatio . 724
FuncPieces . 724
GenConstrType . 724
GenConstrName . 725
IISGenConstr . 725

11.7 Quality Attributes . 725
BoundVio . 725
BoundSVio . 725
BoundVioIndex . 725
BoundSVioIndex . 726
BoundVioSum . 726
BoundSVioSum . 726
ConstrVio . 726
ConstrSVio . 726
ConstrVioIndex . 727
ConstrSVioIndex . 727
ConstrVioSum . 727
ConstrSVioSum . 727
ConstrResidual . 727
ConstrSResidual . 728

xxv

ConstrResidualIndex . 728
ConstrSResidualIndex . 728
ConstrResidualSum . 728
ConstrSResidualSum . 728
DualVio . 729
DualSVio . 729
DualVioIndex . 729
DualSVioIndex . 729
DualVioSum . 730
DualSVioSum . 730
DualResidual . 730
DualSResidual . 730
DualResidualIndex . 730
DualSResidualIndex . 731
DualResidualSum . 731
DualSResidualSum . 731
ComplVio . 731
ComplVioIndex . 731
ComplVioSum . 731
IntVio . 732
IntVioIndex . 732
IntVioSum . 732

11.8 Multi-objective Attributes . 732
ObjN . 732
ObjNCon . 733
ObjNPriority . 733
ObjNWeight . 733
ObjNRelTol . 733
ObjNAbsTol . 734
ObjNVal . 734
ObjNName . 734
NumObj . 735

11.9 Multi-Scenario Attributes . 735
ScenNLB . 735
ScenNUB . 735
ScenNObj . 736
ScenNRHS . 736
ScenNName . 736
ScenNObjBound . 737
ScenNObjVal . 737
ScenNX . 737
NumScenarios . 737

11.10Batch Attributes . 738
BatchErrorCode . 738
BatchErrorMessage . 738

xxvi

BatchID . 738
BatchStatus . 738

11.11Attribute Examples . 739
C Attribute Examples . 740
C++ Attribute Examples . 741
C# Attribute Examples . 742
Java Attribute Examples . 742
Python Attribute Examples . 743
Visual Basic Attribute Examples . 743

12 Parameters 745
12.1 Parameter Guidelines . 752

Continuous Models . 752
MIP Models . 753

12.2 Parameter Descriptions . 756
AggFill . 756
Aggregate . 757
BarConvTol . 757
BarCorrectors . 757
BarHomogeneous . 758
BarIterLimit . 758
BarOrder . 758
BarQCPConvTol . 759
BestBdStop . 759
BestObjStop . 760
BQPCuts . 760
BranchDir . 760
CliqueCuts . 761
CloudAccessID . 761
CloudHost . 762
CloudSecretKey . 762
CloudPool . 762
ComputeServer . 763
ConcurrentJobs . 763
ConcurrentMIP . 764
ConcurrentSettings . 764
CoverCuts . 765
Crossover . 765
CrossoverBasis . 766
CSAPIAccessID . 766
CSAPISecret . 767
CSAppName . 767
CSAuthToken . 767
CSBatchMode . 768
CSClientLog . 768
CSGroup . 768

xxvii

CSIdleTimeout . 769
CSManager . 769
CSPriority . 770
CSQueueTimeout . 770
CSRouter . 771
CSTLSInsecure . 771
CutAggPasses . 771
Cutoff . 772
CutPasses . 772
Cuts . 773
DegenMoves . 773
Disconnected . 773
DisplayInterval . 774
DistributedMIPJobs . 774
DualReductions . 775
FeasibilityTol . 775
FeasRelaxBigM . 775
FlowCoverCuts . 776
FlowPathCuts . 776
FuncPieceError . 776
FuncPieceLength . 777
FuncPieceRatio . 777
FuncPieces . 777
FuncMaxVal . 778
GomoryPasses . 778
GUBCoverCuts . 779
Heuristics . 779
IgnoreNames . 779
IISMethod . 780
ImpliedCuts . 780
ImproveStartGap . 780
ImproveStartNodes . 781
ImproveStartTime . 781
InfProofCuts . 782
InfUnbdInfo . 782
InputFile . 783
IntegralityFocus . 783
IntFeasTol . 784
IterationLimit . 784
JobID . 784
JSONSolDetail . 784
LazyConstraints . 785
LogFile . 785
LogToConsole . 785
MarkowitzTol . 786

xxviii

Method . 786
MinRelNodes . 787
MIPFocus . 787
MIPGap . 788
MIPGapAbs . 788
MIPSepCuts . 789
MIQCPMethod . 789
MIRCuts . 789
ModKCuts . 790
MultiObjMethod . 790
MultiObjPre . 791
MultiObjSettings . 791
NetworkCuts . 791
NodefileDir . 792
NodefileStart . 792
NodeLimit . 793
NodeMethod . 793
NonConvex . 793
NoRelHeurTime . 794
NoRelHeurWork . 794
NormAdjust . 795
NumericFocus . 795
ObjNumber . 795
ObjScale . 796
OptimalityTol . 796
OutputFlag . 797
PartitionPlace . 797
PerturbValue . 798
PoolGap . 798
PoolGapAbs . 798
PoolSearchMode . 799
PoolSolutions . 799
PreCrush . 800
PreDepRow . 800
PreDual . 800
PreMIQCPForm . 801
PrePasses . 801
PreQLinearize . 802
Presolve . 802
PreSOS1BigM . 802
PreSOS2BigM . 803
PreSparsify . 803
ProjImpliedCuts . 804
PSDCuts . 804
PSDTol . 804

xxix

PumpPasses . 805
QCPDual . 805
Quad . 806
Record . 806
ResultFile . 806
RINS . 807
RelaxLiftCuts . 807
RLTCuts . 808
ScaleFlag . 808
ScenarioNumber . 808
Seed . 809
ServerPassword . 809
ServerTimeout . 809
Sifting . 810
SiftMethod . 810
SimplexPricing . 811
SolutionLimit . 811
SolFiles . 811
SolutionNumber . 812
StartNodeLimit . 812
StartNumber . 813
StrongCGCuts . 813
SubMIPCuts . 813
SubMIPNodes . 814
Symmetry . 814
Threads . 814
TimeLimit . 815
TokenServer . 815
TSPort . 816
TuneBaseSettings . 816
TuneCleanup . 816
TuneCriterion . 817
TuneJobs . 817
TuneOutput . 818
TuneResults . 818
TuneTimeLimit . 818
TuneTrials . 819
UpdateMode . 819
UserName . 820
VarBranch . 820
WorkerPassword . 821
WorkerPool . 821
ZeroHalfCuts . 821
ZeroObjNodes . 822

12.3 Parameter Examples . 822

xxx

C Parameter Examples . 823
C++ Parameter Examples . 824
C# Parameter Examples . 824
Java Parameter Examples . 825
MATLAB Parameter Examples . 825
Python Parameter Examples . 825
R Parameter Examples . 826
Visual Basic Parameter Examples . 826

13 Optimization Status Codes 828

14 Batch Status Codes 830

15 Callback Codes 831

16 Error Codes 835

17 Model File Formats 838
17.1 MPS format . 838
17.2 REW format . 846
17.3 LP format . 846
17.4 RLP format . 853
17.5 ILP format . 853
17.6 OPB format . 853
17.7 MST format . 854
17.8 HNT format . 855
17.9 ORD format . 855
17.10BAS format . 856
17.11SOL format . 856
17.12JSON solution format . 856
17.13ATTR format . 863
17.14PRM format . 865

18 Logging 866
18.1 Header . 866
18.2 Simplex Logging . 867
18.3 Barrier Logging . 868
18.4 Sifting Logging . 871
18.5 MIP Logging . 872
18.6 Solution Pool and Multi-Scenario Logging . 875
18.7 Multi-Objective Logging . 876
18.8 Distributed MIP Logging . 876
18.9 IIS Logging . 878

19 Gurobi Command-Line Tool 880
19.1 Solving a Model . 881
19.2 Replaying Recording Files . 882

xxxi

20 Solution Pool 884
20.1 Finding Multiple Solutions . 884
20.2 Retrieving Solutions . 885
20.3 Examples . 885
20.4 Subtleties and Limitations . 887

21 Multiple Objectives 888
21.1 Specifying Multiple Objectives . 888
21.2 Working With Multiple Objectives . 889
21.3 Additional Details . 892

22 Multiple Scenarios 894
22.1 Definition of a Multi-Scenario Model . 894
22.2 Specifying Multiple Scenarios . 894
22.3 Logging . 895
22.4 Retrieving Solutions for Multiple Scenarios . 896
22.5 Tips and Tricks . 896
22.6 Limitations and Additional Considerations . 897

23 Batch Optimization 898
23.1 Setting Up a Batch Environment . 898
23.2 Tagging Variables or Constraints . 898
23.3 Submitting a Batch Optimization Request . 899
23.4 Interacting with Batch Requests . 899
23.5 Interpreting the JSON Solution . 900
23.6 A Complete Example . 901

24 Recording API Calls 904
24.1 Recording . 905
24.2 Replay . 905
24.3 Limitations . 906

25 Concurrent Optimizer 907

26 Parameter Tuning Tool 910
26.1 Command-Line Tuning . 911
26.2 Tuning API . 914

27 Gurobi Instant Cloud 915
27.1 Client Setup . 915
27.2 Instant Cloud Setup . 916

28 Guidelines for Numerical Issues 918
28.1 Avoid rounding of input . 918
28.2 Real numbers are not real . 919
28.3 Tolerances and user-scaling . 920

Gurobi tolerances and the limitations of double-precision arithmetic 921

xxxii

Why scaling and geometry is relevant . 921
Recommended ranges for variables and constraints 924
Improving ranges for variables and constraints 925
Advanced user scaling . 925
Avoid hiding large coefficients . 926
Dealing with big-M constraints . 927

28.4 Does my model have numerical issues? . 927
28.5 Solver parameters to manage numerical issues . 929

Presolve . 929
Choosing the right algorithm . 930
Making the algorithm less sensitive . 930

28.6 Instability and the geometry of optimization problems 931
The case of linear systems: . 932
The geometry of linear optimization problems 932
Multiple optimal solutions . 934
Dealing with epsilon-optimal solutions . 935
Thin feasible regions . 937
Optimizing over the circle: . 938
Optimizing over thin regions: . 940
Stability and convergence . 941

28.7 Further reading . 941
Source code for the experiment of optimizing over a circle 942
Source code for the experiment on a thin feasible region 943
Source code for the experiment with column scalings 943

29 Copyright Notices for 3rd Party Libraries 944

xxxiii

Introduction

Gurobi

Interactive

Shell

Python API

C API

.NET API

Java API

C++ API

MATLAB API

R API

Gurobi

Command

Line

Gurobi Algorithms

Model Data

Solution Data

This is the reference manual for the GurobiTM Optimizer. It contains documentation for the
following Gurobi language interfaces:

• C

• C++

• Java R©

• Microsoft R©.NET

• Python R©

• MATLAB R©

• R

The Gurobi interactive shell is also documented in the Python section.
The different Gurobi language interfaces share many common features. These are described at

the end of this manual. Two particularly important common features are the Attribute interface
and the Gurobi Parameter set. You may wish to bookmark these pages, since you are likely to refer
to them frequently as you develop applications that use the Gurobi Optimizer.

1

Additional Topics

This document covers a number of additional topics, which are listed here:

• Variables and Constraints and Objectives

• Environments

• Attributes

• Parameters

• Optimization Status Codes

• Callback Codes

• Error Codes

• File Formats

• Logging

• Command-Line Tool

• Solution Pool

• Multiple Objectives

• Multiple Scenarios

• Batch Optimization

• Recording API Calls

• Concurrent Optimizer

• Parameter Tuning Tool

• Instant Cloud

• Guidelines for Numerical Issues

Additional Resources

You can consult the Gurobi Quick Start for a high-level overview of the Gurobi Optimizer, or the
Gurobi Example Tour for a quick tour of the examples provided with the Gurobi distribution, or the
Gurobi Remote Services Reference Manual for an overview of Gurobi Compute Server, Distributed
Algorithms, and Gurobi Remote Services.
Getting Help

If you have a question that is not answered in this document, please visit the Gurobi support site at
https://support.gurobi.com. There, you can read knowledge base articles and join the community
discussion forum. Also, if you have a current maintenance contract, you can use the Gurobi support
site to submit a request to the Gurobi support team.

2

https://www.gurobi.com/documentation/9.1/quickstart_windows/index.html
https://www.gurobi.com/documentation/9.1/examples/index.html
https://www.gurobi.com/documentation/9.1/remoteservices/remoteservices.html
https://support.gurobi.com

C API Overview

This section documents the Gurobi C interface. This manual begins with a quick overview of the
functions in the interface, and continues with detailed descriptions of all of the available interface
routines.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide
or the Example Tour. These documents provide concrete examples of how to use the routines
described here.
Environments

The first step in using the Gurobi C optimizer is to create an environment, using the GRBloadenv
call. The environment acts as a container for all data associated with a set of optimization runs. You
will generally only need one environment in your program, even if you wish to work with multiple
optimization models. Once you are done with an environment, you should call GRBfreeenv to
release the associated resources.

For more advanced use cases, you can use the GRBemptyenv routine to create an uninitialized
environment and then, programmatically, set all required options for your specific requirements.
For further details see the Environment section.
Models

You can create one or more optimization models within an environment. A model consists of a set of
variables, a linear, quadratic, or piecewise-linear objective function on those variables, and a set of
constraints. Each variable has an associated lower bound, upper bound, type (continuous, binary,
integer, semi-continuous, or semi-integer), and linear objective coefficient. Each linear constraint
has an associated sense (less-than-or-equal, greater-than-or-equal, or equal), and right-hand side
value. Refer to this section for more information on variables and constraints.

An optimization model may be specified all at once, through the GRBloadmodel routine, or
built incrementally, by first calling GRBnewmodel and then calling GRBaddvars to add variables
and GRBaddconstr, GRBaddqconstr, GRBaddsos, or any of the GRBaddgenconstrXxx methods to
add constraints. Models are dynamic entities; you can always add or delete variables or constraints.

Specific variables and constraints are referred to throughout the Gurobi C interface using their
indices. Variable indices are assigned as variables are added to the model, in a contiguous fashion.
The same is true for constraints. In adherence to C language conventions, indices all start at 0.

We often refer to the class of an optimization model. A model with a linear objective function,
linear constraints, and continuous variables is a Linear Program (LP). If the objective is quadratic,
the model is a Quadratic Program (QP). If any of the constraints are quadratic, the model is
a Quadratically-Constrained Program (QCP). We will sometimes refer to a few special cases of
QCP: QCPs with convex constraints, QCPs with non-convex constraints, bilinear programs, and
Second-Order Cone Programs (SOCP). If the model contains any integer variables, semi-continuous
variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the
model is a Mixed Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, in-
cluding Mixed Integer Linear Programs (MILP), Mixed Integer Quadratic Programs (MIQP), Mixed

3

https://www.gurobi.com/documentation/9.1/quickstart_windows/index.html
https://www.gurobi.com/documentation/9.1/examples/index.html

Integer Quadratically-Constrained Programs (MIQCP), and Mixed Integer Second-Order Cone Pro-
grams (MISOCP). The Gurobi Optimizer handles all of these model classes.
Solving a Model

Once you have built a model, you can call GRBoptimize to compute a solution. By default,
GRBoptimize() will use the concurrent optimizer to solve LP models, the barrier algorithm to
solve QP models with convex objectives and QCP models with convex constraints, and the branch-
and-cut algorithm otherwise. The solution is stored as a set of attributes of the model. The C
interface contains an extensive set of routines for querying these attributes.

The Gurobi algorithms keep careful track of the state of the model, so calls to GRBoptimize()
will only perform further optimization if relevant data has changed since the model was last op-
timized. If you would like to discard previously computed solution information and restart the
optimization from scratch without changing the model, you can call GRBreset.

After a MIP model has been solved, you can call GRBfixmodel to compute the associated fixed
model. This model is identical to the original, except that the integer variables are fixed to their
values in the MIP solution. If your model contains SOS constraints, some continuous variables that
appear in these constraints may be fixed as well. In some applications, it can be useful to compute
information on this fixed model (e.g., dual variables, sensitivity information, etc.), although you
should be careful in how you interpret this information.
Multiple Solutions, Objectives, and Scenarios

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to
a single model with a single objective function. Gurobi provides the following features that allow
you to relax these assumptions:

• Solution Pool: Allows you to find more solutions.

• Multiple Scenarios: Allows you to find solutions to multiple, related models.

• Multiple Objectives: Allows you to specify multiple objective functions and control the trade-
off between them.

Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause
of the infeasibility, attempt to repair the infeasibility, or both. To obtain information that can be
useful for diagnosing the cause of an infeasibility, call GRBcomputeIIS to compute an Irreducible
Inconsistent Subsystem (IIS). This routine can be used for both continuous and MIP models, but
you should be aware that the MIP version can be quite expensive. This routine populates a set of
IIS attributes.

To attempt to repair an infeasibility, call GRBfeasrelax to compute a feasibility relaxation for
the model. This relaxation allows you to find a solution that minimizes the magnitude of the
constraint violation.
Querying and Modifying Attributes

Most of the information associated with a Gurobi model is stored in a set of attributes. Some
attributes are associated with the variables of the model, some with the constraints of the model,
and some with the model itself. To give a simple example, solving an optimization model causes
the X variable attribute to be populated. Attributes such as X that are computed by the Gurobi

4

optimizer cannot be modified directly by the user, while others, such as the variable lower bound
array (the LB attribute) can.

The Gurobi C interface contains an extensive set of routines for querying or modifying attribute
values. The exact routine to use for a particular attribute depends on the type of the attribute.
As mentioned earlier, attributes can be either variable attributes, constraint attributes, or model
attributes. Variable and constraint attributes are arrays, and use a set of array attribute routines.
Model attributes are scalars, and use a set of scalar routines. Attribute values can additionally be
of type char , int, double, or string (really char *).

Scalar model attributes are accessed through a set of GRBget*attr() routines (e.g., GRBget-
intattr). In addition, those model attributes that can be set directly by the user (e.g., the objective
sense) may be modified through the GRBset*attr() routines (e.g., GRBsetdblattr).

Array attributes are accessed through three sets of routines. The first set, the GRBget*attrarray()
routines (e.g., GRBgetcharattrarray) return a contiguous sub-array of the attribute array, specified
using the index of the first member and the length of the desired sub-array. The second set, the
GRBget*attrelement() routines (e.g., GRBgetcharattrelement) return a single entry from the at-
tribute array. Finally, the GRBget*attrlist() routines (e.g., GRBgetdblattrlist) retrieve attribute
values for a list of indices.

Array attributes that can be set by the user are modified through the GRBset*attrarray(),
GRBset*attrelement(), and GRBset*attrlist() routines.

The full list of Gurobi attributes can be found in the Attributes section.

Additional Model Modification Information

Most modifications to an existing model are done through the attribute interface (e.g., changes to
variable bounds, constraint right-hand sides, etc.). The main exceptions are modifications to the
constraints themselves, and to the quadratic and piecewise-linear portions of the objective function.

The constraint matrix can be modified in a few ways. The first is to call GRBchgcoeffs to
change individual matrix coefficients. This routine can be used to modify the value of an existing
non-zero, to set an existing non-zero to zero, or to create a new non-zero. The constraint ma-
trix is also modified when you remove constraints (through GRBdelconstrs) or variables (through
GRBdelvars). The non-zero values associated with the deleted constraints or variables are removed
along with the constraints or variables themselves.

Quadratic objective terms are added to the objective function using the GRBaddqpterms rou-
tine. You can add a list of quadratic terms in one call, or you can add terms incrementally through
multiple calls. The GRBdelq routine allows you to delete all quadratic terms from the model. Note
that quadratic models will typically have both quadratic and linear terms. Linear terms are entered
and modified through the Obj attribute, in the same way that they are handled for models with
purely linear objective functions.

If your variables have piecewise-linear objectives, you can specify them using the GRBsetpwlobj
routine. Call this routine once for each relevant variable. The Gurobi simplex solver includes
algorithmic support for convex piecewise-linear objective functions, so for continuous models you
should see a substantial performance benefit from using this feature. To clear a previously specified
piecewise-linear objective function, simply set the Obj attribute on the corresponding variable to
0.

5

Lazy Updates

One important item to note about model modification in the Gurobi optimizer is that it is performed
in a lazy fashion, meaning that modifications don’t affect the model immediately. Rather, they
are queued and applied later. If your program simply creates a model and solves it, you will
probably never notice this behavior. However, if you ask for information about the model before
your modifications have been applied, the details of the lazy update approach may be relevant to
you.

As we just noted, model modifications (bound changes, right-hand side changes, objective
changes, etc.) are placed in a queue. These queued modifications can be applied to the model
in three different ways. The first is by an explicit call to GRBupdatemodel. The second is by a
call to GRBoptimize. The third is by a call to GRBwrite to write out the model. The first case
gives you fine-grained control over when modifications are applied. The second and third make the
assumption that you want all pending modifications to be applied before you optimize your model
or write it to disk.

Why does the Gurobi interface behave in this manner? There are a few reasons. The first is
that this approach makes it much easier to perform multiple modifications to a model, since the
model remains unchanged between modifications. The second is that processing model modifica-
tions can be expensive, particularly in a Compute Server environment, where modifications require
communication between machines. Thus, it is useful to have visibility into exactly when these
modifications are applied. In general, if your program needs to make multiple modifications to
the model, you should aim to make them in phases, where you make a set of modifications, then
update, then make more modifications, then update again, etc. Updating after each individual
modification can be extremely expensive.

If you forget to call update, your program won’t crash. Your query will simply return the value
of the requested data from the point of the last update. If the object you tried to query didn’t
exist then, you’ll get an INDEX_OUT_OF_RANGE error instead.

The semantics of lazy updates have changed since earlier Gurobi versions. While the vast
majority of programs are unaffected by this change, you can use the UpdateMode parameter to
revert to the earlier behavior if you run into an issue.

Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of
the optimization process. Factors like feasibility and optimality tolerances, choices of algorithms,
strategies for exploring the MIP search tree, etc., can be controlled by modifying Gurobi param-
eters before beginning the optimization. Parameters are set using the GRBset*param() routines
(e.g., GRBsetintparam). Current values can be retrieved with the GRBget*param() routines (e.g.,
GRBgetdblparam). Parameters can be of type int, double, or char * (string). You can also read a
set of parameter settings from a file using GRBreadparams, or write the set of changed parameters
using GRBwriteparams.

We also include an automated parameter tuning tool that explores many different sets of pa-
rameter changes in order to find a set that improves performance. You can call GRBtunemodel to
invoke the tuning tool on a model. Refer to the parameter tuning tool section for more information.

One thing we should note is that each model gets its own copy of the environment when it
is created. Parameter changes to the original environment therefore have no effect on existing
models. Use GRBgetenv to retrieve the environment associated with a particular model if you

6

want to change a parameter for that model.
Monitoring Progress - Logging and Callbacks

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will
send output to the screen. A few simple controls are available for modifying the default logging
behavior. If you would like to direct output to a file as well as to the screen, specify the log file
name in GRBloadenv when you create your environment. You can modify the LogFile parameter
if you wish to redirect the log to a different file after creating the environment. The frequency of
logging output can be controlled with the DisplayInterval parameter, and logging can be turned off
entirely with the OutputFlag parameter. A detailed description of the Gurobi log file can be found
in the Logging section.

More detailed progress monitoring can be done through the Gurobi callback function. The
GRBsetcallbackfunc routine allows you to install a function that the Gurobi optimizer will call
regularly during the optimization process. You can call GRBcbget from within the callback to
obtain additional information about the state of the optimization.
Modifying Solver Behavior - Callbacks

Callbacks can also be used to modify the behavior of the Gurobi optimizer. If you call routine
GRBterminate from within a callback, for example, the optimizer will terminate at the earliest
convenient point. Routine GRBcbsolution allows you to inject a feasible solution (or partial solu-
tion) during the solution of a MIP model. Routines GRBcbcut and GRBcblazy allow you to add
cutting planes and lazy constraints during a MIP optimization, respectively. Routine GRBcbsto-
ponemultiobj allows you to interrupt the optimization process of one of the optimization steps in
a multi-objective MIP problem without stopping the hierarchical optimization process.
Batch Optimization

Gurobi Compute Server enables programs to offload optimization computations onto dedicated
servers. The Gurobi Cluster Manager adds a number of additional capabilities on top of this.
One important one, batch optimization, allows you to build an optimization model with your client
program, submit it to a Compute Server cluster (through the Cluster Manager), and later check
on the status of the model and retrieve its solution. You can use a Batch object to make it easier
to work with batches. For details on batches, please refer to the Batch Optimization section.
Error Handling

Most of the Gurobi C library routines return an integer error code. A zero return value indicates
that the routine completed successfully, while a non-zero value indicates that an error occurred.
The list of possible error return codes can be found in the Error Codes section.

When an error occurs, additional information on the error can be obtained by calling GRBgeter-
rormsg.

7

2.1 Environment Creation and Destruction
GRBloadenv

int GRBloadenv (GRBenv **envP,
const char *logfilename)

Create an environment. Optimization models live within an environment, so this is typically
the first Gurobi routine called in an application.

This routine will also populate any parameter (ComputeServer, TokenServer, ServerPassword,
etc.) specified in your gurobi.lic file. This routine will also check the current working directory
for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists.
The file should be in PRM format (briefly, each line should contain a parameter name, followed by
the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Return value:
A non-zero return value indicates that there was a problem creating the environment. Refer
to the Error Code table for a list of possible return values.

Arguments:
envP: The location in which the pointer to the newly created environment should be placed.
logfilename: The name of the log file for this environment. May be NULL (or an empty
string), in which case no log file is created.

GRBemptyenv

int GRBemptyenv (GRBenv **envP)

Create an empty environment. Note that you will need to call GRBstartenv before you can use
this environment.

You should use this routine if you want to set parameters before actually starting the environ-
ment. This can be useful if you want to connect to a Compute Server, a Token Server, the Gurobi
Instant Cloud or a Cluster Manager. See the Environment Section for more details.

Return value:
A non-zero return value indicates that there was a problem creating the environment. Refer
to the Error Code table for a list of possible return values.

Arguments:
envP: The location in which the pointer to the newly created environment should be placed.

GRBstartenv

int GRBstartenv (GRBenv *env)

8

Start an empty environment. This routine starts an empty environment created by GRBemp-
tyenv. If the environment has already been started, this routine will do nothing. If the routine
fails, the environment will have the same state as it had before the call to this function.

This routine will also populate any parameter (ComputeServer, TokenServer, ServerPassword,
etc.) specified in your gurobi.lic file. This routine will also check the current working directory
for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists.
The file should be in PRM format (briefly, each line should contain a parameter name, followed by
the desired value for that parameter). After that, it will apply all parameter changes specified by
the user prior to this call. Note that this might overwrite parameters set in the license file, or in
the gurobi.env file, if present.

After all these changes are performed, the code will actually activate the environment, and
make it ready to work with models.

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Return value:
A non-zero return value indicates that there was a problem starting the environment. Refer
to the Error Code table for a list of possible return values.

Arguments:
env: The empty environment to start.

GRBloadclientenv

int GRBloadclientenv (GRBenv **envP,
const char *logfilename,
const char *computeserver,
const char *router,
const char *password,
const char *group,
int CStlsinsecure,
int priority,
double timeout)

Create a client environment on a compute server. Optimization models live within an environ-
ment, so this is typically the first Gurobi routine called in an application. This call specifies the
compute server on which those optimization models will be solved, as well as the priority of the
associated jobs.

This routine will also check the current working directory for a file named gurobi.env, and
it will attempt to read parameter settings from this file if it exists. The file should be in PRM
format (briefly, each line should contain a parameter name, followed by the desired value for that
parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded

9

program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Return value:

A non-zero return value indicates that there was a problem creating the environment. Refer
to the Error Code table for a list of possible return values.

Arguments:

envP: The location in which the pointer to the newly created environment should be placed.

logfilename: The name of the log file for this environment. May be NULL (or an empty
string), in which case no log file is created.

computeserver: A Compute Server. You can refer to the server using its name or its IP
address. If you are using a non-default port, the server name should be followed by the
port number (e.g., server1:61000)

router: The router for a Compute Server cluster. A router can be used to improve the
robustness of a Compute Server deployment. You should refer to the router using either
its name or its IP address. If no router is used (which is the typical case), pass an empty
string.

password: The password for gaining access to the specified Compute Server cluster. Pass
an empty string if no password is required.

group: The name of the Compute Server group.

CStlsinsecure: Indicates whether to use insecure mode in the TLS (Transport Layer Se-
curity). Set this to 0 unless your server administrator tells you otherwise.

priority: The priority of the job. Priorities must be between -100 and 100, with a default
value of 0 (by convention). Higher priority jobs are chosen from the server job queue before
lower priority jobs. Depending on the configuration of the server, a job with priority 100
runs immediately, bypassing the job queue and ignoring the job limit on the server. You
should exercise caution with priority 100 jobs, since they can severely overload a server,
which can cause jobs to fail, and in extreme cases can cause the server to crash. This
behavior is managed by the HARDJOBLIMIT, and is disabled by default. Refer to the
Gurobi Remote Services Reference Manual for more information on starting Compute
Server options.

timeout: Queue timeout (in seconds). If the job doesn’t reach the front of the queue before
the specified timeout, the call will exit with a JOB_REJECTED error. Use -1 to indicate that
the call should never timeout.

Example usage:

GRBenv *env;
error = GRBloadclientenv(&env, "gurobi.log",

"server1.mydomain.com,server2.mydomain.com",
"", "", "", 0, 5, -1.0);

10

https://www.gurobi.com/documentation/9.1/remoteservices/remoteservices.html

GRBloadcloudenv

int GRBloadcloudenv (GRBenv **envP,
const char *logfilename,
const char *accessID,
const char *secretKey,
const char *pool,
int priority)

Create a Gurobi Instant Cloud environment. Optimization models live within an environment,
so this is typically the first Gurobi routine called in an application. This call will use an existing
Instant Cloud machine if one is currently running within the specified machine pool, and it will
launch a new one otherwise. Note that launching a new machine can take a few minutes.

You should visit the Gurobi Instant Cloud site to obtain your accessID and secretKey, con-
figure your machine pools, and perform other cloud setup and maintenance tasks.

You should keep your secretKey private. Sharing it with others will allow them to launch
Instant Cloud instances in your account.

This routine will also check the current working directory for a file named gurobi.env, and
it will attempt to read parameter settings from this file if it exists. The file should be in PRM
format (briefly, each line should contain a parameter name, followed by the desired value for that
parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Return value:
A non-zero return value indicates that there was a problem creating the environment. Refer
to the Error Code table for a list of possible return values.

Arguments:
envP: The location in which the pointer to the newly created environment should be placed.
logfilename: The name of the log file for this environment. May be NULL (or an empty
string), in which case no log file is created.

accessID: The access ID for your Gurobi Instant Cloud license. This can be retrieved from
the Gurobi Instant Cloud website. When used in combination with your secretKey, this
allows you to launch Instant Cloud instances and submit jobs to them.

secretKey: The secret key for your Gurobi Instant Cloud license. This can be retrieved
from the Gurobi Instant Cloud website. When used in combination with your accessID,
this allows you to launch Instant Cloud instances and submit jobs to them. Note that you
should keep your secret key private.

pool: The machine pool. Machine pools allow you to create fixed configurations on the
Instant Cloud website (capturing things like type of machine, geographic region, etc.),
and then launch and share machines from client programs without having to restart the
configuration information each time you launch a machine. May be NULL (or an empty
string), in which case your job will be launched in the default pool associated with your
cloud license.

priority: The priority of the job. Priorities must be between -100 and 100, with a default

11

value of 0 (by convention). Higher priority jobs are chosen from the server job queue
before lower priority jobs.

Example usage:

GRBenv *env;
error = GRBloadcloudenv(&env, "gurobi.log",

"3d1ecef9-dfad-eff4-b3fa", "ae6L23alJe3+fas",
"", 0);

GRBfreeenv

void GRBfreeenv (GRBenv *env)

Free an environment that was previously allocated by GRBloadenv, and release the associated
memory. This routine should be called when an environment is no longer needed. In particular, it
should only be called once all models built using the environment have been freed.

Arguments:
env: The environment to be freed.

GRBgetconcurrentenv

GRBenv * GRBgetconcurrentenv (GRBmodel *model,
int num)

Create/retrieve a concurrent environment for a model.
This routine provides fine-grained control over the concurrent optimizer. By creating your

own concurrent environments and setting appropriate parameters on these environments (e.g., the
Method parameter), you can control exactly which strategies the concurrent optimizer employs.
For example, if you create two concurrent environments, and set Method to primal simplex for
one and dual simplex for the other, subsequent concurrent optimizer runs will use the two simplex
algorithms rather than the default choices.

Note that you must create contiguously numbered concurrent environments, starting with
num=0. For example, if you want three concurrent environments, they must be numbered 0, 1,
and 2.

Once you create concurrent environments, they will be used for every subsequent concurrent
optimization on that model. Use GRBdiscardconcurrentenvs to revert back to default concurrent
optimizer behavior.

Return value:
The concurrent environment. A NULL return value indicates that there was a problem
creating the environment.

Arguments:
model: The model for the concurrent environment.
num: The concurrent environment number.

Example usage:

GRBenv *env0 = GRBgetconcurrentenv(model, 0);
GRBenv *env1 = GRBgetconcurrentenv(model, 1);

12

GRBgetmultiobjenv

GRBenv* GRBgetmultiobjenv (GRBmodel *model,
int num)

Create/retrieve a multi-objective environment for the objective with the given index. This
environment enables fine-grained control over the multi-objective optimization process. Specifically,
by changing parameters on this environment, you modify the behavior of the optimization that
occurs during the corresponding pass of the multi-objective optimization.

Each multi-objective environment starts with a copy of the current model environment.
Please refer to the discussion of Multiple Objectives for information on how to specify multiple

objective functions and control the trade-off between them.
Return value:

The environment associated with a given multiobjective number in the model. A NULL
return value indicates that there was a problem retrieving the environment.

Arguments:
model: The model from where we want to retrieve the multiobjecitve environment.
num: The multiobjective number.

Example usage:

GRBenv *env0 = GRBgetmultiobjenv(model,0);
GRBenv *env1 = GRBgetmultiobjenv(model,1);

GRBsetintparam(env0, "Method", 2);
GRBsetintparam(env1, "Method", 1);

GRBoptimize(model);

GRBdiscardmultiobjenvs(model);

GRBdiscardconcurrentenvs

void GRBdiscardconcurrentenvs (GRBmodel * model)

Discard concurrent environments for a model.
The concurrent environments created by GRBgetconcurrentenv will be used by every subsequent

call to the concurrent optimizer until the concurrent environments are discarded.
Arguments:

model: The model for the concurrent environment.
Example usage:

GRBdiscardconcurrentenvs(model);

GRBdiscardmultiobjenvs

void GRBdiscardmultiobjenvs (GRBmodel *model)

13

Discard all multi-objective environments associated with the model, thus restoring multi objec-
tive optimization to its default behavior.

Please refer to the discussion of Multiple Objectives for information on how to specify multiple
objective functions and control the trade-off between them.

Arguments:
model: The model in which all multi objective environments will be discarded.

Example usage:

GRBenv *env0 = GRBgetmultiobjenv(model,0);
GRBenv *env1 = GRBgetmultiobjenv(model,1);

GRBsetintparam(env0, "Method", 2);
GRBsetintparam(env1, "Method", 1);

GRBoptimize(model);

GRBdiscardmultiobjenvs(model);

14

2.2 Model Creation and Modification

GRBloadmodel

int GRBloadmodel (GRBenv *env,
GRBmodel **modelP,
const char *Pname,
int numvars,
int numconstrs,
int objsense,
double objcon,
double *obj,
char *sense,
double *rhs,
int *vbeg,
int *vlen,
int *vind,
double *vval,
double *lb,
double *ub,
char *vtype,
const char **varnames,
const char **constrnames)

Create a new optimization model, using the provided arguments to initialize the model data
(objective function, variable bounds, constraint matrix, etc.). The model is then ready for opti-
mization, or for modification (e.g., addition of variables or constraints, changes to variable types
or bounds, etc.).

If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXloadmodel variant of this routine.

Return value:
A non-zero return value indicates that a problem occurred while creating the model. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
env: The environment in which the new model should be created. Note that the new model
gets a copy of this environment, so subsequent modifications to the original environment
(e.g., parameter changes) won’t affect the new model. Use GRBgetenv to modify the
environment associated with a model.

modelP: The location in which the pointer to the newly created model should be placed.
Pname: The name of the model.
numvars: The number of variables in the model.
numconstrs: The number of constraints in the model.
objsense: The sense of the objective function. Allowed values are 1 (minimization) or -1
(maximization).

objcon: Constant objective offset.

15

obj: Objective coefficients for the new variables. This argument can be NULL, in which case
the objective coefficients are set to 0.0.

sense: The senses of the new constraints. Options are ’=’ (equal), ’<’ (less-than-or-equal),
or ’>’ (greater-than-or-equal). You can also use constants GRB_EQUAL, GRB_LESS_EQUAL,
or GRB_GREATER_EQUAL.

rhs: Right-hand side values for the new constraints. This argument can be NULL if you are
not adding any constraint.

vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Column (CSC) format. Each column in the constraint matrix is represented as a list of
index-value pairs, where each index entry provides the constraint index for a non-zero
coefficient, and each value entry provides the corresponding non-zero value. Each variable
in the model has a vbeg and vlen value, indicating the start position of the non-zeros for
that variable in the vind and vval arrays, and the number of non-zero values for that
variable, respectively. Thus, for example, if vbeg[2] = 10 and vlen[2] = 2, that would
indicate that variable 2 has two non-zero values associated with it. Their constraint indices
can be found in vind[10] and vind[11], and the numerical values for those non-zeros
can be found in vval[10] and vval[11].

vlen: Number of constraint matrix non-zero values associated with each variable. See the
description of the vbeg argument for more information.

vind: Constraint indices associated with non-zero values. See the description of the vbeg
argument for more information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of
the vbeg argument for more information.

lb: Lower bounds for the new variables. This argument can be NULL, in which case all
variables get lower bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all
variables get infinite upper bounds.

vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER,
GRB_SEMICONT, or GRB_SEMIINT. This argument can be NULL, in which case all variables
are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all
variables are given default names.

constrnames: Names for the new constraints. This argument can be NULL, in which case
all constraints are given default names.

Important notes:
We recommend that you build a model one constraint or one variable at a time, using GRBad-

dconstr or GRBaddvar, rather than using this routine to load the entire constraint matrix at once.
It is much simpler, less error prone, and it introduces no significant overhead.

Example usage:

/* maximize x + y + 2 z
subject to x + 2 y + 3 z <= 4

x + y >= 1
x, y, z binary */

int vars = 3;

16

int constrs = 2;
int vbeg[] = {0, 2, 4};
int vlen[] = {2, 2, 1};
int vind[] = {0, 1, 0, 1, 0};
double vval[] = {1.0, 1.0, 2.0, 1.0, 3.0};
double obj[] = {1.0, 1.0, 2.0};
char sense[] = {GRB_LESS_EQUAL, GRB_GREATER_EQUAL};
double rhs[] = {4.0, 1.0};
char vtype[] = {GRB_BINARY, GRB_BINARY, GRB_BINARY};

error = GRBloadmodel(env, &model, "example", vars, constrs, -1, 0.0,
obj, sense, rhs, vbeg, vlen, vind, vval,
NULL, NULL, vtype, NULL, NULL);

GRBnewmodel

int GRBnewmodel (GRBenv *env,
GRBmodel **modelP,
const char *Pname,
int numvars,
double *obj,
double *lb,
double *ub,
char *vtype,
const char **varnames)

Create a new optimization model. This routine allows you to specify an initial set of vari-
ables (with objective coefficients, bounds, types, and names), but the initial model will have no
constraints. Constraints can be added later with GRBaddconstr or GRBaddconstrs.

Return value:
A non-zero return value indicates that a problem occurred while creating the new model.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment in which the new model should be created. Note that the new
model will get a copy of this environment, so subsequent modifications to the original
environment (e.g., parameter changes) won’t affect the new model. Use GRBgetenv to
modify the environment associated with a model.

modelP: The location in which the pointer to the new model should be placed.
Pname: The name of the model.
numvars: The number of variables in the model.
obj: Objective coefficients for the new variables. This argument can be NULL, in which case
the objective coefficients are set to 0.0.

lb: Lower bounds for the new variables. This argument can be NULL, in which case all
variables get lower bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all
variables get infinite upper bounds.

17

vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER,
GRB_SEMICONT, or GRB_SEMIINT. This argument can be NULL, in which case all variables
are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all
variables are given default names.

Example usage:

double obj[] = {1.0, 1.0};
char *names[] = {"var1", "var2"};
error = GRBnewmodel(env, &model, "New", 2, obj, NULL, NULL, NULL, names);

GRBcopymodel

GRBmodel * GRBcopymodel (GRBmodel *model)

Create a copy of an existing model. Note that due to the lazy update approach in Gurobi, you
have to call GRBupdatemodel before copying it.

Return value:
A copy of the input model. A NULL return value indicates that a problem was encountered.

Arguments:
model: The model to copy.

Example usage:

GRBupdatemodel(orig); /* if you have unstaged changes in orig */
GRBmodel *copy = GRBcopymodel(orig);

GRBaddconstr

int GRBaddconstr (GRBmodel *model,
int numnz,
int *cind,
double *cval,
char sense,
double rhs,
const char *constrname)

Add a new linear constraint to a model. Note that, due to our lazy update approach, the new
constraint won’t actually be added until you update the model (using GRBupdatemodel), optimize
the model (using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while adding the constraint.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new constraint should be added.
numnz: The number of non-zero coefficients in the new constraint.
cind: Variable indices for non-zero values in the new constraint.
cval: Numerical values for non-zero values in the new constraint.

18

sense: Sense for the new constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_-
GREATER_EQUAL.

rhs: Right-hand side value for the new constraint.
constrname: Name for the new constraint. This argument can be NULL, in which case the
constraint is given a default name.

Example usage:

int ind[] = {1, 3, 4};
double val[] = {1.0, 2.0, 1.0};
/* x1 + 2 x3 + x4 = 1 */
error = GRBaddconstr(model, 3, ind, val, GRB_EQUAL, 1.0, "New");

GRBaddconstrs

int GRBaddconstrs (GRBmodel *model,
int numconstrs,
int numnz,
int *cbeg,
int *cind,
double *cval,
char *sense,
double *rhs,
const char **constrnames)

Add new linear constraints to a model. Note that, due to our lazy update approach, the
new constraints won’t actually be added until you update the model (using GRBupdatemodel),
optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

We recommend that you build your model one constraint at a time (using GRBaddconstr),
since it introduces no significant overhead and we find that it produces simpler code. Feel free to
use this routine if you disagree, though.

If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXaddconstrs variant of this routine.

Return value:
A non-zero return value indicates that a problem occurred while adding the constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new constraints should be added.
numconstrs: The number of new constraints to add.
numnz: The total number of non-zero coefficients in the new constraints.
cbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Row (CSR) format by this routine. Each constraint in the constraint matrix is represented
as a list of index-value pairs, where each index entry provides the variable index for a non-
zero coefficient, and each value entry provides the corresponding non-zero value. Each new
constraint has an associated cbeg value, indicating the start position of the non-zeros for
that constraint in the cind and cval arrays. This routine requires that the non-zeros for
constraint i immediately follow those for constraint i-1 in cind and cval. Thus, cbeg[i]

19

indicates both the index of the first non-zero in constraint i and the end of the non-zeros
for constraint i-1. To give an example of how this representation is used, consider a case
where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has two
non-zero values associated with it. Their variable indices can be found in cind[10] and
cind[11], and the numerical values for those non-zeros can be found in cval[10] and
cval[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg
argument for more information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of
the cbeg argument for more information.

sense: Sense for the new constraints. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_-
GREATER_EQUAL.

rhs: Right-hand side values for the new constraints. This argument can be NULL, in which
case the right-hand side values are set to 0.0.

constrnames: Names for the new constraints. This argument can be NULL, in which case
all constraints are given default names.

GRBaddgenconstrXxx
Each of the functions described below adds a new general constraint to a model.

Mathematical programming has traditionally defined a set of fundamental constraint types:
variable bound constraints, linear constraints, quadratic constraints, integrality constraints, and
SOS constraints. These are typically treated directly by the underlying solver (although not always),
and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general
(function) constraints. These are typically not treated directly by the solver. Rather, they are
transformed by presolve into constraints (and variables) chosen from among the fundamental types
listed above. In some cases, the resulting constraint or constraints are mathematically equivalent
to the original; in others, they are approximations. If such constraints appear in your model, but
if you prefer to reformulate them yourself using fundamental constraint types instead, you can
certainly do so. However, note that Gurobi can sometimes exploit information contained in the
other constraints in the model to build a more efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:

• GRBaddgenconstrMax: y = max(x1, x2, ..., c)

• GRBaddgenconstrMin: y = min(x1, x2, ..., c)

• GRBaddgenconstrAbs: y = |x|

• GRBaddgenconstrAnd: y = x1 ∧ x2 ∧ x3...

• GRBaddgenconstrOr: y = x1 ∨ x2 ∨ x3...

• GRBaddgenconstrIndicator: y = 1→ a′x ≤ b (an indicator constraint)

• GRBaddgenconstrPWL: y = pwl(x) (a piecewise-linear function, specified using breakpoints)

• GRBaddgenconstrPoly: y = p0x
d + p1x

d−1 + ...+ pd−1x+ pd

20

• GRBaddgenconstrExp: y = ex

• GRBaddgenconstrExpA: y = ax

• GRBaddgenconstrLog: y = loge(x)

• GRBaddgenconstrLogA: y = loga(x)

• GRBaddgenconstrPow: y = xa

• GRBaddgenconstrSin: y = sin(x)

• GRBaddgenconstrCos: y = cos(x)

• GRBaddgenconstrTan: y = tan(x)

Please refer to this section for additional details on general constraints.

GRBaddgenconstrMax

int GRBaddgenconstrMax (GRBmodel *model,
const char *name,
int resvar,
int nvars,
const int *vars,
double constant)

Add a new general constraint of type GRB_GENCONSTR_MAX to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A MAX constraint r = max{x1, . . . , xn, c} states that the resultant variable r should be equal
to the maximum of the operand variables x1, . . . , xn and the constant c.

Return value:
A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

resvar: The index of the resultant variable r whose value will be equal to the max of the
other variables.

nvars: The number n of operand variables over which the max will be taken.
vars: An array containing the indices of the operand variables xj over which the max will
be taken.

constant: An additional operand that allows you to include a constant c among the argu-
ments of the max operation.

Example usage:

21

/* x5 = max(x1, x3, x4, 2.0) */
int ind[] = {1, 3, 4};
error = GRBaddgenconstrMax(model, "maxconstr", 5,

3, ind, 2.0);

GRBaddgenconstrMin

int GRBaddgenconstrMin (GRBmodel *model,
const char *name,
int resvar,
int nvars,
const int *vars,
double constant)

Add a new general constraint of type GRB_GENCONSTR_MIN to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A MIN constraint r = min{x1, . . . , xn, c} states that the resultant variable r should be equal to
the minimum of the operand variables x1, . . . , xn and the constant c.

Return value:
A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

resvar: The index of the resultant variable r whose value will be equal to the min of the
other variables.

nvars: The number n of operand variables over which the min will be taken.
vars: An array containing the indices of the operand variables xj over which the min will
be taken.

constant: An additional operand that allows you to include a constant c among the argu-
ments of the min operation.

Example usage:

/* x5 = min(x1, x3, x4, 2.0) */
int ind[] = {1, 3, 4};
error = GRBaddgenconstrMin(model, "minconstr", 5,

3, ind, 2.0);

22

GRBaddgenconstrAbs

int GRBaddgenconstrAbs (GRBmodel *model,
const char *name,
int resvar,
int argvar)

Add a new general constraint of type GRB_GENCONSTR_ABS to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

An ABS constraint r = abs{x} states that the resultant variable r should be equal to the
absolute value of the argument variable x.

Return value:
A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

resvar: The index of the resultant variable r whose value will be to equal the absolute
value of the argument variable.

argvar: The index of the argument variable x for which the absolute value will be taken.
Example usage:

/* x5 = abs(x1) */
error = GRBaddgenconstrAbs(model, "absconstr", 5, 1);

GRBaddgenconstrAnd

int GRBaddgenconstrAnd (GRBmodel *model,
const char *name,
int resvar,
int nvars,
const int *vars)

Add a new general constraint of type GRB_GENCONSTR_AND to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

An AND constraint r = and{x1, . . . , xn} states that the binary resultant variable r should be 1
if and only if all of the operand variables x1, . . . , xn are equal to 1. If any of the operand variables
is 0, then the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent
of how they were created.

Arguments:
model: The model to which the new general constraint should be added.

23

name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

resvar: The index of the binary resultant variable r whose value will be equal to the AND
concatenation of the other variables.

nvars: The number n of binary operand variables over which the AND will be taken.
vars: An array containing the indices of the binary operand variables xj over which the
AND concatenation will be taken.

Return value:
A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Example usage:

/* x5 = and(x1, x3, x4) */
int ind[] = {1, 3, 4};
error = GRBaddgenconstrAnd(model, "andconstr", 5, 3, ind);

GRBaddgenconstrOr

int GRBaddgenconstrOr (GRBmodel *model,
const char *name,
int resvar,
int nvars,
const int *vars)

Add a new general constraint of type GRB_GENCONSTR_OR to a model. Note that, due to our
lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

An OR constraint r = or{x1, . . . , xn} states that the binary resultant variable r should be 1 if
and only if any of the operand variables x1, . . . , xn is equal to 1. If all operand variables are 0, then
the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent
of how they were created.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

resvar: The index of the binary resultant variable r whose value will be equal to the OR
concatenation of the other variables.

nvars: The number n of binary operand variables over which the OR will be taken.
vars: An array containing the indices of the binary operand variables xj over which the OR
concatenation will be taken.

Return value:
A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

24

Example usage:

/* x5 = or(x1, x3, x4) */
int ind[] = {1, 3, 4};
error = GRBaddgenconstrOr(model, "orconstr", 5, 3, ind);

GRBaddgenconstrIndicator

int GRBaddgenconstrIndicator (GRBmodel *model,
const char *name,
int binvar,
int binval,
int nvars,
const int *ind,
const double *val,
char sense,
double rhs)

Add a new general constraint of type GRB_GENCONSTR_INDICATOR to a model. Note that, due
to our lazy update approach, the new constraint won’t actually be added until you update the
model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to
disk (using GRBwrite).

An INDICATOR constraint z = f → aTx ≤ b states that if the binary indicator variable z is
equal to f , where f ∈ {0, 1}, then the linear constraint aTx ≤ b should hold. On the other hand,
if z = 1 − f , the linear constraint may be violated. The sense of the linear constraint can also be
specified to be “=” or “≥”.

Note that the indicator variable z of a constraint will be forced to be binary, independent of
how it was created.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

binvar: The index of the binary indicator variable z.
binval: The value f for the binary indicator variable that would force the linear constraint
to be satisfied (0 or 1).

nvars: The number n of non-zero coefficients in the linear constraint triggered by the
indicator.

ind: Indices for the variables xj with non-zero values in the linear constraint.
val: Numerical values for non-zero values aj in the linear constraint.
sense: Sense for the linear constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_-
GREATER_EQUAL.

rhs: Right-hand side value for the linear constraint.
Return value:

A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Example usage:

25

/* x7 = 1 -> x1 + 2 x3 + x4 = 1 */
int ind[] = {1, 3, 4};
double val[] = {1.0, 2.0, 1.0};
error = GRBaddgenconstrIndicator(model, NULL, 7, 1,

3, ind, val, GRB_EQUAL, 1.0);

GRBaddgenconstrPWL

int GRBaddgenconstrPWL (GRBmodel *model,
const char *name,
int xvar,
int yvar,
int npts,
double *xpts,
double *ypts)

Add a new general constraint of type GRB_GENCONSTR_PWL to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A piecewise-linear (PWL) constraint states that the relationship y = f(x) must hold between
variables x and y, where f is a piecewise-linear function. The breakpoints for f are provided as
arguments. Refer to the description of piecewise-linear objectives for details of how piecewise-linear
functions are defined.

Return value:
A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

xvar: The index of variable x.
yvar: The index of variable y.
npts: The number of points that define the piecewise-linear function.
xpts: The x values for the points that define the piecewise-linear function. Must be in
non-decreasing order.

ypts: The y values for the points that define the piecewise-linear function.
Example usage:

double xpts[] = {1, 3, 5};
double ypts[] = {1, 2, 4};
error = GRBaddgenconstr(model, "pwl", xvar, yvar, 3, x, y);

26

GRBaddgenconstrPoly

int GRBaddgenconstrPoly (GRBmodel *model,
const char *name,
int xvar,
int yvar,
int plen,
double *p,
const char *options)

Add a new general constraint of type GRB_GENCONSTR_POLY to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A polynomial function constraint states that the relationship y = p0x
d+p1x

d−1 + ...+pd−1x+pd
should hold between variables x and y.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Return value:
A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

xvar: The index of variable x.
yvar: The index of variable y.
plen: The length of coefficient array p. If xd is the highest power term, then plen should
be d+ 1.

p: The coefficients for the polynomial function (starting with the coefficient for the highest
power).

options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Example usage:

/* y = 3 x^4 + 7 x + 3 = 3 x^4 + 0 x^3 + 0 x^2 + 7 x + 3 */
int plen = 5;
double p[] = {3, 0, 0, 7, 3};
error = GRBaddgenconstrPoly(model, "poly", xvar, yvar, 5, p, "");

27

GRBaddgenconstrExp

int GRBaddgenconstrExp (GRBmodel *model,
const char *name,
int xvar,
int yvar,
const char *options)

Add a new general constraint of type GRB_GENCONSTR_EXP to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A natural exponential function constraint states that the relationship y = exp(x) should hold
for variables x and y.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Return value:
A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

xvar: The index of variable x.
yvar: The index of variable y.
options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Example usage:

/* y = exp(x) */
error = GRBaddgenconstrExp(model, "exp", xvar, yvar, "");

GRBaddgenconstrExpA

int GRBaddgenconstrExpA (GRBmodel *model,
const char *name,
int xvar,
int yvar,
double a,
const char *options)

Add a new general constraint of type GRB_GENCONSTR_EXPA to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model

28

(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

An exponential function constraint states that the relationship y = ax should hold for variables
x and y, where a > 0 is the (constant) base.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Return value:
A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

xvar: The index of variable x.
yvar: The index of variable y.
a: The base of the function, a > 0.
options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Example usage:

/* y = 3^x */
error = GRBaddgenconstrExpA(model, "expa", xvar, yvar, 3.0, "");

GRBaddgenconstrLog

int GRBaddgenconstrLog (GRBmodel *model,
const char *name,
int xvar,
int yvar,
const char *options)

Add a new general constraint of type GRB_GENCONSTR_LOG to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A natural logarithmic function constraint states that the relationship y = log(x) should hold
for variables x and y.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

29

Return value:
A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

xvar: The index of variable x.
yvar: The index of variable y.
options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Example usage:

/* y = log(x) */
error = GRBaddgenconstrLog(model, "log", xvar, yvar, "FuncPieces=-1 FuncPieceError=0.001");

GRBaddgenconstrLogA

int GRBaddgenconstrLogA (GRBmodel *model,
const char *name,
int xvar,
int yvar,
double a,
const char *options)

Add a new general constraint of type GRB_GENCONSTR_LOGA to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A logarithmic function constraint states that the relationship y = loga(x) should hold for
variables x and y, where a > 0 is the (constant) base.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Return value:
A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

30

xvar: The index of variable x.
yvar: The index of variable y.
a: The base of the function, a > 0.
options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Example usage:

/* y = log_10(x) */
error = GRBaddgenconstrLogA(model, "loga", xvar, yvar, 10.0, "");

GRBaddgenconstrPow

int GRBaddgenconstrPow (GRBmodel *model,
const char *name,
int xvar,
int yvar,
double a,
const char *options)

Add a new general constraint of type GRB_GENCONSTR_POW to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A power function constraint states that the relationship y = xa should hold for variables x and
y, where a > 0 is the (constant) exponent. The lower bound of variable x must be nonnegative,
even if a is an integer.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Return value:
A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

xvar: The index of variable x.
yvar: The index of variable y.
a: The exponent of the function.
options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments

31

for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Example usage:

/* y = sqrt(x) */
error = GRBaddgenconstrPow(model, "pow", xvar, yvar, 0.5, "");

GRBaddgenconstrSin

int GRBaddgenconstrSin (GRBmodel *model,
const char *name,
int xvar,
int yvar,
const char *options)

Add a new general constraint of type GRB_GENCONSTR_SIN to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A sine function constraint states that the relationship y = sin(x) should hold for variables x
and y.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Return value:
A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

xvar: The index of variable x.
yvar: The index of variable y.
options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Example usage:

/* y = sin(x) */
error = GRBaddgenconstrSin(model, "sin", xvar, yvar, "");

32

GRBaddgenconstrCos

int GRBaddgenconstrCos (GRBmodel *model,
const char *name,
int xvar,
int yvar,
const char *options)

Add a new general constraint of type GRB_GENCONSTR_COS to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A cosine function constraint states that the relationship y = cos(x) should hold for variables x
and y.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Return value:
A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

xvar: The index of variable x.
yvar: The index of variable y.
options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Example usage:

/* y = cos(x) */
error = GRBaddgenconstrCos(model, "cos", xvar, yvar, "FuncPieces=-2");

GRBaddgenconstrTan

int GRBaddgenconstrTan (GRBmodel *model,
const char *name,
int xvar,
int yvar,
const char *options)

Add a new general constraint of type GRB_GENCONSTR_TAN to a model. Note that, due to
our lazy update approach, the new constraint won’t actually be added until you update the model

33

(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

A tangent function constraint states that the relationship y = tan(x) should hold for variables
x and y.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Return value:
A non-zero return value indicates that a problem occurred while adding the general con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
name: Name for the new general constraint. This argument can be NULL, in which case the
constraint is given a default name.

xvar: The index of variable x.
yvar: The index of variable y.
options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Example usage:

/* y = tan(x) */
error = GRBaddgenconstrTan(model, "tan", xvar, yvar, "");

GRBaddqconstr

int GRBaddqconstr (GRBmodel *model,
int numlnz,
int *lind,
double *lval,
int numqnz,
int *qrow,
int *qcol,
double *qval,
char sense,
double rhs,
const char *constrname)

Add a new quadratic constraint to a model. Note that, due to our lazy update approach,
the new constraint won’t actually be added until you update the model (using GRBupdatemodel),
optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

A quadratic constraint consists of a set of quadratic terms, a set of linear terms, a sense, and a
right-hand side value: xTQx+ qTx ≤ b. The quadratic terms are input through the numqnz, qrow,

34

qcol, and qval arguments, and the linear terms are input through the numlnz, lind, and lval
arguments.

Important note: Gurobi can handle both convex and non-convex quadratic constraints. The
differences between them can be both important and subtle. Refer to this discussion for additional
information.

Return value:
A non-zero return value indicates that a problem occurred while adding the quadratic con-
straint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new constraint should be added.
numlnz: The number of linear terms in the new quadratic constraint.
lind: Variable indices associated with linear terms.
lval: Numerical values associated with linear terms.
numqlnz: The number of quadratic terms in the new quadratic constraint.
qrow: Row indices associated with quadratic terms. A quadratic term is represented using
three values: a pair of indices (stored in qrow and qcol), and a coefficient (stored in qval).
The associated arguments arrays provide the corresponding values for each quadratic term.
To give an example, if you wish to input quadratic terms 2x2

0 + x0x1 + x2
1, you would call

this routine with numqnz=3, qrow[] = {0, 0, 1}, qcol[] = {0, 1, 1}, and qval[] =
{2.0, 1.0, 1.0}.

qcol: Column indices associated with quadratic terms. See the description of the qrow
argument for more information.

qval: Numerical values associated with quadratic terms. See the description of the qrow
argument for more information.

sense: Sense for the new quadratic constraint. Options are GRB_LESS_EQUAL or GRB_-
GREATER_EQUAL.

rhs: Right-hand side value for the new quadratic constraint.
constrname: Name for the new quadratic constraint. This argument can be NULL, in which
case the constraint is given a default name.

Example usage:

int lind[] = {1, 2};
double lval[] = {2.0, 1.0};
int qrow[] = {0, 0, 1};
int qcol[] = {0, 1, 1};
double qval[] = {2.0, 1.0, 1.0};
/* 2 x0^2 + x0 x1 + x1^2 + 2 x1 + x2 <= 1 */
error = GRBaddqconstr(model, 2, lind, lval, 3, qrow, qcol, qval,

GRB_LESS_EQUAL, 1.0, "New");

35

GRBaddqpterms

int GRBaddqpterms (GRBmodel *model,
int numqnz,
int *qrow,
int *qcol,
double *qval)

Add new quadratic objective terms into an existing model. Note that new terms are (numer-
ically) added into existing terms, and that adding a term in row i and column j is equivalent to
adding a term in row j and column i. You can add all quadratic objective terms in a single call,
or you can add them incrementally in multiple calls.

Note that, due to our lazy update approach, the new quadratic terms won’t actually be added
until you update the model (using GRBupdatemodel), optimize the model (using GRBoptimize),
or write the model to disk (using GRBwrite).

To build an objective that contains both linear and quadratic terms, use this routine to add the
quadratic terms and use the Obj attribute to add the linear terms.

If you wish to change a quadratic term, you can either add the difference between the current
term and the desired term using this routine, or you can call GRBdelq to delete all quadratic terms,
and then rebuild your new quadratic objective from scratch.

Return value:
A non-zero return value indicates that a problem occurred while adding the quadratic terms.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new quadratic objective terms should be added.
numqnz: The number of new quadratic objective terms to add.
qrow: Row indices associated with quadratic terms. A quadratic term is represented using
three values: a pair of indices (stored in qrow and qcol), and a coefficient (stored in qval).
The three argument arrays provide the corresponding values for each quadratic term. To
give an example, to represent 2x2

0 + x0x1 + x2
1, you would have numqnz=3, qrow[] = {0,

0, 1}, qcol[] = {0, 1, 1}, and qval[] = {2.0, 1.0, 1.0}.
qcol: Column indices associated with quadratic terms. See the description of the qrow
argument for more information.

qval: Numerical values associated with quadratic terms. See the description of the qrow
argument for more information.

Important notes:
Note that building quadratic objectives requires some care, particularly if you are migrating

an application from another solver. Some solvers require you to specify the entire Q matrix, while
others only accept the lower triangle. In addition, some solvers include an implicit 0.5 multiplier
on Q, while others do not. The Gurobi interface is built around quadratic terms, rather than a Q
matrix. If your quadratic objective contains a term 2 x y, you can enter it as a single term, 2 x y,
or as a pair of terms, x y and y x.

Example usage:

int qrow[] = {0, 0, 1};
int qcol[] = {0, 1, 1};

36

double qval[] = {2.0, 1.0, 3.0};
/* minimize 2 x^2 + x*y + 3 y^2 */
error = GRBaddqpterms(model, 3, qrow, qcol, qval);

GRBaddrangeconstr

int GRBaddrangeconstr (GRBmodel *model,
int numnz,
int *cind,
double *cval,
double lower,
double upper,
const char *constrname)

Add a new range constraint to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution. Note that,
due to our lazy update approach, the new constraint won’t actually be added until you update the
model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to
disk (using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while adding the constraint.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new constraint should be added.
numnz: The number of non-zero coefficients in the linear expression.
cind: Variable indices for non-zero values in the linear expression.
cval: Numerical values for non-zero values in the linear expression.
lower: Lower bound on linear expression.
upper: Upper bound on linear expression.
constrname: Name for the new constraint. This argument can be NULL, in which case the
constraint is given a default name.

Important notes:
Note that adding a range constraint to the model adds both a new constraint and a new variable.

If you are keeping a count of the variables in the model, remember to add one whenever you add
a range.

Note also that range constraints are stored internally as equality constraints. We use the extra
variable that is added with a range constraint to capture the range information. Thus, the Sense
attribute on a range constraint will always be GRB_EQUAL.

Example usage:

int ind[] = {1, 3, 4};
double val[] = {1.0, 2.0, 3.0};
/* 1 <= x1 + 2 x3 + 3 x4 <= 2 */
error = GRBaddrangeconstr(model, 3, ind, val, 1.0, 2.0, "NewRange");

37

GRBaddrangeconstrs

int GRBaddrangeconstrs (GRBmodel *model,
int numconstrs,
int numnz,
int *cbeg,
int *cind,
double *cval,
double *lower,
double *upper,
const char **constrnames)

Add new range constraints to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution. Note that,
due to our lazy update approach, the new constraints won’t actually be added until you update the
model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to
disk (using GRBwrite).

If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXaddrangeconstrs variant of this routine.

Return value:
A non-zero return value indicates that a problem occurred while adding the constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new constraints should be added.
numconstrs: The number of new constraints to add.
numnz: The total number of non-zero coefficients in the new constraints.
cbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Row (CSR) format by this routine. Each constraint in the constraint matrix is represented
as a list of index-value pairs, where each index entry provides the variable index for a non-
zero coefficient, and each value entry provides the corresponding non-zero value. Each new
constraint has an associated cbeg value, indicating the start position of the non-zeros for
that constraint in the cind and cval arrays. This routine requires that the non-zeros for
constraint i immediately follow those for constraint i-1 in cind and cval. Thus, cbeg[i]
indicates both the index of the first non-zero in constraint i and the end of the non-zeros
for constraint i-1. To give an example of how this representation is used, consider a case
where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has two
non-zero values associated with it. Their variable indices can be found in cind[10] and
cind[11], and the numerical values for those non-zeros can be found in cval[10] and
cval[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg
argument for more information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of
the cbeg argument for more information.

lower: Lower bounds for the linear expressions.
upper: Upper bounds for the linear expressions.

38

constrnames: Names for the new constraints. This argument can be NULL, in which case
all constraints are given default names.

Important notes:
Note that adding a range constraint to the model adds both a new constraint and a new

variable. If you are keeping a count of the variables in the model, remember to add one for each
range constraint.

Note also that range constraints are stored internally as equality constraints. We use the extra
variable that is added with a range constraint to capture the range information. Thus, the Sense
attribute on a range constraint will always be GRB_EQUAL.

GRBaddsos

int GRBaddsos (GRBmodel *model,
int numsos,
int nummembers,
int *types,
int *beg,
int *ind,
double *weight)

Add new Special Ordered Set (SOS) constraints to a model. Note that, due to our lazy update
approach, the new SOS constraints won’t actually be added until you update the model (using
GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using
GRBwrite).

Please refer to this section for details on SOS constraints.
Return value:

A non-zero return value indicates that a problem occurred while adding the SOS constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new SOSs should be added.
numsos: The number of new SOSs to add.
nummembers: The total number of SOS members in the new SOSs.
types: The types of the SOS sets. SOS sets can be of type GRB_SOS_TYPE1 or GRB_SOS_-
TYPE2.

beg: The members of the added SOS sets are passed into this routine in Compressed Sparse
Row (CSR) format. Each SOS is represented as a list of index-value pairs, where each
index entry provides the variable index for an SOS member, and each value entry provides
the weight of that variable in the corresponding SOS set. Each new SOS has an associated
beg value, indicating the start position of the SOS member list in the ind and weight
arrays. This routine requires that the members for SOS i immediately follow those for
SOS i-1 in ind and weight. Thus, beg[i] indicates both the index of the first non-zero
in constraint i and the end of the non-zeros for constraint i-1. To give an example of
how this representation is used, consider a case where beg[2] = 10 and beg[3] = 12.
This would indicate that SOS number 2 has two members. Their variable indices can be
found in ind[10] and ind[11], and the associated weights can be found in weight[10]
and weight[11].

39

ind: Variable indices associated with SOS members. See the description of the beg argument
for more information.

weight: Weights associated with SOS members. See the description of the beg argument
for more information.

Example usage:

int types[] = {GRB_SOS_TYPE1, GRB_SOS_TYPE1};
int beg[] = {0, 2};
int ind[] = {1, 2, 1, 3};
double weight[] = {1, 2, 1, 2};
error = GRBaddsos(model, 2, 4, types, beg, ind, weight);

GRBaddvar

int GRBaddvar (GRBmodel *model,
int numnz,
int *vind,
double *vval,
double obj,
double lb,
double ub,
char vtype,
const char *varname)

Add a new variable to a model. Note that, due to our lazy update approach, the new variable
won’t actually be added until you update the model (using GRBupdatemodel), optimize the model
(using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while adding the variable. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new variable should be added.
numnz: The number of non-zero coefficients in the new column.
vind: Constraint indices associated with non-zero values for the new variable.
vval: Numerical values associated with non-zero values for the new variable.
obj: Objective coefficient for the new variable.
lb: Lower bound for the new variable.
ub: Upper bound for the new variable.
vtype: Type for the new variable. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER,
GRB_SEMICONT, or GRB_SEMIINT.

varname: Name for the new variable. This argument can be NULL, in which case the variable
is given a default name.

Example usage:

int ind[] = {1, 3, 4};
double val[] = {1.0, 1.0, 1.0};
error = GRBaddvar(model, 3, ind, val, 1.0, 0.0, GRB_INFINITY,

40

GRB_CONTINUOUS, "New");

GRBaddvars

int GRBaddvars (GRBmodel *model,
int numvars,
int numnz,
int *vbeg,
int *vind,
double *vval,
double *obj,
double *lb,
double *ub,
char *vtype,
const char **varnames)

Add new variables to a model. Note that, due to our lazy update approach, the new variables
won’t actually be added until you update the model (using GRBupdatemodel), optimize the model
(using GRBoptimize), or write the model to disk (using GRBwrite).

If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXaddvars variant of this routine.

Return value:
A non-zero return value indicates that a problem occurred while adding the variables. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new variables should be added.
numvars: The number of new variables to add.
numnz: The total number of non-zero coefficients in the new columns.
vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Column (CSC) format. Each column in the constraint matrix is represented as a list of
index-value pairs, where each index entry provides the constraint index for a non-zero
coefficient, and each value entry provides the corresponding non-zero value. Each variable
in the model has a vbeg, indicating the start position of the non-zeros for that variable
in the vind and vval arrays. This routine requires columns to be stored contiguously,
so the start position for a variable is the end position for the previous variable. To give
an example, if vbeg[2] = 10 and vbeg[3] = 12, that would indicate that variable 2 has
two non-zero values associated with it. Their constraint indices can be found in vind[10]
and vind[11], and the numerical values for those non-zeros can be found in vval[10]
and vval[11].

vind: Constraint indices associated with non-zero values. See the description of the vbeg
argument for more information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of
the vbeg argument for more information.

obj: Objective coefficients for the new variables. This argument can be NULL, in which case
the objective coefficients are set to 0.0.

41

lb: Lower bounds for the new variables. This argument can be NULL, in which case all
variables get lower bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all
variables get infinite upper bounds.

vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER,
GRB_SEMICONT, or GRB_SEMIINT. This argument can be NULL, in which case all variables
are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all
variables are given default names.

GRBchgcoeffs

int GRBchgcoeffs (GRBmodel *model,
int numchgs,
int *cind,
int *vind,
double *val)

Change a set of constraint matrix coefficients. This routine can be used to set a non-zero
coefficient to zero, to create a non-zero coefficient where the coefficient is currently zero, or to
change an existing non-zero coefficient to a new non-zero value. If you make multiple changes to
the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the changes won’t actually be integrated into the
model until you update the model (using GRBupdatemodel), optimize the model (using GRBop-
timize), or write the model to disk (using GRBwrite).

If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXchgcoeffs variant of this routine.

Return value:
A non-zero return value indicates that a problem occurred while performing the modification.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to modify.
numchgs: The number of coefficients to modify.
cind: Constraint indices for the coefficients to modify.
vind: Variable indices for the coefficients to modify.
val: The new values for the coefficients. For example, if cind[0] = 1, vind[0] = 3, and
val[0] = 2.0, then the coefficient in constraint 1 associated with variable 3 would be
changed to 2.0.

Example usage:

int cind[] = {0, 1};
int vind[] = {0, 0};
double val[] = {1.0, 1.0};
error = GRBchgcoeffs(model, 2, cind, vind, val);

42

GRBdelconstrs

int GRBdelconstrs (GRBmodel *model,
int numdel,
int *ind)

Delete a list of constraints from an existing model. Note that, due to our lazy update approach,
the constraints won’t actually be removed until you update the model (using GRBupdatemodel),
optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while deleting the constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to modify.
numdel: The number of constraints to remove.
ind: The indices of the constraints to remove.

Example usage:

int first_four[] = {0, 1, 2, 3};
error = GRBdelconstrs(model, 4, first_four);

GRBdelgenconstrs

int GRBdelgenconstrs (GRBmodel *model,
int numdel,
int *ind)

Delete a list of general constraints from an existing model. Note that, due to our lazy update
approach, the general constraints won’t actually be removed until you update the model (using
GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using
GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while deleting the constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to modify.
numdel: The number of general constraints to remove.
ind: The indices of the general constraints to remove.

Example usage:

int first_four[] = {0, 1, 2, 3};
error = GRBdelgenconstrs(model, 4, first_four);

GRBdelq

int GRBdelq (GRBmodel *model)

43

Delete all quadratic objective terms from an existing model. Note that, due to our lazy
update approach, the quadratic terms won’t actually be removed until you update the model
(using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk
(using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while deleting the quadratic
objective terms. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to modify.

Example usage:

error = GRBdelq(model);

GRBdelqconstrs

int GRBdelqconstrs (GRBmodel *model,
int numdel,
int *ind)

Delete a list of quadratic constraints from an existing model. Note that, due to our lazy update
approach, the quadratic constraints won’t actually be removed until you update the model (using
GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to disk (using
GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while deleting the quadratic
constraints. Refer to the Error Code table for a list of possible return values. Details on
the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to modify.
numdel: The number of quadratic constraints to remove.
ind: The indices of the quadratic constraints remove.

Example usage:

int first_four[] = {0, 1, 2, 3};
error = GRBdelqconstrs(model, 4, first_four);

GRBdelsos

int GRBdelsos (GRBmodel *model,
int numdel,
int *ind)

Delete a list of Special Ordered Set (SOS) constraints from an existing model. Note that, due
to our lazy update approach, the SOS constraints won’t actually be removed until you update the
model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to
disk (using GRBwrite).

Return value:

44

A non-zero return value indicates that a problem occurred while deleting the constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to modify.
numdel: The number of SOSs to remove.
ind: The indices of the SOSs to remove.

Example usage:

int first_four[] = {0, 1, 2, 3};
error = GRBdelsos(model, 4, first_four);

GRBdelvars

int GRBdelvars (GRBmodel *model,
int numdel,
int *ind)

Delete a list of variables from an existing model. Note that, due to our lazy update approach,
the variables won’t actually be removed until you update the model (using GRBupdatemodel),
optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while deleting the variables.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to modify.
numdel: The number of variables to remove.
ind: The indices of the variables to remove.

Example usage:

int first_two[] = {0, 1};
error = GRBdelvars(model, 2, first_two);

GRBsetobjectiven

int GRBsetobjectiven (GRBmodel *model,
int index,
int priority,
double weight,
double abstol,
double reltol,
const char *name,
double constant,
int lnz,
int *lind,
double *lval)

Set an alternative optimization objective equal to a linear expression.

45

Please refer to the discussion of Multiple Objectives for information on how to specify multiple
objective functions and control the trade-off between them.

Note that you can also modify an alternative objective using the ObjN variable attribute. If
you wish to mix and match these two approaches, please note that this method replaces the entire
existing objective, while the ObjN attribute can be used to modify individual terms.

Note that, due to our lazy update approach, the new alternative objective won’t actually be
added until you update the model (using GRBupdatemodel), optimize the model (using GRBopti-
mize), or write the model to disk (using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while setting the alternative
objective. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model in which the new alternative objective should be set.
index: Index for new objective. If you use an index of 0, this routine will change the primary
optimization objective.

priority: Priority for the alternative objective. This initializes the ObjNPriority attribute
for this objective.

weight: Weight for the alternative objective. This initializes the ObjNWeight attribute for
this objective.

abstol: Absolute tolerance for the alternative objective. This initializes the ObjNAbsTol
attribute for this objective.

reltol: Relative tolerance for the alternative objective. This initializes the ObjNRelTol
attribute for this objective.

name: Name of the alternative objective. This initializes the ObjNName attribute for this
objective.

constant: Constant part of the linear expression for the new alternative objective.
lnz: Number of non-zero coefficients in new alternative objective.
lind: Variable indices for non-zero values in new alternative objective.
lval: Numerical values for non-zero values in new alternative objective.

Example usage:

int ind[] = {0, 1, 2};
double val[] = {1.0, 1.0, 1.0};
/* Objective expression: x0 + x1 + x2 */
error = GRBsetobjectiven(model, 0, 1, 0.0, 0.0, 0.0, "primary",

0.0, 3, ind, val);

GRBsetpwlobj

int GRBsetpwlobj (GRBmodel *model,
int var,
int npoints,
double *x,
double *y)

Set a piecewise-linear objective function for a variable.

46

The arguments to this method specify a list of points that define a piecewise-linear objective
function for a single variable. Specifically, the x and y arguments give coordinates for the vertices
of the function.

For additional details on piecewise-linear objective functions, refer to this discussion.
Note that, due to our lazy update approach, the new piecewise-linear objective won’t actu-

ally be added until you update the model (using GRBupdatemodel), optimize the model (using
GRBoptimize), or write the model to disk (using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while setting the piecewise-linear
objective. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to modify.
var: The variable whose objective function is being changed.
npoints: The number of points that define the piecewise-linear function.
x: The x values for the points that define the piecewise-linear function. Must be in non-
decreasing order.

y: The y values for the points that define the piecewise-linear function.
Example usage:

double x[] = {1, 3, 5};
double y[] = {1, 2, 4};
error = GRBsetpwlobj(model, var, 3, x, y);

GRBupdatemodel

int GRBupdatemodel (GRBmodel *model)

Process any pending model modifications.
Return value:

A non-zero return value indicates that a problem occurred while updating the model. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: The model to update.

Example usage:

error = GRBupdatemodel(model);

GRBfreemodel

int GRBfreemodel (GRBmodel *model)

Free a model and release the associated memory.
Return value:

47

A non-zero return value indicates that a problem occurred while freeing the model. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained
by calling GRBgeterrormsg.

Arguments:
model: The model to be freed.

Example usage:

error = GRBfreemodel(model);

GRBXaddconstrs

int GRBXaddconstrs (GRBmodel *model,
int numconstrs,
size_t numnz,
size_t *cbeg,
int *cind,
double *cval,
char *sense,
double *rhs,
const char **constrnames)

The size_t version of GRBaddconstrs. The two arguments that count non-zero values are of
type size_t in this version to support models with more than 2 billion non-zero values.

Add new linear constraints to a model. Note that, due to our lazy update approach, the
new constraints won’t actually be added until you update the model (using GRBupdatemodel),
optimize the model (using GRBoptimize), or write the model to disk (using GRBwrite).

We recommend that you build your model one constraint at a time (using GRBaddconstr),
since it introduces no significant overhead and we find that it produces simpler code. Feel free to
use this routine if you disagree, though.

Return value:
A non-zero return value indicates that a problem occurred while adding the constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new constraints should be added.
numconstrs: The number of new constraints to add.
numnz: The total number of non-zero coefficients in the new constraints.
cbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Row (CSR) format by this routine. Each constraint in the constraint matrix is represented
as a list of index-value pairs, where each index entry provides the variable index for a non-
zero coefficient, and each value entry provides the corresponding non-zero value. Each new
constraint has an associated cbeg value, indicating the start position of the non-zeros for
that constraint in the cind and cval arrays. This routine requires that the non-zeros for
constraint i immediately follow those for constraint i-1 in cind and cval. Thus, cbeg[i]
indicates both the index of the first non-zero in constraint i and the end of the non-zeros
for constraint i-1. To give an example of how this representation is used, consider a case
where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has two

48

non-zero values associated with it. Their variable indices can be found in cind[10] and
cind[11], and the numerical values for those non-zeros can be found in cval[10] and
cval[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg
argument for more information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of
the cbeg argument for more information.

sense: Sense for the new constraints. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_-
GREATER_EQUAL.

rhs: Right-hand side values for the new constraints. This argument can be NULL, in which
case the right-hand side values are set to 0.0.

constrnames: Names for the new constraints. This argument can be NULL, in which case
all constraints are given default names.

GRBXaddrangeconstrs

int GRBXaddrangeconstrs (GRBmodel *model,
int numconstrs,
size_t numnz,
size_t *cbeg,
int *cind,
double *cval,
double *lower,
double *upper,
const char **constrnames)

The size_t version of GRBaddrangeconstrs. The argument that counts non-zero values is of
type size_t in this version to support models with more than 2 billion non-zero values.

Add new range constraints to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution. Note that,
due to our lazy update approach, the new constraints won’t actually be added until you update the
model (using GRBupdatemodel), optimize the model (using GRBoptimize), or write the model to
disk (using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while adding the constraints.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new constraints should be added.
numconstrs: The number of new constraints to add.
numnz: The total number of non-zero coefficients in the new constraints.
cbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Row (CSR) format by this routine. Each constraint in the constraint matrix is represented
as a list of index-value pairs, where each index entry provides the variable index for a non-
zero coefficient, and each value entry provides the corresponding non-zero value. Each new
constraint has an associated cbeg value, indicating the start position of the non-zeros for
that constraint in the cind and cval arrays. This routine requires that the non-zeros for

49

constraint i immediately follow those for constraint i-1 in cind and cval. Thus, cbeg[i]
indicates both the index of the first non-zero in constraint i and the end of the non-zeros
for constraint i-1. To give an example of how this representation is used, consider a case
where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has two
non-zero values associated with it. Their variable indices can be found in cind[10] and
cind[11], and the numerical values for those non-zeros can be found in cval[10] and
cval[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg
argument for more information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of
the cbeg argument for more information.

lower: Lower bounds for the linear expressions.
upper: Upper bounds for the linear expressions.
constrnames: Names for the new constraints. This argument can be NULL, in which case
all constraints are given default names.

Important notes:
Note that adding a range constraint to the model adds both a new constraint and a new

variable. If you are keeping a count of the variables in the model, remember to add one for each
range constraint.

Note also that range constraints are stored internally as equality constraints. We use the extra
variable that is added with a range constraint to capture the range information. Thus, the Sense
attribute on a range constraint will always be GRB_EQUAL.

GRBXaddvars

int GRBXaddvars (GRBmodel *model,
int numvars,
size_t numnz,
size_t *vbeg,
int *vind,
double *vval,
double *obj,
double *lb,
double *ub,
char *vtype,
const char **varnames)

The size_t version of GRBaddvars. The two arguments that count non-zero values are of type
size_t in this version to support models with more than 2 billion non-zero values.

Add new variables to a model. Note that, due to our lazy update approach, the new variables
won’t actually be added until you update the model (using GRBupdatemodel), optimize the model
(using GRBoptimize), or write the model to disk (using GRBwrite).

Return value:
A non-zero return value indicates that a problem occurred while adding the variables. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:

50

model: The model to which the new variables should be added.
numvars: The number of new variables to add.
numnz: The total number of non-zero coefficients in the new columns.
vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Column (CSC) format. Each column in the constraint matrix is represented as a list of
index-value pairs, where each index entry provides the constraint index for a non-zero
coefficient, and each value entry provides the corresponding non-zero value. Each variable
in the model has a vbeg, indicating the start position of the non-zeros for that variable
in the vind and vval arrays. This routine requires columns to be stored contiguously,
so the start position for a variable is the end position for the previous variable. To give
an example, if vbeg[2] = 10 and vbeg[3] = 12, that would indicate that variable 2 has
two non-zero values associated with it. Their constraint indices can be found in vind[10]
and vind[11], and the numerical values for those non-zeros can be found in vval[10]
and vval[11].

vind: Constraint indices associated with non-zero values. See the description of the vbeg
argument for more information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of
the vbeg argument for more information.

obj: Objective coefficients for the new variables. This argument can be NULL, in which case
the objective coefficients are set to 0.0.

lb: Lower bounds for the new variables. This argument can be NULL, in which case all
variables get lower bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all
variables get infinite upper bounds.

vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER,
GRB_SEMICONT, or GRB_SEMIINT. This argument can be NULL, in which case all variables
are assumed to be continuous.

varnames: Names for the new variables. This argument can be NULL, in which case all
variables are given default names.

GRBXchgcoeffs

int GRBXchgcoeffs (GRBmodel *model,
size_t numchgs,
int *cind,
int *vind,
double *val)

The size_t version of GRBchgcoeffs. The argument that counts non-zero values is of type
size_t in this version to support models with more than 2 billion non-zero values.

Change a set of constraint matrix coefficients. This routine can be used to set a non-zero
coefficient to zero, to create a non-zero coefficient where the coefficient is currently zero, or to
change an existing non-zero coefficient to a new non-zero value. If you make multiple changes to
the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the changes won’t actually be integrated into the
model until you update the model (using GRBupdatemodel), optimize the model (using GRBop-
timize), or write the model to disk (using GRBwrite).

51

Return value:
A non-zero return value indicates that a problem occurred while performing the modification.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to modify.
numchgs: The number of coefficients to modify.
cind: Constraint indices for the coefficients to modify.
vind: Variable indices for the coefficients to modify.
val: The new values for the coefficients. For example, if cind[0] = 1, vind[0] = 3, and
val[0] = 2.0, then the coefficient in constraint 1 associated with variable 3 would be
changed to 2.0.

Example usage:

int cind[] = {0, 1};
int vind[] = {0, 0};
double val[] = {1.0, 1.0};
error = GRBXchgcoeffs(model, 2, cind, vind, val);

GRBXloadmodel

int GRBXloadmodel (GRBenv *env,
GRBmodel **modelP,
const char *Pname,
int numvars,
int numconstrs,
int objsense,
double objcon,
double *obj,
char *sense,
double *rhs,
size_t *vbeg,
int *vlen,
int *vind,
double *vval,
double *lb,
double *ub,
char *vtype,
const char **varnames,
const char **constrnames)

The size_t version of GRBloadmodel. The argument that counts non-zero values is of type
size_t in this version to support models with more than 2 billion non-zero values.

Create a new optimization model, using the provided arguments to initialize the model data
(objective function, variable bounds, constraint matrix, etc.). The model is then ready for opti-
mization, or for modification (e.g., addition of variables or constraints, changes to variable types
or bounds, etc.).

52

Return value:
A non-zero return value indicates that a problem occurred while creating the model. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
env: The environment in which the new model should be created. Note that the new model
gets a copy of this environment, so subsequent modifications to the original environment
(e.g., parameter changes) won’t affect the new model. Use GRBgetenv to modify the
environment associated with a model.

modelP: The location in which the pointer to the newly created model should be placed.
Pname: The name of the model.
numvars: The number of variables in the model.
numconstrs: The number of constraints in the model.
objsense: The sense of the objective function. Allowed values are 1 (minimization) or -1
(maximization).

objcon: Constant objective offset.
obj: Objective coefficients for the new variables. This argument can be NULL, in which case
the objective coefficients are set to 0.0.

sense: The senses of the new constraints. Options are ’=’ (equal), ’<’ (less-than-or-equal),
or ’>’ (greater-than-or-equal). You can also use constants GRB_EQUAL, GRB_LESS_EQUAL,
or GRB_GREATER_EQUAL.

rhs: Right-hand side values for the new constraints. This argument can be NULL, in which
case the right-hand side values are set to 0.0.

vbeg: Constraint matrix non-zero values are passed into this routine in Compressed Sparse
Column (CSC) format. Each column in the constraint matrix is represented as a list of
index-value pairs, where each index entry provides the constraint index for a non-zero
coefficient, and each value entry provides the corresponding non-zero value. Each variable
in the model has a vbeg and vlen value, indicating the start position of the non-zeros for
that variable in the vind and vval arrays, and the number of non-zero values for that
variable, respectively. Thus, for example, if vbeg[2] = 10 and vlen[2] = 2, that would
indicate that variable 2 has two non-zero values associated with it. Their constraint indices
can be found in vind[10] and vind[11], and the numerical values for those non-zeros
can be found in vval[10] and vval[11].

vlen: Number of constraint matrix non-zero values associated with each variable. See the
description of the vbeg argument for more information.

vind: Constraint indices associated with non-zero values. See the description of the vbeg
argument for more information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of
the vbeg argument for more information.

lb: Lower bounds for the new variables. This argument can be NULL, in which case all
variables get lower bounds of 0.0.

ub: Upper bounds for the new variables. This argument can be NULL, in which case all
variables get infinite upper bounds.

vtype: Types for the variables. Options are GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER,
GRB_SEMICONT, or GRB_SEMIINT. This argument can be NULL, in which case all variables

53

are assumed to be continuous.
varnames: Names for the new variables. This argument can be NULL, in which case all
variables are given default names.

constrnames: Names for the new constraints. This argument can be NULL, in which case
all constraints are given default names.

Important notes:
We recommend that you build a model one constraint or one variable at a time, using GRBad-

dconstr or GRBaddvar, rather than using this routine to load the entire constraint matrix at once.
It is much simpler, less error prone, and it introduces no significant overhead.

Example usage:

/* maximize x + y + 2 z
subject to x + 2 y + 3 z <= 4

x + y >= 1
x, y, z binary */

int vars = 3;
int constrs = 2;
size_t vbeg[] = {0, 2, 4};
int vlen[] = {2, 2, 1};
int vind[] = {0, 1, 0, 1, 0};
double vval[] = {1.0, 1.0, 2.0, 1.0, 3.0};
double obj[] = {1.0, 1.0, 2.0};
char sense[] = {GRB_LESS_EQUAL, GRB_GREATER_EQUAL};
double rhs[] = {4.0, 1.0};
char vtype[] = {GRB_BINARY, GRB_BINARY, GRB_BINARY};

error = GRBXloadmodel(env, &model, "example", vars, constrs, -1, 0.0,
obj, sense, rhs, vbeg, vlen, vind, vval,
NULL, NULL, vtype, NULL, NULL);

54

2.3 Model Solution
GRBoptimize

int GRBoptimize (GRBmodel *model)

Optimize a model. The algorithm used for the optimization depends on the model type (simplex
or barrier for a continuous model; branch-and-cut for a MIP model). Upon successful completion,
this method will populate the solution related attributes of the model. See the Attributes section
for more information on attributes.

Please consult this section for a discussion of some of the practical issues associated with solving
a precisely defined mathematical model using finite-precision floating-point arithmetic.

Note that this routine will process all pending model modifications.
Return value:

A non-zero return value indicates that a problem occurred while optimizing the model.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to optimize. Note that this routine only reports whether the optimization
ran into an error. Query the Status attribute to determine the result of the optimization
(see the Attributes section for more information on querying attributes).

Example usage:

error = GRBoptimize(model);

GRBoptimizeasync

int GRBoptimizeasync (GRBmodel *model)

Optimize a model asynchronously. This routine returns immediately. Your program can perform
other computations while optimization proceeds in the background. To check the state of the
asynchronous optimization, query the Status attribute for the model. A value of IN_PROGRESS
indicates that the optimization has not yet completed. When you are done with your foreground
tasks, you must call GRBsync to sync your foreground program with the asynchronous optimization
task.

Note that the set of Gurobi calls that you are allowed to make while optimization is running in
the background is severely limited. Specifically, you can only perform attribute queries, and only
for a few attributes (listed below). Any other calls on the running model, or on any other models that
were built within the same Gurobi environment, will fail with error code OPTIMIZATION_IN_PROGRESS.

Note that there are no such restrictions on models built in other environments. Thus, for
example, you could create multiple environments, and then have a single foreground program
launch multiple simultaneous asynchronous optimizations, each in its own environment.

As already noted, you are allowed to query the value of the Status attribute while an asyn-
chronous optimization is in progress. The other attributes that can be queried are: ObjVal, Ob-
jBound, IterCount, NodeCount, and BarIterCount. In each case, the returned value reflects progress
in the optimization to that point. Any attempt to query the value of an attribute not on this list
will return an OPTIMIZATION_IN_PROGRESS error.

55

Return value:
A non-zero return value indicates that a problem occurred while optimizing the model.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to optimize. Note that this routine only reports whether launching the
asynchronous job ran into an error. Query the Status attribute to determine the result of
the optimization (see the Attributes section for more information on querying attributes).
The return value of GRBsync indicates whether the background optimization ran into an
error.

Example usage:

error = GRBoptimizeasync(model);

/* ... perform other compute-intensive tasks... */

error = GRBsync(model);

GRBcomputeIIS

int GRBcomputeIIS (GRBmodel *model)

Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints and
variable bounds with the following properties:

• It is still infeasible, and

• If a single constraint or bound is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily
the smallest one; there may exist others with fewer constraints or bounds.

IIS results are returned in a number of attributes: IISConstr, IISLB, IISUB, IISSOS, IISQCon-
str, and IISGenConstr. Each indicates whether the corresponding model element is a member of
the computed IIS.

The IIS log provides information about the progress of the algorithm, including a guess at the
eventual IIS size.

If an IIS computation is interrupted before completion, Gurobi will return the smallest infeasible
subsystem found to that point.

This routine populates the IISConstr, IISGenConstr, IISQConstr, IISSOS, IISLB, and IISUB
attributes. You can also obtain information about the results of the IIS computation by writing a
.ilp format file (see GRBwrite). This file contains only the IIS from the original model.

Use the IISMethod parameter to adjust the behavior of the IIS algorithm.
Note that this routine can be used to compute IISs for both continuous and MIP models.
Return value:

A non-zero return value indicates that a problem occurred while computing the IIS. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

56

Arguments:
model: The infeasible model. This routine will return an error if the input model is feasible.

Important note:
This routine only reports whether the computation ran into an error. Query the IISConstr,

IISGenConstr, IISQConstr, IISSOS, IISLB, or IISUB attributes to determine the result of the
computation (see the Attributes section for more information on querying attributes).

Example usage:

error = GRBcomputeIIS(model);

GRBfeasrelax

int GRBfeasrelax (GRBmodel *model,
int relaxobjtype,
int minrelax,
double *lbpen,
double *ubpen,
double *rhspen,
double *feasobjP)

Modifies the input model to create a feasibility relaxation. Note that you need to call GRBop-
timize on the result to compute the actual relaxed solution.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the
solution violates the bounds and linear constraints of the original model. This routine provides a
number of options for specifying the relaxation.

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the
sum of the weighted magnitudes of the bound and constraint violations. The lbpen, ubpen, and
rhspen arguments specify the cost per unit violation in the lower bounds, upper bounds, and linear
constraints, respectively.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the
weighted sum of the squares of the bound and constraint violations. The lbpen, ubpen, and
rhspen arguments specify the coefficients on the squares of the lower bound, upper bound, and
linear constraint violations, respectively.

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the
weighted count of bound and constraint violations. The lbpen, ubpen, and rhspen arguments
specify the cost of violating a lower bound, upper bound, and linear constraint, respectively.

To give an example, a violation of 2.0 on constraint i would contribute 2*rhspen[i] to the
feasibility relaxation objective for relaxobjtype=0, it would contribute 2*2*rhspen[i] for
relaxobjtype=1, and it would contribute rhspen[i] for relaxobjtype=2.

The minrelax argument is a boolean that controls the type of feasibility relaxation that is
created. If minrelax=0, optimizing the returned model gives a solution that minimizes the cost of
the violation. If minrelax=1, optimizing the returned model finds a solution that minimizes the
original objective, but only from among those solutions that minimize the cost of the violation. Note
that GRBfeasrelax must solve an optimization problem to find the minimum possible relaxation
for minrelax=1, which can be quite expensive.

In all cases, you can specify a penalty of GRB_INFINITY to indicate that a specific bound or
linear constraint may not be violated.

57

Note that this is a destructive routine: it modifies the model passed to it. If you don’t want to
modify your original model, use GRBcopymodel to create a copy before calling this routine.

Return value:
A non-zero return value indicates that a problem occurred while computing the feasibility
relaxation. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The original (infeasible) model. The model is modified by this routine.
relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.
lbpen: The penalty associated with violating a lower bound. Can be NULL, in which case
no lower bound violations are allowed.

ubpen: The penalty associated with violating an upper bound. Can be NULL, in which case
no upper bound violations are allowed.

rhspen: The penalty associated with violating a linear constraint. Can be NULL, in which
case no constraint violations are allowed.

feasobjP: When minrelax=1, this returns the objective value for the minimum cost relax-
ation.

Example usage:
double penalties[];
error = GRBfeasrelax(model, 0, 0, NULL, NULL, penalties, NULL);
error = GRBoptimize(model);

GRBfixmodel

int GRBfixmodel (GRBmodel *model,
GRBmodel **fixedP)

Create the fixed model associated with a MIP model. The MIP model must have a solution
loaded (e.g., after a call to GRBoptimize). In the fixed model, each integer variable is fixed to the
value that variable takes in the MIP solution. In addition, continuous variables may be fixed to
satisfy SOS or general constraints. The result is a model without any integrality constraints, SOS
constraints, or general constraints.

Note that, while the fixed problem is always a continuous model, it may contain a non-convex
quadratic objective or non-convex quadratic constraints. As a result, it may still be solved using
the MIP algorithm.

Return value:
A non-zero return value indicates that a problem occurred while creating the fixed model.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The MIP model (with a solution loaded).
fixedP: The computed fixed model.

Example usage:
GRBmodel *fixed;
error = GRBfixmodel(model, &fixed);

58

GRBreset

int GRBreset (GRBmodel *model,
int clearall)

Reset the model to an unsolved state, discarding any previously computed solution information.
Return value:

A non-zero return value indicates that a problem occurred while resetting the model. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: The model to reset.
clearall: A value of 1 discards additional information that affects the solution process but
not the actual model (currently MIP starts, variable hints, branching priorities, lazy flags,
and partition information). Pass 0 to just discard the solution.

Example usage:

error = GRBreset(model, 0);

GRBsync

int GRBsync (GRBmodel *model)

Wait for a previous asynchronous optimization call to complete.
Calling GRBoptimizeasync returns control to the calling routine immediately. The caller can

perform other computations while optimization proceeds, and can check on the progress of the opti-
mization by querying various model attributes. The GRBsync call forces the calling program to wait
until the asynchronous optimization completes. You must call GRBsync before the corresponding
model is freed.

The GRBsync call returns a non-zero error code if the optimization itself ran into any problems.
In other words, error codes returned by this method are those that GRBoptimize itself would have
returned, had the original method not been asynchronous.

Note that you need to call GRBsync even if you know that the asynchronous optimization has
already completed.

Return value:
A non-zero return value indicates that a problem occurred while solving the model. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: The model that is currently being solved.

Example usage:

error = GRBoptimizeasync(model);

/* ... perform other compute-intensive tasks... */

error = GRBsync(model);

59

2.4 Model Queries
While most model related queries are handled through the attribute interface, a few fall outside of
that interface. These are described here.

GRBgetcoeff

int GRBgetcoeff (GRBmodel *model,
int constrind,
int varind,
double *valP)

Retrieve a single constraint matrix coefficient.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the coefficient.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the coefficient should be retrieved.
constrind: The constraint index for the desired coefficient.
varind: The variable index for the desired coefficient.
valP: The location in which the requested matrix coefficient should be placed.

Example usage:

double A12;
error = GRBgetcoeff(model, 1, 2, &A12);

GRBgetconstrbyname

int GRBgetconstrbyname (GRBmodel *model,
const char *name,
int *constrnumP)

Retrieves a linear constraint from its name. If multiple linear constraints have the same name,
this routine chooses one arbitrarily.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the constraint.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the linear constraint should be retrieved.
name: The name of the desired linear constraint.
constrnumP: Constraint number for a linear constraint with the indicated name. Returns
-1 if no matching name is found.

60

GRBgetconstrs

int GRBgetconstrs (GRBmodel *model,
int *numnzP,
int *cbeg,
int *cind,
double *cval,
int start,
int len)

Retrieve the non-zeros for a set of linear constraints from the constraint matrix. Typical usage
is to call this routine twice. In the first call, you specify the requested set of constraints, with
NULL values for cbeg, cind, and cval. The routine returns the number of non-zero values for the
specified constraint range in numnzP. That allows you to make certain that cind and cval are of
sufficient size to hold the result of the second call.

If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXgetconstrs variant of this routine.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the constraint
coefficients. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the linear constraints should be retrieved.
numnzP: The number of non-zero values retrieved.
cbeg: Constraint matrix non-zero values are returned in Compressed Sparse Row (CSR) for-
mat. Each constraint in the constraint matrix is represented as a list of index-value pairs,
where each index entry provides the variable index for a non-zero coefficient, and each
value entry provides the corresponding non-zero value. Each constraint has an associated
cbeg value, indicating the start position of the non-zeros for that constraint in the cind
and cval arrays. The non-zeros for constraint i immediately follow those for constraint
i-1 in cind and cval. Thus, cbeg[i] indicates both the index of the first non-zero in
constraint i and the end of the non-zeros for constraint i-1. For example, consider the
case where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has
two non-zero values associated with it. Their variable indices can be found in cind[10]
and cind[11], and the numerical values for those non-zeros can be found in cval[10]
and cval[11].

cind: Variable indices associated with non-zero values. See the description of the cbeg
argument for more information. cval: Numerical values associated with constraint
matrix non-zeros. See the description of the cbeg argument for more information.

start: The index of the first linear constraint to retrieve.
len: The number of linear constraints to retrieve.

GRBgetenv

GRBenv * GRBgetenv (GRBmodel *model)

Retrieve the environment associated with a model.

61

Return value:
The environment associated with the model. A NULL return value indicates that there was
a problem retrieving the environment.

Arguments:
model: The model from which the environment should be retrieved.

Example usage:

GRBenv *env = GRBgetenv(model);

GRBgetgenconstrMax

int GRBgetgenconstrMax (GRBmodel *model,
int id,
int *resvarP,
int *nvarsP,
int *vars,
double *constantP)

Retrieve the data associated with a general constraint of type MAX. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in nvarsP. That allows you to make certain
that the vars array is of sufficient size to hold the result of the second call.

See also GRBaddgenconstrMax for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
resvarP: The variable index associated with the resultant variable of the constraint.
nvarsP: The number of operand variables of the constraint.
vars: An array to store the variable indices associated with the variable operands of the
constraint.

constantP: The additional constant operand of the constraint.
Example usage:

int type;
int resvar;
int nvars;
int *vars;
double constant;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);

62

if (type == GRB_GENCONSTR_MAX) {
error = GRBgetgenconstrMax(model, 3, &resvar, &nvars, NULL, &constant);
/* ...allocate vars to hold ’nvars’ values... */
error = GRBgetgenconstrMax(model, 3, NULL, NULL, vars, NULL);

}

GRBgetgenconstrMin

int GRBgetgenconstrMin (GRBmodel *model,
int id,
int *resvarP,
int *nvarsP,
int *vars,
double *constantP)

Retrieve the data associated with a general constraint of type MIN. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in nvarsP. That allows you to make certain
that the vars array is of sufficient size to hold the result of the second call.

See also GRBaddgenconstrMin for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
resvarP: The variable index associated with the resultant variable of the constraint.
nvarsP: The number of operand variables of the constraint.
vars: An array to store the variable indices associated with the variable operands of the
constraint.

constantP: The additional constant operand of the constraint.
Example usage:

int type;
int resvar;
int nvars;
int *vars;
double constant;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_MIN) {

error = GRBgetgenconstrMin(model, 3, &resvar, &nvars, NULL, &constant);

63

/* ...allocate vars to hold ’nvars’ values... */
error = GRBgetgenconstrMin(model, 3, NULL, NULL, vars, NULL);

}

GRBgetgenconstrAbs

int GRBgetgenconstrAbs (GRBmodel *model,
int id,
int *resvarP,
int *argvarP)

Retrieve the data associated with a general constraint of type ABS. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

See also GRBaddgenconstrAbs for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
resvarP: The variable index associated with the resultant variable of the constraint.
argvarP: The variable index associated with the argument variable of the constraint.

Example usage:

int type;
int resvar;
int argvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_ABS) {

error = GRBgetgenconstrAbs(model, 3, &resvar, &argvar);
}

GRBgetgenconstrAnd

int GRBgetgenconstrAnd (GRBmodel *model,
int id,
int *resvarP,
int *nvarsP,
int *vars)

Retrieve the data associated with a general constraint of type AND. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

64

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in nvarsP. That allows you to make certain
that the vars array is of sufficient size to hold the result of the second call.

See also GRBaddgenconstrAnd for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
resvarP: The variable index associated with the binary resultant variable of the constraint.
nvarsP: The number of binary operand variables of the constraint.
vars: An array to store the variable indices associated with the binary variable operands of
the constraint.

Example usage:

int type;
int resvar;
int nvars;
int *vars;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_AND) {

error = GRBgetgenconstrAnd(model, 3, &resvar, &nvars, NULL);
/* ...allocate vars to hold ’nvars’ values... */
error = GRBgetgenconstrAnd(model, 3, NULL, NULL, vars);

}

GRBgetgenconstrOr

int GRBgetgenconstrOr (GRBmodel *model,
int id,
int *resvarP,
int *nvarsP,
int *vars)

Retrieve the data associated with a general constraint of type OR. Calling this method for a gen-
eral constraint of a different type leads to an error return code. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in nvarsP. That allows you to make certain
that the vars array is of sufficient size to hold the result of the second call.

See also GRBaddgenconstrOr for a description of the semantics of this general constraint type.

65

Return value:
A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
resvarP: The variable index associated with the binary resultant variable of the constraint.
nvarsP: The number of binary operand variables of the constraint.
vars: An array to store the variable indices associated with the binary variable operands of
the constraint.

Example usage:
int type;
int resvar;
int nvars;
int *vars;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_OR) {

error = GRBgetgenconstrOr(model, 3, &resvar, &nvars, NULL);
/* ...allocate vars to hold ’nvars’ values... */
error = GRBgetgenconstrOr(model, 3, NULL, NULL, vars);

}

GRBgetgenconstrIndicator

int GRBgetgenconstrIndicator (GRBmodel *model,
int id,
int *binvarP,
int *binvalP,
int *nvarsP,
int *ind,
double *val,
char *senseP,
double *rhsP)

Retrieve the data associated with a general constraint of type INDICATOR. Calling this method
for a general constraint of a different type leads to an error return code. You can query the
GenConstrType attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with NULL values for the ind and val arguments. The routine returns the total number
of non-zero coefficients in the linear constraint associated with the specified indicator constraint in
nvarsP. That allows you to make certain that the ind and val arrays are of sufficient size to hold
the result of the second call.

See also GRBaddgenconstrIndicator for a description of the semantics of this general constraint
type.

66

Return value:
A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
binvarP: The variable index associated with the binary indicator variable.
binvalP: The value that the indicator variable has to take in order to trigger the linear
constraint.

nvarsP: The number of non-zero coefficients in the linear constraint triggered by the indi-
cator.

ind: An array to store the variable indices for non-zero values in the linear constraint.
val: An array to store the numerical values for non-zero values in the linear constraint.
senseP: Sense for the linear constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_-
GREATER_EQUAL.

rhsP: Right-hand side value for the linear constraint.
Example usage:

int type;
int binvar;
int binval:
int nvars;
int *ind;
double *val;
char sense;
double rhs;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_INDICATOR) {

error = GRBgetgenconstrIndicator(model, 3, &binvar, &binval, &nvars,
NULL, NULL, &sense, &rhs);

/* ...allocate ind and val to hold ’nvars’ values... */
error = GRBgetgenconstrIndicator(model, 3, NULL, NULL, NULL,

ind, val, NULL, NULL);
}

GRBgetgenconstrPWL

int GRBgetgenconstrPWL (GRBmodel *model,
int id,
int *xvarP,
int *yvarP,
int *nptsP,
double *xpts,
double *ypts)

67

Retrieve the data associated with a general constraint of type PWL. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the xpts and ypts arguments. The routine returns the length
for the xpts and ypts arrays in nptsP. That allows you to make certain that the xpts and ypts
arrays are of sufficient size to hold the result of the second call.

See also GRBaddgenconstrPWL for a description of the semantics of this general constraint
type.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.
nptsP: The number of points that define the piecewise-linear function.
xpts: The x values for the points that define the piecewise-linear function.
ypts: The y values for the points that define the piecewise-linear function.

Example usage:

int type;
int xvar;
int yvar;
int npts;
double *xpts;
double *ypts;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_PWL) {

error = GRBgetgenconstrPWL(model, 3, &xvar, &yvar, &npts, NULL, NULL);
/* ...allocate xpts and ypts arrays with length npts */
error = GRBgetgenconstrPWL(model, 3, NULL, NULL, NULL, xpts, ypts);

}

GRBgetgenconstrPoly

int GRBgetgenconstrPoly (GRBmodel *model,
int id,
int *xvarP,
int *yvarP,
int *plenP,
double *p)

68

Retrieve the data associated with a general constraint of type POLY. Calling this method
for a general constraint of a different type leads to an error return code. You can query the
GenConstrType attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the p argument. The routine returns the length of the p array in
plenP. That allows you to make certain that the p array is of sufficient size to hold the result of
the second call.

See also GRBaddgenconstrPoly for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.
plenP: Pointer to store the array length for p. If xd is the highest power term, then d + 1
will be returned.

p: The coefficients for polynomial function.
Example usage:

int type;
int xvar;
int yvar;
int plen;
double *p;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_POLY) {

error = GRBgetgenconstrPoly(model, 3, &xvar, &yvar, &plen, NULL);
/* ...allocate p array with length plen */
error = GRBgetgenconstrPoly(model, 3, NULL, NULL, NULL, p);

}

GRBgetgenconstrExp

int GRBgetgenconstrExp (GRBmodel *model,
int id,
int *xvarP,
int *yvarP)

Retrieve the data associated with a general constraint of type EXP. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

See also GRBaddgenconstrExp for a description of the semantics of this general constraint type.

69

Return value:
A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.

Example usage:

int type;
int xvar;
int yvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_EXP) {

error = GRBgetgenconstrExp(model, 3, &xvar, &yvar);
}

GRBgetgenconstrExpA

int GRBgetgenconstrExpA (GRBmodel *model,
int id,
int *xvarP,
int *yvarP,
double *aP)

Retrieve the data associated with a general constraint of type EXPA. Calling this method
for a general constraint of a different type leads to an error return code. You can query the
GenConstrType attribute to determine the type of the general constraint.

See also GRBaddgenconstrExpA for a description of the semantics of this general constraint
type.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.
aP: The base of the function.

Example usage:

70

int type;
int xvar;
int yvar;
double a;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_EXPA) {

error = GRBgetgenconstrExpA(model, 3, &xvar, &yvar, &a);
}

GRBgetgenconstrLog

int GRBgetgenconstrLog (GRBmodel *model,
int id,
int *xvarP,
int *yvarP)

Retrieve the data associated with a general constraint of type LOG. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

See also GRBaddgenconstrLog for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.

Example usage:

int type;
int xvar;
int yvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_LOG) {

error = GRBgetgenconstrLog(model, 3, &xvar, &yvar);
}

71

GRBgetgenconstrLogA

int GRBgetgenconstrLogA (GRBmodel *model,
int id,
int *xvarP,
int *yvarP,
double *aP)

Retrieve the data associated with a general constraint of type LOGA. Calling this method
for a general constraint of a different type leads to an error return code. You can query the
GenConstrType attribute to determine the type of the general constraint.

See also GRBaddgenconstrLogA for a description of the semantics of this general constraint
type.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.
aP: The base of the function.

Example usage:

int type;
int xvar;
int yvar;
double a;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_LOGA) {

error = GRBgetgenconstrLogA(model, 3, &xvar, &yvar, &a);
}

GRBgetgenconstrPow

int GRBgetgenconstrPow (GRBmodel *model,
int id,
int *xvarP,
int *yvarP,
double *aP)

Retrieve the data associated with a general constraint of type POW. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

See also GRBaddgenconstrPow for a description of the semantics of this general constraint type.
Return value:

72

A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.
aP: The exponent of the function.

Example usage:

int type;
int xvar;
int yvar;
double a;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_POW) {

error = GRBgetgenconstrPow(model, 3, &xvar, &yvar, &a);
}

GRBgetgenconstrSin

int GRBgetgenconstrSin (GRBmodel *model,
int id,
int *xvarP,
int *yvarP)

Retrieve the data associated with a general constraint of type SIN. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

See also GRBaddgenconstrSin for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.

Example usage:

int type;
int xvar;

73

int yvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_SIN) {

error = GRBgetgenconstrSin(model, 3, &xvar, &yvar);
}

GRBgetgenconstrCos

int GRBgetgenconstrCos (GRBmodel *model,
int id,
int *xvarP,
int *yvarP)

Retrieve the data associated with a general constraint of type COS. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

See also GRBaddgenconstrCos for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.

Example usage:

int type;
int xvar;
int yvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_COS) {

error = GRBgetgenconstrCos(model, 3, &xvar, &yvar);
}

GRBgetgenconstrTan

int GRBgetgenconstrTan (GRBmodel *model,
int id,
int *xvarP,
int *yvarP)

74

Retrieve the data associated with a general constraint of type TAN. Calling this method for a
general constraint of a different type leads to an error return code. You can query the GenConstr-
Type attribute to determine the type of the general constraint.

See also GRBaddgenconstrTan for a description of the semantics of this general constraint type.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the data of the
general constraint. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to which the new general constraint should be added.
id: The index of the general constraint to retrieve.

Note that any of the following arguments can be NULL.
xvarP: The index of variable x.
yvarP: The index of variable y.

Example usage:

int type;
int xvar;
int yvar;

error = GRBgetintattrelement(model, GRB_INT_ATTR_GENCONSTRTYPE, 3, &type);
if (type == GRB_GENCONSTR_TAN) {

error = GRBgetgenconstrTan(model, 3, &xvar, &yvar);
}

GRBgetjsonsolution

int GRBgetjsonsolution (GRBmodel model,
char** buffP)

After a call to optimize, this method returns the resulting solution and related model attributes
as a JSON string. Please refer to the JSON solution format section for details.

Return value:
A non-zero return value indicates that there was a problem generating the JSON solution
string. Refer to the Error Code table for a list of possible return values.

Arguments:
model: Model from which to query its current JSON solution string.
buffP: The location in which the pointer to the newly created JSON string should be placed.

Important note:
On Windows, the string returned in buffP is allocated in a different heap from the calling

program. You must call GRBfree to free it.

75

GRBgetpwlobj

int GRBgetpwlobj (GRBmodel *model,
int var,
int *npointsP,
double *x,
double *y)

Retrieve the piecewise-linear objective function for a variable. The x and y arguments must
be large enough to hold the result. If either are NULL, then npointsP will contain the number of
points in the function on return.

Refer to this discussion for additional information on what the values in x and y mean.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the piecewise-
linear objective function. Refer to the Error Code table for a list of possible return values.
Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the piecewise-linear objective function is being retrieved.
var: The variable whose objective function is being retrieved.
npointsP: The number of points that define the piecewise-linear function.
x: The x values for the points that define the piecewise-linear function. These will always
be in non-decreasing order.

y: The y values for the points that define the piecewise-linear function.
Example usage:

double *x;
double *y;

error = GRBgetpwlobj(model, var, &npoints, NULL, NULL);
/* ...allocate x and y to hold ’npoints’ values... */
error = GRBgetpwlobj(model, var, &npoints, x, y);

GRBgetq

int GRBgetq (GRBmodel *model,
int *numqnzP,
int *qrow,
int *qcol,
double *qval)

Retrieve all quadratic objective terms. The qrow, qcol, and qval arguments must be large
enough to hold the result. You can query the NumQNZs attribute to determine how many terms
will be returned.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the quadratic
objective terms. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the quadratic objective terms should be retrieved.

76

numqnzP: The number of quadratic objective terms retrieved.
qrow: Row indices associated with quadratic terms. A quadratic term is represented using
three values: a pair of indices (stored in qrow and qcol), and a coefficient (stored in qval).
The three argument arrays provide the corresponding values for each quadratic term. To
give an example, to represent 2x2

0 + x0x1 + x2
1, you would have *numqnzP=3, qrow[] =

{0, 0, 1}, qcol[] = {0, 1, 1}, and qval[] = {2.0, 1.0, 1.0}.
qcol: Column indices associated with quadratic terms. See the description of the qrow
argument for more information.

qval: Numerical values associated with quadratic terms. See the description of the qrow
argument for more information.

Example usage:

int qnz;
int *qrow, *qcol;
double *qval;

error = GRBgetdblattr(model, GRB_DBL_ATTR_NUMQNZS, &qnz);
/* ...allocate qrow, qcol, qval to hold ’qnz’ values... */
error = GRBgetq(model, &qnz, qrow, qcol, qval);

GRBgetqconstr

int GRBgetqconstr (GRBmodel *model,
int qconstr,
int *numlnzP,
int *lind,
double *lval,
int *numqnzP,
int *qrow,
int *qcol,
double *qval)

Retrieve the linear and quadratic terms associated with a single quadratic constraint. Typical
usage is to call this routine twice. In the first call, you specify the requested quadratic constraint,
with NULL values for the array arguments. The routine returns the total number of linear and
quadratic terms in the specified quadratic constraint in numlnzP and numqnzP, respectively. That
allows you to make certain that lind, lval, qrow, qcol, and qval are of sufficient size to hold the
result of the second call.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the quadratic
constraint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the quadratic constraint should be retrieved.
qconstr: The index of the requested quadratic constraint.
numlnzP: The number of linear terms retrieved for the requested quadratic constraint.
lind: Variable indices associated with linear terms.

77

lval: Numerical coefficients associated with linear terms.
numqnzP: The number of quadratic terms retrieved for the requested quadratic constraint.
qrow: Row indices associated with quadratic terms. A quadratic term is represented using
three values: a pair of indices (stored in qrow and qcol), and a coefficient (stored in qval).
The associated arguments arrays provide the corresponding values for each quadratic term.
To give an example, if the requested quadratic constraint has quadratic terms 2x2

0 +x0x1 +
x2

1, this routine would return *numqnzP=3, qrow[] = {0, 0, 1}, qcol[] = {0, 1, 1},
and qval[] = {2.0, 1.0, 1.0}.

qcol: Column indices associated with quadratic terms. See the description of the qrow
argument for more information.

qval: Numerical values associated with quadratic terms. See the description of the qrow
argument for more information.

GRBgetqconstrbyname

int GRBgetqconstrbyname (GRBmodel *model,
const char *name,
int *constrnumP)

Retrieves a quadratic constraint from its name. If multiple quadratic constraints have the same
name, this routine chooses one arbitrarily.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the quadratic
constraint. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the quadratic constraint should be retrieved.
name: The name of the desired quadratic constraint.
constrnumP: Constraint number for a quadratic constraint with the indicated name. Returns
-1 if no matching name is found.

GRBgetsos

int GRBgetsos (GRBmodel *model,
int *nummembersP,
int *sostype,
int *beg,
int *ind,
double *weight,
int start,
int len)

Retrieve the members and weights of a set of SOS constraints. Typical usage is to call this
routine twice. In the first call, you specify the requested SOS constraints, with NULL values for ind
and weight. The routine returns the total number of members for the specified SOS constraints in
nummembersP. That allows you to make certain that ind and weight are of sufficient size to hold
the result of the second call.

Return value:

78

A non-zero return value indicates that a problem occurred while retrieving the SOS members.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the SOS constraints should be retrieved.
nummembersP: The total number of SOS members retrieved.
sostype: The types of the SOS constraints. Possible values are GRB_SOS_TYPE1 or GRB_-
SOS_TYPE2

beg: SOS constraints are returned in Compressed Sparse Row (CSR) format. Each SOS
constraint in the model is represented as a list of index-value pairs, where each index
entry provides the variable index for an SOS member, and each value entry provides the
corresponding SOS constraint weight. Each SOS constraint has an associated beg value,
indicating the start position of the members of that constraint in the ind and weight
arrays. The members for SOS constraint i immediately follow those for constraint i-1
in ind and weight. Thus, beg[i] indicates both the index of the first member of SOS
constraint i and the end of the member list for SOS constraint i-1. For example, consider
the case where beg[2] = 10 and beg[3] = 12. This would indicate that SOS constraint
2 has two members. Their variable indices can be found in ind[10] and ind[11], and
their SOS weights can be found in weight[10] and weight[11].

ind: Variable indices associated with SOS members. See the description of the beg argument
for more information.

weight: Weights associated with SOS members. See the description of the beg argument
for more information.

start: The index of the first SOS constraint to retrieve.
len: The number of SOS constraints to retrieve.

GRBgetvarbyname

int GRBgetvarbyname (GRBmodel *model,
const char *name,
int *varnumP)

Retrieves a variable from its name. If multiple variables have the same name, this routine
chooses one arbitrarily.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the variable.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the variable should be retrieved.
name: The name of the desired variable.
varnumP: Variable number for a variable with the indicated name. Returns -1 if no matching
name is found.

79

GRBgetvars

int GRBgetvars (GRBmodel *model,
int *numnzP,
int *vbeg,
int *vind,
double *vval,
int start,
int len)

Retrieve the non-zeros for a set of variables from the constraint matrix. Typical usage is to call
this routine twice. In the first call, you specify the requested set of variables, with NULL values for
vbeg, vind, and vval. The routine returns the number of non-zero values for the specified variables
in numnzP. That allows you to make certain that vind and vval are of sufficient size to hold the
result of the second call.

If your constraint matrix may contain more than 2 billion non-zero values, you should consider
using the GRBXgetvars variant of this routine.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the variable
coefficients. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the variables should be retrieved.
numnzP: The number of non-zero values retrieved.
vbeg: Constraint matrix non-zero values are returned in Compressed Sparse Column (CSC)
format by this routine. Each column in the constraint matrix is represented as a list
of index-value pairs, where each index entry provides the constraint index for a non-
zero coefficient, and each value entry provides the corresponding non-zero value. Each
variable has an associated vbeg value, indicating the start position of the non-zeros for
that constraint in the vind and vval arrays. The non-zeros for variable i immediately
follow those for variable i-1 in vind and vval. Thus, vbeg[i] indicates both the index
of the first non-zero in variable i and the end of the non-zeros for variable i-1. For
example, consider the case where vbeg[2] = 10 and vbeg[3] = 12. This would indicate
that variable 2 has two non-zero values associated with it. Their constraint indices can
be found in vind[10] and vind[11], and the numerical values for those non-zeros can be
found in vval[10] and vval[11].

vind: Constraint indices associated with non-zero values. See the description of the vbeg
argument for more information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of
the vbeg argument for more information.

start: The index of the first variable to retrieve.
len: The number of variables to retrieve.

GRBsinglescenariomodel

int GRBsinglescenariomodel (GRBmodel *model,
GRBmodel **singlescenarioP)

80

Capture a single scenario from a multi-scenario model. Use the ScenarioNumber parameter to
indicate which scenario to capture.

Return value:
A non-zero return value indicates that a problem occurred while extracting the single-
scenario model. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the scenario should be extracted.
singlescenarioP: The location in which the pointer to the requested single-scenario model
should be placed.

GRBXgetconstrs

int GRBXgetconstrs (GRBmodel *model,
size_t *numnzP,
size_t *cbeg,
int *cind,
double *cval,
int start,
int len)

The size_t version of GRBgetconstrs. The two arguments that count non-zero values are of
type size_t in this version to support models with more than 2 billion non-zero values.

Retrieve the non-zeros for a set of linear constraints from the constraint matrix. Typical usage
is to call this routine twice. In the first call, you specify the requested set of constraints, with
NULL values for cbeg, cind, and cval. The routine returns the number of non-zero values for the
specified constraint range in numnzP. That allows you to make certain that cind and cval are of
sufficient size to hold the result of the second call.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the constraint
coefficients. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the constraints should be retrieved.
numnzP: The number of non-zero values retrieved.
cbeg: Constraint matrix non-zero values are returned in Compressed Sparse Row (CSR) for-
mat. Each constraint in the constraint matrix is represented as a list of index-value pairs,
where each index entry provides the variable index for a non-zero coefficient, and each
value entry provides the corresponding non-zero value. Each constraint has an associated
cbeg value, indicating the start position of the non-zeros for that constraint in the cind
and cval arrays. The non-zeros for constraint i immediately follow those for constraint
i-1 in cind and cval. Thus, cbeg[i] indicates both the index of the first non-zero in
constraint i and the end of the non-zeros for constraint i-1. For example, consider the
case where cbeg[2] = 10 and cbeg[3] = 12. This would indicate that constraint 2 has
two non-zero values associated with it. Their variable indices can be found in cind[10]
and cind[11], and the numerical values for those non-zeros can be found in cval[10]
and cval[11].

81

cind: Variable indices associated with non-zero values. See the description of the cbeg
argument for more information.

cval: Numerical values associated with constraint matrix non-zeros. See the description of
the cbeg argument for more information.

start: The index of the first constraint to retrieve.
len: The number of constraints to retrieve.

GRBXgetvars

int GRBXgetvars (GRBmodel *model,
size_t *numnzP,
size_t *vbeg,
int *vind,
double *vval,
int start,
int len)

The size_t version of GRBgetvars. The two arguments that count non-zero values are of type
size_t in this version to support models with more than 2 billion non-zero values.

Retrieve the non-zeros for a set of variables from the constraint matrix. Typical usage is to call
this routine twice. In the first call, you specify the requested set of variables, with NULL values for
vbeg, vind, and vval. The routine returns the number of non-zero values for the specified variables
in numnzP. That allows you to make certain that vind and vval are of sufficient size to hold the
result of the second call.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the variable
coefficients. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model from which the variables should be retrieved.
numnzP: The number of non-zero values retrieved.
vbeg: Constraint matrix non-zero values are returned in Compressed Sparse Column (CSC)
format by this routine. Each column in the constraint matrix is represented as a list
of index-value pairs, where each index entry provides the constraint index for a non-
zero coefficient, and each value entry provides the corresponding non-zero value. Each
variable has an associated vbeg value, indicating the start position of the non-zeros for
that constraint in the vind and vval arrays. The non-zeros for variable i immediately
follow those for variable i-1 in vind and vval. Thus, vbeg[i] indicates both the index
of the first non-zero in variable i and the end of the non-zeros for variable i-1. For
example, consider the case where vbeg[2] = 10 and vbeg[3] = 12. This would indicate
that variable 2 has two non-zero values associated with it. Their constraint indices can
be found in vind[10] and vind[11], and the numerical values for those non-zeros can be
found in vval[10] and vval[11].

vind: Constraint indices associated with non-zero values. See the description of the vbeg
argument for more information.

vval: Numerical values associated with constraint matrix non-zeros. See the description of
the vbeg argument for more information.

82

start: The index of the first variable to retrieve.
len: The number of variables to retrieve.

83

2.5 Input/Output
GRBreadmodel

int GRBreadmodel (GRBenv *env,
const char *filename,
GRBmodel **modelP)

Read a model from a file.
Return value:

A non-zero return value indicates that a problem occurred while reading the model. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
env: The environment in which to load the new model. This should come from a previous
call to GRBloadenv.

filename: The path to the file to be read. Note that the type of the file is encoded in the
file name suffix. Valid suffixes are .mps, .rew, .lp, .rlp, .ilp, or .opb. The files can be
compressed, so additional suffixes of .zip, .gz, .bz2, or .7z are accepted.

modelP: The location in which the pointer to the model should be placed.
Example usage:

GRBmodel *model;
error = GRBreadmodel(env, "/tmp/model.mps.bz2", &model);

GRBread

int GRBread (GRBmodel *model,
const char *filename)

Import optimization data from a file. This routine is the general entry point for importing data
from a file into a model. It can be used to read start vectors for MIP models, basis files for LP
models, or parameter settings. The type of data read is determined by the file suffix. File formats
are described in the File Format section.

Return value:
A non-zero return value indicates that a problem occurred while reading the file. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained
by calling GRBgeterrormsg.

Arguments:
model: The model that will receive the start vector.
filename: The path to the file to be read. The suffix on the file must be either .mst or
.sol for a MIP start file, .hnt for a MIP hint file, .ord for a priority order file, .bas for
a basis file, or .prm for a parameter file, The suffix may optionally be followed by .zip,
.gz, .bz2, or .7z.

Example usage:

error = GRBread(model, "/tmp/model.mst.bz2");

84

GRBwrite

int GRBwrite (GRBmodel *model,
const char *filename)

This routine is the general entry point for writing optimization data to a file. It can be used
to write optimization models, solutions vectors, basis vectors, start vectors, or parameter settings.
The type of data written is determined by the file suffix. File formats are described in the File
Format section.

Note that writing a model to a file will process all pending model modifications. However,
writing other model information (solutions, bases, etc.) will not.

Note also that when you write a Gurobi parameter file (PRM), both integer or double parameters
not at their default value will be saved, but no string parameter will be saved into the file.

Return value:
A non-zero return value indicates that a problem occurred while writing the file. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained
by calling GRBgeterrormsg.

Arguments:
model: The model containing the data to be written.
filename: The name of the file to be written. The file type is encoded in the file name suffix.
Valid suffixes are .mps, .rew, .lp, or .rlp for writing the model itself, .ilp for writing just
the IIS associated with an infeasible model (see GRBcomputeIIS for further information),
.sol for writing the current solution, .mst for writing a start vector, .hnt for writing
a hint file, .bas for writing an LP basis, .prm for writing modified parameter settings,
.attr for writing model attributes, or .json for writing solution information in JSON
format. If your system has compression utilities installed (e.g., 7z or zip for Windows,
and gzip, bzip2, or unzip for Linux or Mac OS), then the files can be compressed, so
additional suffixes of .gz, .bz2, or .7z are accepted.

Example usage:

error = GRBwrite(model, "/tmp/model.rlp.gz");

85

2.6 Attribute Management
GRBgetattrinfo

int GRBgetattrinfo (GRBmodel *model,
const char *attrname,
int *datatypeP,
int *attrtypeP,
int *settableP)

Obtain information about an attribute.
Return value:

A non-zero return value indicates that a problem occurred while obtaining information about
the attribute. Refer to the Error Code table for a list of possible return values. Details on
the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of an attribute. Available attributes are listed and described in the
Attributes section of this document.

datatypeP: On completion, the integer pointed to by this argument will indicate the data
type of the attribute. Possible types are char (0), int (1), double (2), or string(3). This
argument can be NULL.

attrtypeP: On completion, the integer pointed to by this argument will indicate the type
of the attribute. Possible types are model attribute (0), variable attribute (1), linear
constraint attribute (2), (3) SOS constraint attribute, (4) quadratic constraint attribute,
or (5) general constraint attribute. This argument can be NULL.

settableP: On completion, the integer pointed to by this argument will indicate whether
the attribute can be set (1) or not (0). This argument can be NULL.

Example usage:

int datatype, attrtype, settable;
error = GRBgetattrinfo(model, "ModelName", &datatype, &attrtype, &settable);

GRBgetintattr

int GRBgetintattr (GRBmodel *model,
const char *attrname,
int *valueP)

Query the value of an integer-valued model attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

86

attrname: The name of an integer-valued model attribute. Available attributes are listed
and described in the Attributes section of this document.

valueP: The location in which the current value of the requested attribute should be placed.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To

query a single element of an array attribute, use GRBgetintattrelement instead.
Example usage:

error = GRBgetintattr(model, "NumBinVars", &numbin);

GRBsetintattr

int GRBsetintattr (GRBmodel *model,
const char *attrname,
int newvalue)

Set the value of an integer-valued model attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of an integer-valued model attribute. Available attributes are listed
and described in the Attributes section of this document.

newvalue: The desired new value of this attribute.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To

modify a single element of an array attribute, use GRBsetintattrelement instead.
Example usage:

error = GRBsetintattr(model, "ModelSense", -1);

GRBgetintattrelement

int GRBgetintattrelement (GRBmodel *model,
const char *attrname,
int element,
int *valueP)

Query a single value from an integer-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

87

model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of an integer-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

element: The index of the requested array element.
valueP: A pointer to the location where the requested value should be returned.

Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint

attributes). To query a scalar attribute (i.e., a model attribute), use GRBgetintattr instead.
Example usage:

int first_one;
error = GRBgetintattrelement(model, "VBasis", 0, &first_one);

GRBsetintattrelement

int GRBsetintattrelement (GRBmodel *model,
const char *attrname,
int element,
int newvalue)

Set a single value in an integer-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of an integer-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

element: The index of the array element to be changed.
newvalue: The value to which the attribute element should be set.

Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint

attributes). To modify a scalar attribute (i.e., a model attribute), use GRBsetintattr instead.
Example usage:

error = GRBsetintattrelement(model, "VBasis", 0, GRB_BASIC);

GRBgetintattrarray

int GRBgetintattrarray (GRBmodel *model,
const char *attrname,
int start,
int len,
int *values)

Query the values of an integer-valued array attribute.

88

Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of an integer-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

start: The index of the first entry in the array to retrieve.
len: The number of array entries to retrieve.
values: A pointer to the location where the array attribute should be returned. Note that
the result array must be as long as the requested sub-array.

Example usage:

int cbasis[NUMCONSTRS];
error = GRBgetintattrarray(model, "CBasis", 0, NUMCONSTRS, cbasis);

GRBsetintattrarray

int GRBsetintattrarray (GRBmodel *model,
const char *attrname,
int start,
int len,
int *values)

Set the values of an integer-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of an integer-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

start: The index of the first entry in the array to set.
len: The number of array entries to set.
values: A pointer to the desired new values for the specified sub-array of the attribute.
Note that the values array must be as long as the sub-array to be changed.

Example usage:

int cbasis[] = {GRB_BASIC, GRB_BASIC, GRB_NONBASIC_LOWER, GRB_BASIC};
error = GRBsetintattrarray(model, "CBasis", 0, 4, cbasis);

89

GRBgetintattrlist

int GRBgetintattrlist (GRBmodel *model,
const char *attrname,
int len,
int *ind,
int *values)

Query the values of an integer-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of an integer-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

len: The number of attribute elements to retrieve.
ind: The indices of the desired attribute elements.
values: A pointer to the location where the requested attribute elements should be returned.
Note that the result array must be as long as the requested index list.

Example usage:

int desired[] = {0, 2, 4, 6};
int cbasis[4];
error = GRBgetintattrlist(model, "CBasis", 4, desired, cbasis);

GRBsetintattrlist

int GRBsetintattrlist (GRBmodel *model,
const char *attrname,
int len,
int *ind,
int *values)

Set the values of an integer-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of an integer-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

len: The number of array entries to set.
ind: The indices of the array attribute elements that will be set.

90

values: A pointer to the desired new values for the specified elements of the attribute. Note
that the values array must be as long as the list of indices.

Example usage:

int change[] = {0, 1, 3};
int newbas[] = {GRB_BASIC, GRB_NONBASIC_LOWER, GRB_NONBASIC_LOWER};
error = GRBsetintattrlist(model, "VBasis", 3, change, newbas);

GRBgetdblattr

int GRBgetdblattr (GRBmodel *model,
const char *attrname,
double *valueP)

Query the value of a double-valued model attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a double-valued model attribute. Available attributes are listed and
described in the Attributes section of this document.

valueP: The location in which the current value of the requested attribute should be placed.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To

query a single element of an array attribute, use GRBgetdblattrelement instead.
Example usage:

error = GRBgetdblattr(model, "ObjCon", &objcon);

GRBsetdblattr

int GRBsetdblattr (GRBmodel *model,
const char *attrname,
double newvalue)

Set the value of a double-valued model attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a double-valued model attribute. Available attributes are listed and
described in the Attributes section of this document.

91

newvalue: The desired new value of this attribute.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To

modify a single element of an array attribute, use GRBsetdblattrelement instead.
Example usage:

error = GRBsetdblattr(model, "ObjCon", 0.0);

GRBgetdblattrelement

int GRBgetdblattrelement (GRBmodel *model,
const char *attrname,
int element,
double *valueP)

Query a single value from a double-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a double-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

element: The index of the requested array element.
values: A pointer to the location where the requested value should be returned.

Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint

attributes). To query a scalar attribute (i.e., a model attribute), use GRBgetdblattr instead.
Example usage:

double first_one;
error = GRBgetdblattrelement(model, "X", 0, &first_one);

GRBsetdblattrelement

int GRBsetdblattrelement (GRBmodel *model,
const char *attrname,
int element,
double newvalue)

Set a single value in a double-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:

92

model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a double-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

element: The index of the array element to be changed.
newvalue: The value to which the attribute element should be set.

Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint

attributes). To modify a scalar attribute (i.e., a model attribute), use GRBsetdblattr instead.
Example usage:

error = GRBsetdblattrelement(model, "Start", 0, 1.0);

GRBgetdblattrarray

int GRBgetdblattrarray (GRBmodel *model,
const char *attrname,
int start,
int len,
double *values)

Query the values of a double-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a double-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

start: The index of the first entry in the array to retrieve.
len: The number of array entries to retrieve.
values: A pointer to the location where the array attribute should be returned. Note that
the result array must be as long as the requested sub-array.

Example usage:

double lb[NUMVARS];
error = GRBgetdblattrarray(model, "LB", 0, cols, lb);

GRBsetdblattrarray

int GRBsetdblattrarray (GRBmodel *model,
const char *attrname,
int start,
int len,
double *values)

Set the values of a double-valued array attribute.

93

Return value:
A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a double-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

start: The index of the first entry in the array to set.
len: The number of array entries to set.
values: A pointer to the desired new values for the specified sub-array of the attribute.
Note that the values array must be as long as the sub-array to be changed.

Example usage:

double start[] = {1.0, 1.0, 0.0, 1.0};
error = GRBsetdblattrarray(model, "Start", 0, 4, start);

GRBgetdblattrlist

int GRBgetdblattrlist (GRBmodel *model,
const char *attrname,
int len,
int *ind,
double *values)

Query the values of a double-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a double-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

len: The number of attribute elements to retrieve.
ind: The indices of the desired attribute elements.
values: A pointer to the location where the requested attribute elements should be returned.
Note that the result array must be as long as the requested index list.

Example usage:

int desired[] = {0, 2, 4, 6};
double x[4];
error = GRBgetdblattrlist(model, "X", 4, desired, cbasis);

94

GRBsetdblattrlist

int GRBsetdblattrlist (GRBmodel *model,
const char *attrname,
int len,
int *ind,
double *values)

Set the values of a double-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a double-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

len: The number of array entries to set.
ind: The indices of the array attribute elements that will be set.
values: A pointer to the desired new values for the specified elements of the attribute. Note
that the values array must be as long as the list of indices.

Example usage:

int change[] = {0, 1, 3};
double start[] = {1.0, 3.0, 2.0};
error = GRBsetdblattrlist(model, "Start", 3, change, start);

GRBgetcharattrelement

int GRBgetcharattrelement (GRBmodel *model,
const char *attrname,
int element,
char *valueP)

Query a single value from a character-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a character-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

element: The index of the requested array element.
values: A pointer to the location where the requested value should be returned.

Example usage:

95

char first_one;
error = GRBgetcharattrelement(model, "VType", 0, &first_one);

GRBsetcharattrelement

int GRBsetcharattrelement (GRBmodel *model,
const char *attrname,
int element,
char newvalue)

Set a single value in a character-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a character-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

element: The index of the array element to be changed.
newvalue: The value to which the attribute element should be set.

Example usage:

error = GRBsetcharattrelement(model, "VType", 0, GRB_BINARY);

GRBgetcharattrarray

int GRBgetcharattrarray (GRBmodel *model,
const char *attrname,
int start,
int len,
char *values)

Query the values of a character-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a character-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

start: The index of the first entry in the array to retrieve.
len: The number of array entries to retrieve.

96

values: A pointer to the location where the array attribute should be returned. Note that
the result array must be as long as the requested sub-array.

Example usage:

char vtypes[NUMVARS];
error = GRBgetcharattrarray(model, "VType", 0, NUMVARS, vtypes);

GRBsetcharattrarray

int GRBsetcharattrarray (GRBmodel *model,
const char *attrname,
int start,
int len,
char *values)

Set the values of a character-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a character-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

start: The index of the first entry in the array to set.
len: The number of array entries to set.
values: A pointer to the desired new values for the specified sub-array of the attribute.
Note that the values array must be as long as the sub-array to be changed.

Example usage:

char vtypes[] = {GRB_BINARY, GRB_CONTINUOUS, GRB_INTEGER, GRB_BINARY};
error = GRBsetcharattrarray(model, "VType", 0, 4, vtypes);

GRBgetcharattrlist

int GRBgetcharattrlist (GRBmodel *model,
const char *attrname,
int len,
int *ind,
char *values)

Query the values of a character-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:

97

model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a character-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

len: The number of attribute elements to retrieve.
ind: The indices of the desired attribute elements.
values: A pointer to the location where the requested attribute elements should be returned.
Note that the result array must be as long as the requested index list.

Example usage:

int desired[] = {0, 2, 4, 6};
char vtypes[4];
error = GRBgetcharattrlist(model, "VType", 4, desired, vtypes);

GRBsetcharattrlist

int GRBsetcharattrlist (GRBmodel *model,
const char *attrname,
int len,
int *ind,
char *values)

Set the values of a character-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a character-valued array attribute. Available attributes are listed
and described in the Attributes section of this document.

len: The number of array entries to set.
ind: The indices of the array attribute elements that will be set.
values: A pointer to the desired new values for the specified elements of the attribute. Note
that the values array must be as long as the list of indices.

Example usage:

int change[] = {0, 1, 3};
char vtypes[] = {GRB_BINARY, GRB_BINARY, GRB_BINARY};
error = GRBsetcharattrlist(model, "Vtype", 3, change, vtypes);

GRBgetstrattr

int GRBgetstrattr (GRBmodel *model,
const char *attrname,
char **valueP)

Query the value of a string-valued model attribute.

98

Return value:
A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a string-valued model attribute. Available attributes are listed and
described in the Attributes section of this document.

valueP: The location in which the current value of the requested attribute should be placed.
Important notes:
Note that all interface routines that return string-valued attributes are returning pointers into

internal Gurobi data structures. The user should copy the contents of the pointer to a different
data structure before the next call to a Gurobi library routine. The user should also be careful to
never modify the data pointed to by the returned character pointer.

Note that this method should be used for scalar attributes only (i.e., model attributes). To
query a single element of an array attribute, use GRBgetstrattrelement instead.

Example usage:

char *modelname;
error = GRBgetstrattr(model, "ModelName", &modelname);

GRBsetstrattr

int GRBsetstrattr (GRBmodel *model,
const char *attrname,
const char *newvalue)

Set the value of a string-valued model attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a string-valued model attribute. Available attributes are listed and
described in the Attributes section of this document.

newvalue: The desired new value of this attribute.
Important note:
Note that this method should be used for scalar attributes only (i.e., model attributes). To

modify a single element of an array attribute, use GRBsetstrattrelement instead.
Example usage:

error = GRBsetstrattr(model, "ModelName", "Modified name");

99

GRBgetstrattrelement

int GRBgetstrattrelement (GRBmodel *model,
const char *attrname,
int element,
char **valueP)

Query a single value from a string-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a string-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

element: The index of the requested array element.
valueP: A pointer to the location where the requested value should be returned.

Important notes:
Note that all interface routines that return string-valued attributes are returning pointers into

internal Gurobi data structures. The user should copy the contents of the pointer to a different
data structure before the next call to a Gurobi library routine. The user should also be careful to
never modify the data pointed to by the returned character pointer.

Note that this method should be used for array attributes only (i.e., variable or constraint
attributes). To query a scalar attribute (i.e., a model attribute), use GRBgetstrattr instead.

Example usage:

char **varname;
error = GRBgetstrattrelement(model, "VarName", 1, varname);

GRBsetstrattrelement

int GRBsetstrattrelement (GRBmodel *model,
const char *attrname,
int element,
char *newvalue)

Set a single value in a string-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a string-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

100

element: The index of the array element to be changed.
newvalue: The value to which the attribute element should be set.

Important note:
Note that this method should be used for array attributes only (i.e., variable or constraint

attributes). To modify a scalar attribute (i.e., a model attribute), use GRBsetstrattr instead.
Example usage:

error = GRBsetstrattrelement(model, "ConstrName", 0, "NewConstr");

GRBgetstrattrarray

int GRBgetstrattrarray (GRBmodel *model,
const char *attrname,
int start,
int len,
char **values)

Query the values of a string-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a string-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

start: The index of the first entry in the array to retrieve.
len: The number of array entries to retrieve.
values: A pointer to the location where the array attribute should be returned. Note that
the result array must be as long as the requested sub-array.

Important notes:
Note that all interface routines that return string-valued attributes are returning pointers into

internal Gurobi data structures. The user should copy the contents of the pointer to a different
data structure before the next call to a Gurobi library routine. The user should also be careful to
never modify the data pointed to by the returned character pointer.

Example usage:

char **varnames[NUMVARS];
error = GRBgetstrattrarray(model, "VarName", 0, NUMVARS, varnames);

GRBsetstrattrarray

int GRBsetstrattrarray (GRBmodel *model,
const char *attrname,
int start,
int len,
char **values)

101

Set the values of a string-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a string-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

start: The index of the first entry in the array to set.
len: The number of array entries to set.
values: A pointer to the desired new values for the specified sub-array of the attribute.
Note that the values array must be as long as the sub-array to be changed.

Example usage:

char **varnames[NUMVARS];
error = GRBsetstrattrarray(model, "VarName", 0, NUMVARS, varnames);

GRBgetstrattrlist

int GRBgetstrattrlist (GRBmodel *model,
const char *attrname,
int len,
int *ind,
char **values)

Query the values of a string-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a string-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

len: The number of attribute elements to retrieve.
ind: The indices of the desired attribute elements.
values: A pointer to the location where the requested attribute elements should be returned.
Note that the result array must be as long as the requested index list.

Important notes:
Note that all interface routines that return string-valued attributes are returning pointers into

internal Gurobi data structures. The user should copy the contents of the pointer to a different
data structure before the next call to a Gurobi library routine. The user should also be careful to
never modify the data pointed to by the returned character pointer.

Example usage:

102

int desired[] = {0, 2, 4, 6};
char **varnames[4];
error = GRBgetstrattrlist(model, "VarName", 4, desired, varnames);

GRBsetstrattrlist

int GRBsetstrattrlist (GRBmodel *model,
const char *attrname,
int len,
int *ind,
char **values)

Set the values of a string-valued array attribute.
Return value:

A non-zero return value indicates that a problem occurred while setting the attribute. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: A loaded optimization model, typically created by routine GRBnewmodel or GRB-
readmodel.

attrname: The name of a string-valued array attribute. Available attributes are listed and
described in the Attributes section of this document.

len: The number of array entries to set.
ind: The indices of the array attribute elements that will be set.
values: A pointer to the desired new values for the specified elements of the attribute. Note
that the values array must be as long as the list of indices.

Example usage:

int chage[] = {0, 1, 3};
char **varnames[] = {"Var0", "Var1", "Var3"};
error = GRBsetstrattrlist(model, "VarName", 3, change, varnames);

GRBgetbatchattrinfo

int GRBgetbatchattrinfo (GRBbatch *batch,
const char *attrname,
int *datatypeP,
int *settableP)

Obtain information about a Batch attribute.
Return value:

A non-zero return value indicates that a problem occurred while obtaining information about
a batch attribute. Refer to the Error Code table for a list of possible return values. Details
on the error can be obtained by calling GRBgeterrormsg.

Arguments:
batch: A batch request handle, typically created by routine GRBgetbatch.

103

attrname: The name of a batch attribute. Available attributes are listed and described in
the Attributes section of this document.

datatypeP: On completion, the integer pointed to by this argument will indicate the data
type of the attribute. Possible types are char (0), int (1), double (2), or string(3). This
argument can be NULL.

settableP: On completion, the integer pointed to by this argument will indicate whether
the attribute can be set (1) or not (0). This argument can be NULL.

Example usage:

int datatype, settable;
error = GRBgetbatchattrinfo(batch, "BatchID", &datatype, &settable);

104

2.7 Parameter Management and Tuning
GRBtunemodel

int GRBtunemodel (GRBmodel *model)

Perform an automated search for parameter settings that improve performance on a model.
Upon completion, this routine stores the best parameter sets it found. The number of stored
parameter sets can be determined by querying the value of the TuneResultCount attribute. The
actual settings can be retrieved using GRBgettuneresult.

Please refer to the parameter tuning section for details on the tuning tool.
Return value:

A non-zero return value indicates that a problem occurred while tuning the model. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained
by calling GRBgeterrormsg.

Arguments:
model: The model to be tuned.

Example usage:

error = GRBtunemodel(model);
if (error) goto QUIT;

error = GRBgetintattr(model, "TuneResultCount", &nresults);
if (error) goto QUIT;

GRBgettuneresult

int GRBgettuneresult (GRBmodel *model,
int n)

Use this routine to retrieve the results of a previous GRBtunemodel call. Calling this routine
with argument n causes tuned parameter set n to be copied into the model. Parameter sets are
stored in order of decreasing quality, with parameter set 0 being the best. The number of available
sets is stored in attribute TuneResultCount.

Once you have retrieved a tuning result, you can call GRBoptimize to use these parameter
settings to optimize the model, or GRBwrite to write the changed parameters to a .prm file.

Please refer to the parameter tuning section for details on the tuning tool.
Return value:

A non-zero return value indicates that a problem occurred while retrieving a tuning result.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: A model that has previously been used as the argument of GRBtunemodel.
n: The index of the tuning result to retrieve. The best result is available as index 0. The
number of stored results is available in attribute TuneResultCount.

Example usage:

105

error = GRBtunemodel(model);
if (error) goto QUIT;

error = GRBgetintattr(model, "TuneResultCount", &nresults);
if (error) goto QUIT;

if (nresults > 0) {
error = GRBgettuneresult(model, 0);
if (error) goto QUIT;

}

GRBgetdblparam

int GRBgetdblparam (GRBenv *env,
const char *paramname,
double *valueP)

Retrieve the value of a double-valued parameter.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being queried.
paramname: The name of the parameter. Please consult the parameter section for a
complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

valueP: The location in which the current value of the requested parameter should be placed.
Example usage:

double cutoff;
error = GRBgetdblparam(GRBgetenv(model), "Cutoff", &cutoff);

GRBgetintparam

int GRBgetintparam (GRBenv *env,
const char *paramname,
int *valueP)

Retrieve the value of an integer-valued parameter.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being queried.

106

paramname: The name of the parameter. Please consult the parameter section for a
complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

valueP: The location in which the current value of the requested parameter should be placed.
Example usage:

int limit;
error = GRBgetintparam(GRBgetenv(model), "SolutionLimit", &limit);

GRBgetstrparam

int GRBgetstrparam (GRBenv *env,
const char *paramname,
char *value)

Retrieve the value of a string-valued parameter.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being queried.
paramname: The name of the parameter. Please consult the parameter section for a
complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

value: The location in which the current value of the requested parameter should be placed.
Example usage:

char logfilename[GRB_MAX_STRLEN];
error = GRBgetstrparam(GRBgetenv(model), "LogFile", logfilename);

GRBsetdblparam

int GRBsetdblparam (GRBenv *env,
const char *paramname,
double newvalue)

Modify the value of a double-valued parameter.
Return value:

A non-zero return value indicates that a problem occurred while modifying the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being modified.
paramname: The name of the parameter. Please consult the parameter section for a
complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

newvalue: The desired new value of the parameter.

107

Important note:
Note that a model gets its own copy of the environment when it is created. Changes to the

original environment have no effect on the copy. Use GRBgetenv to retrieve the environment
associated with a model if you would like a parameter change to affect that model.

Example usage:
error = GRBsetdblparam(GRBgetenv(model), "Cutoff", 100.0);

GRBsetintparam

int GRBsetintparam (GRBenv *env,
const char *paramname,
int newvalue)

Modify the value of an integer-valued parameter.
Return value:

A non-zero return value indicates that a problem occurred while modifying the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being modified.
paramname: The name of the parameter. Please consult the parameter section for a
complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

newvalue: The desired new value of the parameter.
Important note:
Note that a model gets its own copy of the environment when it is created. Changes to the

original environment have no effect on the copy. Use GRBgetenv to retrieve the environment
associated with a model if you would like a parameter change to affect that model.

Example usage:
error = GRBsetintparam(GRBgetenv(model), "SolutionLimit", 5);

GRBsetstrparam

int GRBsetstrparam (GRBenv *env,
const char *paramname,
const char *newvalue)

Modify the value of a string-valued parameter.
Return value:

A non-zero return value indicates that a problem occurred while modifying the parameter.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter value is being modified.
paramname: The name of the parameter. Please consult the parameter section for a
complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

108

newvalue: The desired new value of the parameter.
Important note:
Note that a model gets its own copy of the environment when it is created. Changes to the

original environment have no effect on the copy. Use GRBgetenv to retrieve the environment
associated with a model if you would like a parameter change to affect that model.

Example usage:

error = GRBsetstrparam(GRBgetenv(model), "LogFile", "/tmp/new.log");

GRBgetdblparaminfo

int GRBgetdblparaminfo (GRBenv *env,
const char *paramname,
double *valueP,
double *minP,
double *maxP,
double *defaultP)

Retrieve information about a double-valued parameter. Specifically, retrieve the current value
of the parameter, the minimum and maximum allowed values, and the default value.

Return value:
A non-zero return value indicates that a problem occurred while retrieving parameter in-
formation. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter information is being queried.
paramname: The name of the parameter. Please consult the parameter section for a
complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

valueP (optional): The location in which the current value of the specified parameter
should be placed.

minP (optional): The location in which the minimum allowed value of the specified pa-
rameter should be placed.

maxP (optional): The location in which the maximum allowed value of the specified pa-
rameter should be placed.

defaultP (optional): The location in which the default value of the specified parameter
should be placed.

Example usage:

error = GRBgetdblparaminfo(GRBgetenv(model), "MIPGap", ¤tGap,
&minAllowedGap, NULL, &defaultGap);

109

GRBgetintparaminfo

int GRBgetintparaminfo (GRBenv *env,
const char *paramname,
int *valueP,
int *minP,
int *maxP,
int *defaultP)

Retrieve information about an int-valued parameter. Specifically, retrieve the current value of
the parameter, the minimum and maximum allowed values, and the default value.

Return value:
A non-zero return value indicates that a problem occurred while retrieving parameter in-
formation. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter information is being queried.
paramname: The name of the parameter. Please consult the parameter section for a
complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

valueP (optional): The location in which the current value of the specified parameter
should be placed.

minP (optional): The location in which the minimum allowed value of the specified pa-
rameter should be placed.

maxP (optional): The location in which the maximum allowed value of the specified pa-
rameter should be placed.

defaultP (optional): The location in which the default value of the specified parameter
should be placed.

Example usage:

error = GRBgetintparaminfo(GRBgetenv(model), "SolutionLimit", ¤t,
&minAllowedLimit, NULL, &defaultLimit);

GRBgetstrparaminfo

int GRBgetstrparaminfo (GRBenv *env,
const char *paramname,
char *value,
char *default)

Retrieve information about a string-valued parameter. Specifically, retrieve the current and
default values of the parameter.

Return value:
A non-zero return value indicates that a problem occurred while retrieving parameter in-
formation. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter information is being queried.

110

paramname: The name of the parameter. Please consult the parameter section for a
complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

value (optional): The location in which the current value of the specified parameter
should be placed.

default (optional): The location in which the default value of the specified parameter
should be placed.

Example usage:

char defaultval[GRB_MAX_STRLEN];
char currentval[GRB_MAX_STRLEN];
error = GRBgetstrparaminfo(GRBgetenv(model), "LogFile", currentval,

defaultval);

GRBreadparams

int GRBreadparams (GRBenv *env,
const char *filename)

Import a set of parameter modifications from a file.
Please consult the parameter section for a complete list of Gurobi parameters, including de-

scriptions of their purposes and their minimum, maximum, and default values.
Return value:

A non-zero return value indicates that a problem occurred while reading the parameter file.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment into which the parameter changes should be imported.
filename: The path to the file to be read. The suffix on a parameter file should be .prm,
optionally followed by .zip, .gz, .bz2, or .7z.

Example usage:

error = GRBreadparams(env, "/tmp/model.prm.bz2");

GRBwriteparams

int GRBwriteparams (GRBenv *env,
const char *filename)

Write the set of changed parameter values to a file.
Please consult the parameter section for a complete list of Gurobi parameters, including de-

scriptions of their purposes and their minimum, maximum, and default values.
Return value:

A non-zero return value indicates that a problem occurred while writing the parameter file.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment whose parameter changes are being written.

111

filename: The path to the file to be written. The suffix on a parameter file should be .prm,
optionally followed by .gz, .bz2, or .7z.

Example usage:

error = GRBwriteparams(env, "/tmp/model.prm");

112

2.8 Monitoring Progress - Logging and Callbacks
GRBmsg

void GRBmsg (GRBenv *env,
const char *message)

Insert a message into the Gurobi log file.
Arguments:

env: The environment whose log file should receive the message.
message: The message to be appended to the log.

Example usage:
error = GRBmsg(env, "Add this message to the log");

GRBsetcallbackfunc

int GRBsetcallbackfunc (GRBmodel *model,
int (*cb)(GRBmodel *model, void *cbdata, int

where, void *usrdata),
void *usrdata)

Set up a user callback function. Note that a model can only have a single callback method, so
this call will replace an existing callback. To disable a previously set callback, call this function
with a cb argument of NULL.

When solving a model using multiple threads, the user callback is only ever called from a single
thread, so you don’t need to worry about the thread-safety of your callback.

Note that changing parameters from within a callback is not supported, doing so may lead to
undefined behavior.

Return value:
A non-zero return value indicates that a problem occurred while setting the user callback.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model in which the callback should be installed.
cb: A function pointer to the user callback function. The callback will be called regularly
from the Gurobi optimizer. The where argument to the callback function will indicate
where in the optimization process the callback was invoked. Possible values are described
in the Callback Codes section. The user callback can then call a number of routines
to retrieve additional details about the state of the optimization (e.g., GRBcbget), or
to inject new information (e.g., GRBcbcut, GRBcbsolution). The user callback function
should return 0 if no error was encountered, or it can return one of the Gurobi Error Codes
if the user callback would like the optimization to stop and return an error result.

usrdata: An optional pointer to user data that will be passed back to the user callback
function each time it is invoked (in the usrdata argument).

Example usage:
int mycallback(GRBmodel *model, void *cbdata, int where, void *usrdata);
error = GRBsetcallbackfunc(model, mycallback, NULL);

113

GRBgetcallbackfunc

int GRBgetcallbackfunc (GRBmodel *model,
int (**cb)(GRBmodel *model, void *cbdata,

int where, void *usrdata))

Retrieve the current user callback function.
Return value:

A non-zero return value indicates that a problem occurred while retrieving the user callback.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model in which the callback should be installed.
cb: A function pointer to the user callback function.

Example usage:

int (*mycallback)(GRBmodel *model, void *cbdata, int where, void *usrdata);
error = GRBgetcallbackfunc(model, &mycallback);

GRBcbget

int GRBcbget (void *cbdata,
int where,
int what,
void *resultP)

Retrieve additional information about the progress of the optimization. Note that this routine
can only be called from within a user callback function.

Return value:
A non-zero return value indicates that a problem occurred while retrieving the requested
data. Refer to the Error Code table for a list of possible return values. Details on the error
can be obtained by calling GRBgeterrormsg.

Arguments:
cbdata: The cbdata argument that was passed into the user callback by the Gurobi opti-
mizer. This argument must be passed unmodified from the user callback to GRBcbget().

where: The where argument that was passed into the user callback by the Gurobi optimizer.
This argument must be passed unmodified from the user callback to GRBcbget().

what: The data requested by the user callback. Valid values are described in the Callback
Codes section.

resultP: The location in which the requested data should be placed.
Example usage:

if (where == GRB_CB_MIP) {
double nodecount;
error = GRBcbget(cbdata, where, GRB_CB_MIP_NODECNT, (void *) &nodecount);
if (error) return 0;
printf("MIP node count is %d\n", nodecount);

}

114

GRBversion

void GRBversion (int *majorP,
int *minorP,
int *technicalP)

Return the Gurobi library version number (major, minor, and technical).
Arguments:

majorP: The location in which the major version number should be placed. May be NULL.
minorP: The location in which the minor version number should be placed. May be NULL.
technicalP: The location in which the technical version number should be placed. May be
NULL.

Example usage:

int major, minor, technical;
GRBversion(&major, &minor, &technical);
printf("Gurobi library version %d.%d.%d\n", major, minor, technical);

115

2.9 Modifying Solver Behavior - Callbacks

GRBcbcut

int GRBcbcut (void *cbdata,
int cutlen,
const int *cutind,
const double *cutval,
char cutsense,
double cutrhs)

Add a new cutting plane to the MIP model from within a user callback routine. Note that this
routine can only be called when the where value on the callback routine is GRB_CB_MIPNODE (see
the Callback Codes section for more information).

Cutting planes can be added at any node of the branch-and-cut tree. Note that cuts should be
added sparingly, since they increase the size of the relaxation model that is solved at each node
and can significantly degrade node processing speed.

Cutting planes are typically used to cut off the current relaxation solution. To retrieve the
relaxation solution at the current node, call GRBcbget with what = GRB_CB_MIPNODE_REL.

You should consider setting parameter PreCrush to value 1 when adding your own cuts. This
setting shuts off a few presolve reductions that can sometimes prevent your cut from being applied
to the presolved model (which would result in your cut being silently ignored).

One very important note: you should only add cuts that are implied by the constraints in your
model. If you cut off an integer solution that is feasible according to the original model constraints,
you are likely to obtain an incorrect solution to your MIP problem.

Return value:
A non-zero return value indicates that a problem occurred while adding the cut. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained
by calling GRBgeterrormsg.

Arguments:
cbdata: The cbdata argument that was passed into the user callback by the Gurobi opti-
mizer. This argument must be passed unmodified from the user callback to GRBcbcut().

cutlen: The number of non-zero coefficients in the new cutting plane.
cutind: Variable indices for non-zero values in the new cutting plane.
cutval: Numerical values for non-zero values in the new cutting plane.
cutsense: Sense for the new cutting plane. Options are GRB_LESS_EQUAL, GRB_EQUAL, or
GRB_GREATER_EQUAL.

cutrhs: Right-hand side value for the new cutting plane.
Example usage:

if (where == GRB_CB_MIPNODE) {
int cutind[] = {0, 1};
double cutval[] = {1.0, 1.0};
error = GRBcbcut(cbdata, 2, cutind, cutval, GRB_LESS_EQUAL, 1.0);
if (error) return 0;

}

116

GRBcblazy

int GRBcblazy (void *cbdata,
int lazylen,
const int *lazyind,
const double *lazyval,
char lazysense,
double lazyrhs)

Add a new lazy constraint to the MIP model from within a user callback routine. Note that this
routine can only be called when the where value on the callback routine is either GRB_CB_MIPNODE
or GRB_CB_MIPSOL (see the Callback Codes section for more information).

Lazy constraints are typically used when the full set of constraints for a MIP model is too large
to represent explicitly. By only including the constraints that are actually violated by solutions
found during the branch-and-cut search, it is sometimes possible to find a proven optimal solution
while only adding a fraction of the full set of constraints.

You would typically add a lazy constraint by querying the current node solution (by calling
GRBcbget from a GRB_CB_MIPSOL or GRB_CB_MIPNODE callback, using what=GRB_CB_MIPSOL_SOL
or what=GRB_CB_MIPNODE_REL), and then calling GRBcblazy() to add a constraint that cuts off the
solution. Gurobi guarantees that you will have the opportunity to cut off any solutions that would
otherwise be considered feasible.

Your callback should be prepared to cut off solutions that violate any of your lazy constraints,
including those that have already been added. Node solutions will usually respect previously added
lazy constraints, but not always.

Note that you must set the LazyConstraints parameter if you want to use lazy constraints.
Return value:

A non-zero return value indicates that a problem occurred while adding the lazy constraint.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
cbdata: The cbdata argument that was passed into the user callback by the Gurobi opti-
mizer. This argument must be passed unmodified from the user callback to GRBcblazy().

lazylen: The number of non-zero coefficients in the new lazy constraint.
lazyind: Variable indices for non-zero values in the new lazy constraint.
lazyval: Numerical values for non-zero values in the new lazy constraint.
lazysense: Sense for the new lazy constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL,
or GRB_GREATER_EQUAL.

lazyrhs: Right-hand side value for the new lazy constraint.
Example usage:

if (where == GRB_CB_MIPSOL) {
int lazyind[] = {0, 1};
double lazyval[] = {1.0, 1.0};
error = GRBcblazy(cbdata, 2, lazyind, lazyval, GRB_LESS_EQUAL, 1.0);
if (error) return 0;

}

117

GRBcbsolution

int GRBcbsolution (void *cbdata,
const double *solution,
double *objP)

Provide a new feasible solution for a MIP model from within a user callback routine. Note that
this routine can only be called when the where value on the callback routine is GRB_CB_MIPNODE
(see the Callback Codes section for more information).

Heuristics solutions are typically built from the current relaxation solution. To retrieve the
relaxation solution at the current node, call GRBcbget with what = GRB_CB_MIPNODE_REL.

When providing a solution, you can specify values for any subset of the variables in the model.
To leave a variable value unspecified, set the variable to GRB_UNDEFINED in the solution vector.
The Gurobi MIP solver will attempt to extend the specified partial solution to a complete solution.

Return value:
A non-zero return value indicates that a problem occurred while adding the new solution.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
cbdata: The cbdata argument that was passed into the user callback by the Gurobi opti-
mizer. This argument must be passed unmodified from the user callback to GRBcbsolution().

solution: The solution vector. You must provide one entry for each variable in the model.
Note that you can leave an entry unspecified by setting it to GRB_UNDEFINED. The Gurobi
optimizer will attempt to find appropriate values for the unspecified variables.

objP: Objective value for solution that results from this call. Returns GRB_INFINITY if no
solution is found.

Example usage:

if (where == GRB_CB_MIPNODE) {
error = GRBcbsolution(cbdata, solution, &obj);
if (error) return 0;

}

GRBcbstoponemultiobj

int GRBcbstoponemultiobj (GRBmodel *model,
void* cbdata,
int objnum)

Interrupt the optimization process of one of the optimization steps in a multi-objective MIP
problem without stopping the hierarchical optimization process. Note that this routine can only
be called for multi-objective MIP models and when the where value on the callback routine is not
equal to GRB_CB_MULTIOBJ (see the Callback Codes section for more information).

You would typically stop a multi-objective optimization step by querying the last finished num-
ber of multi-objectives steps, and using that number to stop the current step and move on to the
next hierarchical objective (if any) as shown in the following example:

Example usage:

118

#include <time.h>

typedef struct {
int objcnt;
time_t starttime;

} usrdata_t;

int mycallback(GRBmodel *model,
void *cbdata,
int where,
void *usrdata)

{
int error = 0;
usrdata_t *ud = (usrdata_t*)usrdata;

if (where == GRB_CB_MULTIOBJ) {
/* get current objective number */
error = GRBcbget(cbdata, where, MULTIOBJ_OBJCNT, (void*)&ud->objcnt);
if (error) goto QUIT;

/* reset start time to current time */
ud->starttime = time();

} else if (time() - ud->starttime > BIG ||
/* takes too long or good enough */) {

/* stop only this optimization step */
error = GRBcbstoponemultiobj(model, cbdata, ud->objcnt);
if (error) goto QUIT;

}

QUIT:
return error;

}

You should refer to the section on Multiple Objectives for information on how to specify multiple
objective functions and control the trade-off between them.

Return value:
A non-zero return value indicates that a problem occurred while stopping the multi-objective
step specified by objcnt. Refer to the Error Code table for a list of possible return values.
Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model argument that was passed into the user callback by the Gurobi optimizer.
This argument must be passed unmodified from the user callback to GRBcbstoponemultiobj().

cbdata: The cbdata argument that was passed into the user callback by the Gurobi opti-
mizer. This argument must be passed unmodified from the user callback to GRBcbstoponemultiobj().

119

objnum: The number of the multi-objective optimization step to interrupt. For processes
running locally, this argument can have the special value -1, meaning to stop the current
step.

GRBterminate

void GRBterminate (GRBmodel *model)

Generate a request to terminate the current optimization. This routine can be called at any
time during an optimization (from a callback, from another thread, from an interrupt handler,
etc.). Note that, in general, the request won’t be acted upon immediately.

When the optimization stops, the Status attribute will be equal to GRB_INTERRUPTED.
Arguments:

model: The model to terminate.
Example usage:

if (time_to_quit)
GRBterminate(model);

120

2.10 Batch Requests
GRBabortbatch

int GRBabortbatch (GRBbatch *batch)

This function instructs the Cluster Manager to abort the processing of this batch request,
changing its status to ABORTED. Please refer to the Batch Status Codes section for further details.

Return value:
A non-zero return value indicates that a problem occurred while aborting the batch request.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
batch: The batch that will be aborted.

Example usage:

/* request to abort the batch */
error = GRBabortbatch (batch);
if (error) goto QUIT;

GRBdiscardbatch

int GRBdiscardbatch (GRBbatch *batch)

This function instructs the Cluster Manager to remove all information related to the batch
request in question, including the stored solution if available. Further queries for the associated
batch request will fail with error code GRB_ERROR_DATA_NOT_AVAILABLE. Use this function with
care, as the removed information can not be recovered later on.

Return value:
A non-zero return value indicates that a problem occurred while discarding the batch. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
batch: The batch that will be discarded.

Example usage:

/* discard the batch object in the manager */
error = GRBdiscardbatch (batch);
if (error) goto QUIT;

GRBfreebatch

int GRBfreebatch (GRBbatch *batch)

Free a batch structure and release the associated memory.
Return value:

121

A non-zero return value indicates that a problem occurred while freeing the batch. Refer to
the Error Code table for a list of possible return values. Details on the error can be obtained
by calling GRBgeterrormsg.

Arguments:
batch: The batch structure to be freed.

Example usage:

GRBfreebatch (batch);

GRBgetbatch

int GRBgetbatch (GRBenv *env,
const char *BatchID,
GRBbatch **batchP)

Given a BatchID, as returned by GRBoptimizebatch, and a Gurobi environment that can
connect to the appropriate Cluster Manager (i.e., one where parameters CSManager, UserName,
and ServerPassword have been set appropriately), this function returns a GRBbatch structure.
With it, you can query the current status of the associated batch request and, once the batch
request has been processed, you can query its solution. Please refer to the Batch Optimization
section for details and examples.

Return value:
A non-zero return value indicates that a problem occurred while creating a GRBbatch struc-
ture. Refer to the Error Code table for a list of possible return values. Details on the error
can be obtained by calling GRBgeterrormsg.

Arguments:
env: The environment in which the new batch structure should be created.
BatchID: ID of the batch you want to access.
batchP: The location in which the pointer to the batch structure should be placed.

Example usage:

/* create batch - object */
error = GRBgetbatch (env , BatchID , &batch);
if (error) goto QUIT;

GRBgetbatchenv

GRBenv * GRBgetbatchenv (GRBbatch *batch)

Retrieve the environment associated with a batch.
Return value:

The environment associated with the batch. A NULL return value indicates that there was
a problem retrieving the environment.

Arguments:
batch: The batch from which the environment should be retrieved.

Example usage:

GRBenv *env = GRBgetbatchenv(batch);

122

GRBgetbatchintattr

int GRBgetbatchintattr (GRBbatch *batch,
const char *attrname,
int *valueP)

Query the value of an integer-valued batch attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
batch: A batch structure, typically created by routine GRBgetbatch.
attrname: The name of an integer-valued batch attribute. Available attributes are listed
and described in the Attributes section of this document.

valueP: The location in which the current value of the requested attribute should be placed.
Example usage:

/* query the last error code */
error = GRBgetbatchintattr (batch , " BatchErrorCode ", & errorCode);
if (error || ! errorCode) goto QUIT;

Important notes:
Note that all Batch attributes are cached locally, and are only updated when you create a

client-side batch object or when you explicitly update this cache (by calling the appropriate update
function - GRBupdatebatch for C, update for Python, etc.).

GRBgetbatchjsonsolution

int GRBgetbatchjsonsolution (GRBbatch *batch,
char** jsonsolP)

This function retrieves the solution of a completed batch request from a Cluster Manager. The
solution is returned as a JSON solution string. For this call to succeed, the status of the batch
request must be COMPLETED. Please refer to the Batch Status Codes section for further details.

Return value:
A non-zero return value indicates that a problem occurred while querying the batch solution.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
batch: The batch to query.
jsonsolP: The location in which the pointer to the newly created JSON string should be
placed.

Important note:
On Windows, the string returned in buffP is allocated in a different heap from the calling

program. You must call GRBfree to free it.
Example usage:

123

/* print JSON solution into string */
error = GRBgetbatchjsonsolution (batch , & jsonsol);
if (error) goto QUIT;
printf ("JSON solution : %s\n", jsonsol);

GRBgetbatchstrattr

int GRBgetbatchstrattr (GRBbatch *batch,
const char *attrname,
char **valueP)

Query the value of a string-valued batch attribute.
Return value:

A non-zero return value indicates that a problem occurred while querying the attribute.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
batch: A batch structure, typically created by routine GRBgetbatch.
attrname: The name of a string-valued batch attribute. Available attributes are listed and
described in the Attributes section of this document.

valueP: The location in which the current value of the requested attribute should be placed.
Example usage:

/* query the last error message */
error = GRBgetbatchstrattr (batch , " BatchErrorMessage ", & errorMsg);
if (error) goto QUIT;

Important notes:
Note that all interface routines that return string-valued attributes are returning pointers into

internal Gurobi data structures. The user should copy the contents of the pointer to a different
data structure before the next call to a Gurobi library routine. The user should also be careful to
never modify the data pointed to by the returned character pointer.

Note that all Batch attributes are cached locally, and are only updated when you create a
client-side batch object or when you explicitly update this cache (by calling the appropriate update
function - GRBupdatebatch for C, update for Python, etc.).

GRBoptimizebatch

int GRBoptimizebatch (GRBmodel *model,
char *BatchID)

Submit a new batch request to the Cluster Manager. Returns the BatchID (a string), which
uniquely identifies the job in the Cluster Manager and can be used to query the status of this
request (from this program or from any other). Once the request has completed, the BatchID can
also be used to retrieve the associated solution. To submit a batch request, you must tag at least
one element of the model by setting one of the VTag, CTag or QCTag attributes. For more details
on batch optimization, please refer to the Batch Optimization section.

Note that this routine will process all pending model modifications.

124

Return value:
A non-zero return value indicates that a problem occurred while submit a batch request.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
model: The model to optimize in batch mode. Note that this routine only reports whether
the batch request ran into an error.

BatchID: On success, the location in which the BatchID of the newly created batch request
should be stored. The pointer must point to a string of length GRB_MAX_STRLEN+1 or more.

Example usage:
/* submit batch request to the Manager */
error = GRBoptimizebatch (model , BatchID);
if (error) goto QUIT;

GRBretrybatch

int GRBretrybatch (GRBbatch *batch)

This function instructs the Cluster Manager to retry optimization of a failed or aborted batch
request, changing its status to SUBMITTED. Please refer to the Batch Status Codes section for further
details.

Return value:
A non-zero return value indicates that a problem occurred while retrying the batch. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
batch: The batch to retry.

Example usage:
/* retry the batch request */
error = GRBretrybatch (batch);
if (error) goto QUIT;

GRBupdatebatch

int GRBupdatebatch (GRBbatch *batch)

All Batch attribute values are cached locally, so queries return the value received during the last
communication with the Cluster Manager. This function refreshes the values of all attributes with
the values currently available in the Cluster Manager (which involves network communication).

Return value:
A non-zero return value indicates that a problem occurred while updating the batch request.
Refer to the Error Code table for a list of possible return values. Details on the error can
be obtained by calling GRBgeterrormsg.

Arguments:
batch: The batch that will be updated.

Example usage:

125

/* update local attributes */
error = GRBupdatebatch (batch);
if (error) goto QUIT;

GRBwritebatchjsonsolution

int GRBwritebatchjsonsolution (GRBbatch *batch,
const char* filename)

This function returns the stored solution of a completed batch request from a Cluster Manager.
The solution is returned in a gzip-compressed JSON file. The file name you provide must end with
a .json.gz extension. The JSON format is described in the JSON solution format section. Note
that for this call to succeed, the status of the batch request must be COMPLETED. Please refer to the
Batch Status Codes section for further details.

Return value:
A non-zero return value indicates that a problem occurred while writing the JSON solution
string into the given filename. Refer to the Error Code table for a list of possible return
values. Details on the error can be obtained by calling GRBgeterrormsg.

Arguments:
batch: The batch request from qhere to query its solution.
filename: The name of the file in which to store the JSON solution. It must be a file name
ending with the .json.gz extension.

Example usage:

/* save solution into a file */
error = GRBwritebatchjsonsolution (batch , "batch -sol.json.gz");
if (error) goto QUIT;

126

2.11 Error Handling
GRBgeterrormsg

char * GRBgeterrormsg (GRBenv *env)

Retrieve the error message associated with the most recent error that occurred in an environ-
ment.

Return value:
A string containing the error message.

Arguments:
env: The environment in which the error occurred.

Example usage:

error = GRBgetintattr(model, "DOES_NOT_EXIST", &attr);
if (error)

printf("%s\n", GRBgeterrormsg(env));

127

2.12 Advanced simplex routines
This section describes a set of advanced basis routines. These routines allow you to compute
solutions to various linear systems involving the simplex basis matrix. Note that these should only
be used by advanced users. We provide no technical support for these routines.

Before describing the routines, we should first describe the GRBsvec data structure that is used
to input or return sparse vectors:

typedef struct SVector {
int len;
int *ind;
double *val;
} GRBsvec;

The len field gives the number of non-zero values in the vector. The ind and val fields
give the index and value for each non-zero, respectively. Indices are zero-based. To give an ex-
ample, the sparse vector [0, 2.0, 0, 1.0] would be represented as len=2, ind = [1, 3], and
val = [2.0, 1.0].

The user is responsible for allocating and freeing the ind and val fields. The length of the
result vector for these routines is not known in advance, so the user must allocate these arrays to
hold the longest possible result (whose length is noted in the documentation for each routine).

GRBFSolve

int GRBFSolve (GRBmodel *model,
GRBsvec *b,
GRBsvec *x)

Computes the solution to the linear system Bx = b, where B is the current simplex basis matrix,
b is an input vector, and x is the result vector.

Return value:
A non-zero return value indicates that a problem occurred while computing the desired
vector. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model. Note that the model must have a current optimal basis, as computed
by GRBoptimize.

b: The sparse right-hand side vector. It should contain one entry for each non-zero value in
the input.

x: The sparse result vector. The user is responsible for allocating the ind and val fields to
be large enough to hold as many as one non-zero entry per constraint in the model.

GRBBSolve

int GRBBSolve (GRBmodel *model,
GRBsvec *b,
GRBsvec *x)

Computes the solution to the linear system BTx = b, where BT is the transpose of the current
simplex basis matrix, b is an input vector, and x is the result vector.

128

Return value:
A non-zero return value indicates that a problem occurred while computing the desired
vector. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model. Note that the model must have a current optimal basis, as computed
by GRBoptimize.

b: The sparse right-hand side vector. It should contain one entry for each non-zero value in
the input.

x: The sparse result vector. The user is responsible for allocating the ind and val fields to
be large enough to hold as many as one non-zero entry per constraint in the model.

GRBBinvColj

int GRBBinvColj (GRBmodel *model,
int j,
GRBsvec *x)

Computes the solution to the linear system Bx = Aj , where B is the current simplex basis
matrix and Aj is the column of the constraint matrix A associated with variable j.

Return value:
A non-zero return value indicates that a problem occurred while computing the desired
vector. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

Arguments:
model: The model. Note that the model must have a current optimal basis, as computed
by GRBoptimize.

j: Indicates the index of the column of A to use as the right-hand side for the linear solve.
The index j must be between 0 and cols-1, where cols is the number of columns in the
model.

x: The sparse result vector. The user is responsible for allocating the ind and val fields to
be large enough to hold as many as one non-zero entry per constraint in the model.

GRBBinvRowi

int GRBBinvRowi (GRBmodel *model,
int i,
GRBsvec *x)

Computes a single tableau row. More precisely, this routine returns row i from the matrix
B−1A, where B−1 is the inverse of the basis matrix and A is the constraint matrix. Note that
the tableau will contain columns corresponding to the variables in the model, and also columns
corresponding to artificial and slack variables associated with constraints.

Return value:
A non-zero return value indicates that a problem occurred while computing the desired
vector. Refer to the Error Code table for a list of possible return values. Details on the
error can be obtained by calling GRBgeterrormsg.

129

Arguments:
model: The model. Note that the model must have a current optimal basis, as computed
by GRBoptimize.

i: The index of the desired tableau row.
x: The result vector. The result will contain one entry for each non-zero value. Note that
the result may contain values for slack variables; the slack on row i will have index cols+i,
where cols is the number of columns in the model. The user is responsible for allocating
the ind and val fields to be large enough to hold the largest possible result. For this
routine, the result could have one entry for each variable in the model, plus one entry for
each constraint.

GRBgetBasisHead

int GRBgetBasisHead (GRBmodel *model,
int *bhead)

Returns the indices of the variables that make up the current basis matrix.
Return value:

A non-zero return value indicates that a problem occurred while extracting the basis. Refer
to the Error Code table for a list of possible return values. Details on the error can be
obtained by calling GRBgeterrormsg.

Arguments:
model: The model. Note that the model must have a current optimal basis, as computed
by GRBoptimize.

bhead: The constraint matrix columns that make up the current basis. The result contains
one entry per constraint in A. If bhead[i]=j, then column i in the basis matrix B
is column j from the constraint matrix A. Note that the basis may contain slack or
artificial variables. If bhead[i] is greater than or equal to cols (the number of columns
in A), then the corresponding basis column is the artificial or slack variable from row
bhead[i]-cols.

130

C++ API Overview

This section documents the Gurobi C++ interface. This manual begins with a quick overview of
the classes exposed in the interface and the most important methods on those classes. It then
continues with a comprehensive presentation of all of the available classes and methods.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide
or the Example Tour. These documents provide concrete examples of how to use the classes and
methods described here.
Environments

The first step in using the Gurobi C++ interface is to create an environment object. Environments
are represented using the GRBEnv class. An environment acts as the container for all data associ-
ated with a set of optimization runs. You will generally only need one environment object in your
program.

For more advanced use cases, you can use an empty environment to create an uninitialized
environment and then, programmatically, set all required options for your specific requirements.
For further details see the Environment section.
Models

You can create one or more optimization models within an environment. Each model is repre-
sented as an object of class GRBModel. A model consists of a set of decision variables (objects of
class GRBVar), a linear or quadratic objective function on those variables (specified using GRB-
Model::setObjective), and a set of constraints on these variables (objects of class GRBConstr,
GRBQConstr, GRBSOS, or GRBGenConstr). Each variable has an associated lower bound, upper
bound, and type (continuous, binary, etc.). Each linear or quadratic constraint has an associated
sense (less-than-or-equal, greater-than-or-equal, or equal), and right-hand side value. Refer to this
section for more information on variables, constraints, and objectives.

Linear constraints are specified by building linear expressions (objects of class GRBLinExpr),
and then specifying relationships between these expressions (for example, requiring that one expres-
sion be equal to another). Quadratic constraints are built in a similar fashion, but using quadratic
expressions (objects of class GRBQuadExpr) instead.

An optimization model may be specified all at once, by loading the model from a file (using the
appropriate GRBModel constructor), or built incrementally, by first constructing an empty object of
class GRBModel and then subsequently calling GRBModel::addVar or GRBModel::addVars to add
additional variables, and GRBModel::addConstr, GRBModel::addQConstr, GRBModel::addSOS,
or any of the GRBModel::addGenConstrXxx methods to add constraints. Models are dynamic
entities; you can always add or remove variables or constraints.

We often refer to the class of an optimization model. A model with a linear objective function,
linear constraints, and continuous variables is a Linear Program (LP). If the objective is quadratic,
the model is a Quadratic Program (QP). If any of the constraints are quadratic, the model is
a Quadratically-Constrained Program (QCP). We will sometimes refer to a few special cases of
QCP: QCPs with convex constraints, QCPs with non-convex constraints, bilinear programs, and

131

https://www.gurobi.com/documentation/9.1/quickstart_windows/index.html
https://www.gurobi.com/documentation/9.1/examples/index.html

Second-Order Cone Programs (SOCP). If the model contains any integer variables, semi-continuous
variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the
model is a Mixed Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, in-
cluding Mixed Integer Linear Programs (MILP), Mixed Integer Quadratic Programs (MIQP), Mixed
Integer Quadratically-Constrained Programs (MIQCP), and Mixed Integer Second-Order Cone Pro-
grams (MISOCP). The Gurobi Optimizer handles all of these model classes.
Solving a Model

Once you have built a model, you can call GRBModel::optimize to compute a solution. By default,
optimize will use the concurrent optimizer to solve LP models, the barrier algorithm to solve QP
models with convex objectives and QCP models with convex constraints, and the branch-and-cut
algorithm otherwise. The solution is stored in a set of attributes of the model. These attributes
can be queried using a set of attribute query methods on the GRBModel, GRBVar, GRBConstr,
GRBQConstr, GRBSOS, and GRBGenConstr classes.

The Gurobi algorithms keep careful track of the state of the model, so calls to GRBModel::optimize
will only perform further optimization if relevant data has changed since the model was last op-
timized. If you would like to discard previously computed solution information and restart the
optimization from scratch without changing the model, you can call GRBModel::reset.

After a MIP model has been solved, you can call GRBModel::fixedModel to compute the as-
sociated fixed model. This model is identical to the original, except that the integer variables are
fixed to their values in the MIP solution. If your model contains SOS constraints, some continuous
variables that appear in these constraints may be fixed as well. In some applications, it can be
useful to compute information on this fixed model (e.g., dual variables, sensitivity information,
etc.), although you should be careful in how you interpret this information.
Multiple Solutions, Objectives, and Scenarios

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to
a single model with a single objective function. Gurobi provides the following features that allow
you to relax these assumptions:

• Solution Pool: Allows you to find more solutions.

• Multiple Scenarios: Allows you to find solutions to multiple, related models.

• Multiple Objectives: Allows you to specify multiple objective functions and control the trade-
off between them.

Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause of the
infeasibility, attempt to repair the infeasibility, or both. To obtain information that can be useful
for diagnosing the cause of an infeasibility, call GRBModel::computeIIS to compute an Irreducible
Inconsistent Subsystem (IIS). This method can be used for both continuous and MIP models, but
you should be aware that the MIP version can be quite expensive. This method populates a set of
IIS attributes.

To attempt to repair an infeasibility, call GRBModel::feasRelax to compute a feasibility relax-
ation for the model. This relaxation allows you to find a solution that minimizes the magnitude of
the constraint violation.

132

Querying and Modifying Attributes

Most of the information associated with a Gurobi model is stored in a set of attributes. Some
attributes are associated with the variables of the model, some with the constraints of the model,
and some with the model itself. To give a simple example, solving an optimization model causes
the X variable attribute to be populated. Attributes such as X that are computed by the Gurobi
optimizer cannot be modified directly by the user, while others, such as the variable lower bound
(the LB attribute) can.

Attributes are queried using GRBVar::get, GRBConstr::get, GRBQConstr::get, GRBSOS::get,
GRBGenConstr::get, or GRBModel::get, and modified using GRBVar::set, GRBConstr::set, GR-
BQConstr::set, GRBGenConstr::set, or GRBModel::set. Attributes are grouped into a set of enums
by type (GRB_CharAttr, GRB_DoubleAttr, GRB_IntAttr, GRB_StringAttr). The get() and
set() methods are overloaded, so the type of the attribute determines the type of the returned
value. Thus, constr.get(GRB.DoubleAttr.RHS) returns a double, while
constr.get(GRB.CharAttr.Sense) returns a char.

If you wish to retrieve attribute values for a set of variables or constraints, it is usually more
efficient to use the array methods on the associated GRBModel object. Method GRBModel::get
includes signatures that allow you to query or modify attribute values for arrays of variables or
constraints.

The full list of attributes can be found in the Attributes section.
Additional Model Modification Information

Most modifications to an existing model are done through the attribute interface (e.g., changes to
variable bounds, constraint right-hand sides, etc.). The main exceptions are modifications to the
constraint matrix and the objective function.

The constraint matrix can be modified in a few ways. The first is to call the chgCoeffs method
on a GRBModel object to change individual matrix coefficients. This method can be used to
modify the value of an existing non-zero, to set an existing non-zero to zero, or to create a new
non-zero. The constraint matrix is also modified when you remove a variable or constraint from the
model (through the GRBModel::remove method). The non-zero values associated with the deleted
constraint or variable are removed along with the constraint or variable itself.

The model objective function can also be modified in a few ways. The easiest is to build an
expression that captures the objective function (a GRBLinExpr or GRBQuadExpr object), and
then pass that expression to method GRBModel::setObjective. If you wish to modify the objective,
you can simply call setObjective again with a new GRBLinExpr or GRBQuadExpr object.

For linear objective functions, an alternative to setObjective is to use the Obj variable attribute
to modify individual linear objective coefficients.

If your variables have piecewise-linear objectives, you can specify them using the
GRBModel::setPWLObj method. Call this method once for each relevant variable. The Gurobi
simplex solver includes algorithmic support for convex piecewise-linear objective functions, so for
continuous models you should see a substantial performance benefit from using this feature. To
clear a previously specified piecewise-linear objective function, simply set the Obj attribute on the
corresponding variable to 0.
Lazy Updates

One important item to note about model modification in the Gurobi optimizer is that it is performed
in a lazy fashion, meaning that modifications don’t affect the model immediately. Rather, they

133

are queued and applied later. If your program simply creates a model and solves it, you will
probably never notice this behavior. However, if you ask for information about the model before
your modifications have been applied, the details of the lazy update approach may be relevant to
you.

As we just noted, model modifications (bound changes, right-hand side changes, objective
changes, etc.) are placed in a queue. These queued modifications can be applied to the model
in three different ways. The first is by an explicit call to GRBModel::update. The second is by a
call to GRBModel::optimize. The third is by a call to GRBModel::write to write out the model.
The first case gives you fine-grained control over when modifications are applied. The second
and third make the assumption that you want all pending modifications to be applied before you
optimize your model or write it to disk.

Why does the Gurobi interface behave in this manner? There are a few reasons. The first is
that this approach makes it much easier to perform multiple modifications to a model, since the
model remains unchanged between modifications. The second is that processing model modifica-
tions can be expensive, particularly in a Compute Server environment, where modifications require
communication between machines. Thus, it is useful to have visibility into exactly when these
modifications are applied. In general, if your program needs to make multiple modifications to
the model, you should aim to make them in phases, where you make a set of modifications, then
update, then make more modifications, then update again, etc. Updating after each individual
modification can be extremely expensive.

If you forget to call update, your program won’t crash. Your query will simply return the value
of the requested data from the point of the last update. If the object you tried to query didn’t
exist then, you’ll get a NOT_IN_MODEL exception instead.

The semantics of lazy updates have changed since earlier Gurobi versions. While the vast
majority of programs are unaffected by this change, you can use the UpdateMode parameter to
revert to the earlier behavior if you run into an issue.

Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of
the optimization process. Factors like feasibility and optimality tolerances, choices of algorithms,
strategies for exploring the MIP search tree, etc., can be controlled by modifying Gurobi parameters
before beginning the optimization. Parameters can be of type int, double, or string.

The simplest way to set parameters is through the GRBModel::set method on the model object.
Similarly, parameter values can be queried with GRBModel::get.

Parameters can also be set on the Gurobi environment object, using GRBEnv::set. Note that
each model gets its own copy of the environment when it is created, so parameter changes to the
original environment have no effect on existing models.

You can read a set of parameter settings from a file using GRBEnv::readParams, or write the
set of changed parameters using GRBEnv::writeParams.

We also include an automated parameter tuning tool that explores many different sets of pa-
rameter changes in order to find a set that improves performance. You can call GRBModel::tune to
invoke the tuning tool on a model. Refer to the parameter tuning tool section for more information.

The full list of Gurobi parameters can be found in the Parameters section.

134

Memory Management

Memory management must always be considered in C++ programs. In particular, the Gurobi
library and the user program share the same C++ heap, so the user must be aware of certain
aspects of how the Gurobi library uses this heap. The basic rules for managing memory when using
the Gurobi optimizer are as follows:

• As with other dynamically allocated C++ objects, GRBEnv or GRBModel objects should be
freed using the associated destructors. In other words, given a GRBModel object m, you should
call delete m when you are no longer using m.

• Objects that are associated with a model (e.g., GRBConstr, GRBQConstr, GRBSOS, GRB-
GenConstr, and GRBVar objects) are managed by the model. In particular, deleting a model
will delete all of the associated objects. Similarly, removing an object from a model (using
GRBModel::remove) will also delete the object.

• Some Gurobi methods return an array of objects or values. For example, GRBModel::addVars
returns an array of GRBVar objects. It is the user’s responsibility to free the returned array
(using delete[]). The reference manual indicates when a method returns a heap-allocated
result.

One consequence of these rules is that you must be careful not to use an object once it has been
freed. This is no doubt quite clear for environments and models, where you call the destructors
explicitly, but may be less clear for constraints and variables, which are implicitly deleted when the
associated model is deleted.
Monitoring Progress - Logging and Callbacks

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will
send output to the screen. A few simple controls are available for modifying the default logging
behavior. If you would like to direct output to a file as well as to the screen, specify the log file
name in the GRBEnv constructor. You can modify the LogFile parameter if you wish to redirect
the log to a different file after creating the environment object. The frequency of logging output can
be controlled with the DisplayInterval parameter, and logging can be turned off entirely with the
OutputFlag parameter. A detailed description of the Gurobi log file can be found in the Logging
section.

More detailed progress monitoring can be done through the GRBCallback class. The GRB-
Model::setCallback method allows you to receive a periodic callback from the Gurobi optimizer.
You do this by sub-classing the GRBCallback abstract class, and writing your own callback()
method on this class. You can call GRBCallback::getDoubleInfo, GRBCallback::getIntInfo, GRB-
Callback::getStringInfo, or GRBCallback::getSolution from within the callback to obtain additional
information about the state of the optimization.
Modifying Solver Behavior - Callbacks

Callbacks can also be used to modify the behavior of the Gurobi optimizer. The simplest control
callback is GRBCallback::abort, which asks the optimizer to terminate at the earliest convenient
point. Method GRBCallback::setSolution allows you to inject a feasible solution (or partial solution)
during the solution of a MIP model. Methods GRBCallback::addCut and GRBCallback::addLazy
allow you to add cutting planes and lazy constraints during a MIP optimization, respectively.

135

Method GRBCallback::stopOneMultiObj allows you to interrupt the optimization process of one
of the optimization steps in a multi-objective MIP problem without stopping the hierarchical opti-
mization process.
Batch Optimization

Gurobi Compute Server enables programs to offload optimization computations onto dedicated
servers. The Gurobi Cluster Manager adds a number of additional capabilities on top of this.
One important one, batch optimization, allows you to build an optimization model with your client
program, submit it to a Compute Server cluster (through the Cluster Manager), and later check
on the status of the model and retrieve its solution. You can use a Batch object to make it easier
to work with batches. For details on batches, please refer to the Batch Optimization section.
Error Handling

All of the methods in the Gurobi C++ library can throw an exception of type GRBException.
When an exception occurs, additional information on the error can be obtained by retrieving the
error code (using method GRBException::getErrorCode), or by retrieving the exception message
(using method GRBException::getMessage). The list of possible error return codes can be found
in the Error Codes section.

136

3.1 GRBEnv
Gurobi environment object. Gurobi models are always associated with an environment. You must
create an environment before can you create and populate a model. You will generally only need
a single environment object in your program.

The methods on environment objects are mainly used to manage Gurobi parameters (e.g., get,
getParamInfo, set).

GRBEnv()
Constructor for GRBEnv object. You have the option of constructing either a local environment,
which solves Gurobi models on the local machine, a client environment for a Gurobi compute server,
which will solve Gurobi models on a server machine, or an Instant Cloud environment, which will
launch a Gurobi Cloud server and solve models on that server. Choose the appropriate signature
for the type of environment you wish to launch.

GRBEnv GRBEnv ()
Create a Gurobi environment (with logging disabled). This method will also populate any

parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified in your gurobi.lic
file. This method will also check the current working directory for a file named gurobi.env, and
it will attempt to read parameter settings from this file if it exists. The file should be in PRM
format (briefly, each line should contain a parameter name, followed by the desired value for that
parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Return value:
An environment object (with no associated log file).

GRBEnv GRBEnv (bool empty)

Create an empty Gurobi environment. Use GRBEnv::start to start the environment.
If the environment is not empty, This method will also populate any parameter (ComputeServer,

TokenServer, ServerPassword, etc.) specified in your gurobi.lic file. This method will also check
the current working directory for a file named gurobi.env, and it will attempt to read parameter
settings from this file if it exists. The file should be in PRM format (briefly, each line should contain
a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Arguments:

137

empty: Indicates whether the environment should be empty. You should use empty=true if
you want to set parameters before actually starting the environment. This can be useful
if you want to connect to a Compute Server, a Token Server, the Gurobi Instant Cloud or
a Cluster Manager. See the Environment Section for more details.

Return value:
An environment object.

GRBEnv GRBEnv (const string& logFileName)

Create a Gurobi environment (with logging enabled). This method will also populate any
parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified in your gurobi.lic
file. This method will also check the current working directory for a file named gurobi.env, and
it will attempt to read parameter settings from this file if it exists. The file should be in PRM
format (briefly, each line should contain a parameter name, followed by the desired value for that
parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Arguments:
logFileName: The desired log file name.

Return value:
An environment object.

GRBEnv GRBEnv (const string& logFileName,
const string& computeServer,
const string& router,
const string& password,
const string& group,
int CStlsInsecure,
int priority,
double timeout)

Create a client Gurobi environment on a compute server. This method will also check the
current working directory for a file named gurobi.env, and it will attempt to read parameter
settings from this file if it exists. The file should be in PRM format (briefly, each line should
contain a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Arguments:
logFileName: The name of the log file for this environment. Pass an empty string for no
log file.

138

computeServer: A Compute Server. You can refer to the server using its name or its IP
address. If you are using a non-default port, the server name should be followed by the
port number (e.g., server1:61000)

router: The router for a Compute Server cluster. A router can be used to improve the
robustness of a Compute Server deployment. You should refer to the router using either
its name or its IP address. If no router is used (which is the typical case), pass an empty
string.

password: The password for gaining access to the specified Compute Server cluster. Pass
an empty string if no password is required.

group: The name of the Compute Server group.
CStlsInsecure: Indicates whether to use insecure mode in the TLS (Transport Layer Se-
curity). Set this to 0 unless your server administrator tells you otherwise.

priority: The priority of the job. Priorities must be between -100 and 100, with a default
value of 0 (by convention). Higher priority jobs are chosen from the server job queue before
lower priority jobs. Depending on the configuration of the server, a job with priority 100
runs immediately, bypassing the job queue and ignoring the job limit on the server. You
should exercise caution with priority 100 jobs, since they can severely overload a server,
which can cause jobs to fail, and in extreme cases can cause the server to crash. This
behavior is managed by the HARDJOBLIMIT, and is disabled by default. Refer to the
Gurobi Remote Services Reference Manual for more information on starting Compute
Server options.

timeout: Queue timeout (in seconds). If the job doesn’t reach the front of the queue before
the specified timeout, the call will exit with a JOB_REJECTED error. Use -1 to indicate that
the call should never timeout.

Return value:
An environment object.

GRBEnv GRBEnv (const string& logFileName,
const string& accessID,
const string& secretKey,
const string& pool,
int priority)

Create a Gurobi Instant Cloud environment. This method will also check the current working
directory for a file named gurobi.env, and it will attempt to read parameter settings from this file
if it exists. The file should be in PRM format (briefly, each line should contain a parameter name,
followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Arguments:
logfilename: The name of the log file for this environment. May be NULL (or an empty
string), in which case no log file is created.

139

https://www.gurobi.com/documentation/9.1/remoteservices/remoteservices.html

accessID: The access ID for your Gurobi Instant Cloud license. This can be retrieved from
the Gurobi Instant Cloud website. When used in combination with your secretKey, this
allows you to launch Instant Cloud instances and submit jobs to them.

secretKey: The secret key for your Gurobi Instant Cloud license. This can be retrieved
from the Gurobi Instant Cloud website. When used in combination with your accessID,
this allows you to launch Instant Cloud instances and submit jobs to them. Note that you
should keep your secret key private.

pool: The machine pool. Machine pools allow you to create fixed configurations on the
Instant Cloud website (capturing things like type of machine, geographic region, etc.),
and then launch and share machines from client programs without having to restart the
configuration information each time you launch a machine. May be NULL (or an empty
string), in which case your job will be launched in the default pool associated with your
cloud license.

priority: The priority of the job. Priorities must be between -100 and 100, with a default
value of 0 (by convention). Higher priority jobs are chosen from the server job queue
before lower priority jobs.

Return value:
An environment object.

GRBEnv::get()
Query the value of a parameter.

double get (GRB_DoubleParam param)

Query the value of a double-valued parameter.
Arguments:

param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

Return value:
The current value of the requested parameter.

int get (GRB_IntParam param)

Query the value of an int-valued parameter.
Arguments:

param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

Return value:
The current value of the requested parameter.

string get (GRB_StringParam param)

140

Query the value of a string-valued parameter.
Arguments:

param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

Return value:
The current value of the requested parameter.

GRBEnv::getErrorMsg()
Query the error message for the most recent exception associated with this environment.

const string getErrorMsg ()
Return value:

The error string.

GRBEnv::getParamInfo()
Obtain information about a parameter.

void getParamInfo (GRB_DoubleParam param,
double* valP,
double* minP,
double* maxP,
double* *defP)

Obtain detailed information about a double parameter.
Arguments:

param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

valP: The current value of the parameter.
minP: The minimum allowed value of the parameter.
maxP: The maximum allowed value of the parameter.
defP: The default value of the parameter.

void getParamInfo (GRB_IntParam param,
int* valP,
int* minP,
int* maxP,
int* defP)

Obtain detailed information about an integer parameter.
Arguments:

param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

141

valP: The current value of the parameter.
minP: The minimum allowed value of the parameter.
maxP: The maximum allowed value of the parameter.
defP: The default value of the parameter.

void getParamInfo (GRB_StringParam param,
string* valP,
string* defP)

Obtain detailed information about a string parameter.
Arguments:

param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

valP: The current value of the parameter.
defP: The default value of the parameter.

GRBEnv::message()

Write a message to the console and the log file.

void message (const string& message)

Arguments:
message: Print a message to the console and to the log file. Note that this call has no effect
unless the OutputFlag parameter is set.

GRBEnv::readParams()

Read new parameter settings from a file.
Please consult the parameter section for a complete list of Gurobi parameters, including de-

scriptions of their purposes and their minimum, maximum, and default values.

void readParams (const string& paramfile)

Arguments:
paramfile: Name of the file containing parameter settings. Parameters should be listed
one per line, with the parameter name first and the desired value second. For example:

Gurobi parameter file
Threads 1
MIPGap 0

Blank lines and lines that begin with the hash symbol are ignored.

142

GRBEnv::resetParams()

Reset all parameters to their default values.
Please consult the parameter section for a complete list of Gurobi parameters, including de-

scriptions of their purposes and their minimum, maximum, and default values.

void resetParams ()

GRBEnv::set()

Set the value of a parameter.
Important notes:
Note that a model gets its own copy of the environment when it is created. Changes to the

original environment have no effect on the copy. Use GRBModel::set to change a parameter on an
existing model.

void set (GRB_DoubleParam param,
double newvalue)

Set the value of a double-valued parameter.
Arguments:

param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

newvalue: The desired new value of the parameter.

void set (GRB_IntParam param,
int newvalue)

Set the value of an int-valued parameter.
Arguments:

param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

newvalue: The desired new value of the parameter.

void set (GRB_StringParam param,
const string& newvalue)

Set the value of a string-valued parameter.
Arguments:

param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

newvalue: The desired new value of the parameter.

143

void set (const string& param,
const string& newvalue)

Set the value of any parameter using strings alone.
Arguments:

param: The name of the parameter being modified. Please consult the parameter section
for a complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

newvalue: The desired new value of the parameter.

GRBEnv::start()
Start an empty environment. If the environment has already been started, this method will do
nothing. If the call fails, the environment will have the same state as it had before the call to this
method.

This method will also populate any parameter (ComputeServer, TokenServer, ServerPassword,
etc.) specified in your gurobi.lic file. This method will also check the current working directory
for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists.
The file should be in PRM format (briefly, each line should contain a parameter name, followed by
the desired value for that parameter). After that, it will apply all parameter changes specified by
the user prior to this call. Note that this might overwrite parameters set in the license file, or in
the gurobi.env file, if present.

After all these changes are performed, the code will actually activate the environment, and
make it ready to work with models.

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

void start ()

GRBEnv::writeParams()
Write all non-default parameter settings to a file.

Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

void writeParams (const string& paramfile)

Arguments:
paramfile: Name of the file to which non-default parameter settings should be written.
The previous contents are overwritten.

144

3.2 GRBModel
Gurobi model object. Commonly used methods include addVar (adds a new decision variable to the
model), addConstr (adds a new constraint to the model), optimize (optimizes the current model),
and get (retrieves the value of an attribute).

GRBModel()

Constructor for GRBModel. The simplest version creates an empty model. You can then call
addVar and addConstr to populate the model with variables and constraints. The more complex
constructors can read a model from a file, or make a copy of an existing model.

GRBModel GRBModel (const GRBEnv& env)

Model constructor.
Arguments:

env: Environment for new model.
Return value:

New model object. Model initially contains no variables or constraints.

GRBModel GRBModel (const GRBEnv& env,
const string& filename)

Read a model from a file. Note that the type of the file is encoded in the file name suffix.
Valid suffixes are .mps, .rew, .lp, .rlp, .ilp, or .opb. The files can be compressed, so additional
suffixes of .zip, .gz, .bz2, or .7z are accepted.

Arguments:
env: Environment for new model.
modelname: Name of the file containing the model.

Return value:
New model object.

GRBModel GRBModel (const GRBModel& model)

Create a copy of an existing model. Note that due to the lazy update approach in Gurobi, you
have to call update before copying it.

Arguments:
model: Model to copy.

Return value:
New model object. Model is a clone of the input model.

145

GRBModel::addConstr()

Add a single linear constraint to a model. Multiple signatures are available.

GRBConstr addConstr (const GRBLinExpr& lhsExpr,
char sense,
const GRBLinExpr& rhsExpr,
string name="")

Add a single linear constraint to a model.
Arguments:

lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).

rhsExpr: Right-hand side expression for new linear constraint.
name (optional): Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr (const GRBLinExpr& lhsExpr,
char sense,
GRBVar rhsVar,
string name="")

Add a single linear constraint to a model.
Arguments:

lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).

rhsVar: Right-hand side variable for new linear constraint.
name (optional): Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr (const GRBLinExpr& lhsExpr,
char sense,
double rhsVal,
string name="")

Add a single linear constraint to a model.
Arguments:

lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).

rhsVal: Right-hand side value for new linear constraint.
name (optional): Name for new constraint.

Return value:

146

New constraint object.

GRBConstr addConstr (GRBVar lhsVar,
char sense,
GRBVar rhsVar,
string name="")

Add a single linear constraint to a model.
Arguments:

lhsVar: Left-hand side variable for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).

rhsVar: Right-hand side variable for new linear constraint.
name (optional): Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr (GRBVar lhsVar,
char sense,
double rhsVal,
string name="")

Add a single linear constraint to a model.
Arguments:

lhsVar: Left-hand side variable for new linear constraint.
sense: Sense for new linear constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).

rhsVal: Right-hand side value for new linear constraint.
name (optional): Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr (GRBTempConstr& tc,
string name="")

Add a single linear constraint to a model.
Arguments:

tc: Temporary constraint object, created using an overloaded comparison operator. See
GRBTempConstr for more information.

name (optional): Name for new constraint.
Return value:

New constraint object.

147

GRBModel::addConstrs()
Add new linear constraints to a model.

We recommend that you build your model one constraint at a time (using addConstr), since it
introduces no significant overhead and we find that it produces simpler code. Feel free to use these
methods if you disagree, though.

GRBConstr* addConstrs (int count)

Add count new linear constraints to a model.
Arguments:

count: Number of constraints to add to the model. The new constraints are all of the form
0 <= 0.

Return value:
Array of new constraint objects. Note that the result is heap-allocated, and must be returned
to the heap by the user.

GRBConstr* addConstrs (const GRBLinExpr* lhsExprs,
const char* senses,
const double* rhsVals,
const string* names,
int count)

Add count new linear constraints to a model.
Arguments:

lhsExprs: Left-hand side expressions for the new linear constraints.
senses: Senses for new linear constraints (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).

rhsVals: Right-hand side values for the new linear constraints.
names: Names for new constraints.
count: Number of constraints to add.

Return value:
Array of new constraint objects. Note that the result is heap-allocated, and must be returned
to the heap by the user.

GRBModel::addGenConstrXxx()
Each of the functions described below adds a new general constraint to a model.

Mathematical programming has traditionally defined a set of fundamental constraint types:
variable bound constraints, linear constraints, quadratic constraints, integrality constraints, and
SOS constraints. These are typically treated directly by the underlying solver (although not always),
and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general
(function) constraints. These are typically not treated directly by the solver. Rather, they are
transformed by presolve into constraints (and variables) chosen from among the fundamental types
listed above. In some cases, the resulting constraint or constraints are mathematically equivalent

148

to the original; in others, they are approximations. If such constraints appear in your model, but
if you prefer to reformulate them yourself using fundamental constraint types instead, you can
certainly do so. However, note that Gurobi can sometimes exploit information contained in the
other constraints in the model to build a more efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:

• addGenConstrMax: y = max(x1, x2, ..., c)

• addGenConstrMin: y = min(x1, x2, ..., c)

• addGenConstrAbs: y = |x|

• addGenConstrAnd: y = x1 ∧ x2 ∧ x3...

• addGenConstrOr: y = x1 ∨ x2 ∨ x3...

• addGenConstrIndicator: y = 1→ a′x ≤ b (an indicator constraint)

• addGenConstrPWL: y = pwl(x) (a piecewise-linear function, specified using breakpoints)

• addGenConstrPoly: y = p0x
d + p1x

d−1 + ...+ pd−1x+ pd

• addGenConstrExp: y = ex

• addGenConstrExpA: y = ax

• addGenConstrLog: y = loge(x)

• addGenConstrLogA: y = loga(x)

• addGenConstrPow: y = xa

• addGenConstrSin: y = sin(x)

• addGenConstrCos: y = cos(x)

• addGenConstrTan: y = tan(x)

Please refer to this section for additional details on general constraints.

GRBModel::addGenConstrMax()

Add a new general constraint of type GRB_GENCONSTR_MAX to a model.
A MAX constraint r = max{x1, . . . , xn, c} states that the resultant variable r should be equal

to the maximum of the operand variables x1, . . . , xn and the constant c.

GRBGenConstr addGenConstrMax (GRBVar resvar,
const GRBVar* vars,
int len,
double constant=-GRB_INFINITY,
string name="")

Arguments:

149

resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
len: Number of operands in the new constraint (length of vars array).
constant (optional): The additional constant operand of the new constraint.
name (optional): Name for the new general constraint.

Return value:
New general constraint.

GRBModel::addGenConstrMin()

Add a new general constraint of type GRB_GENCONSTR_MIN to a model.
A MIN constraint r = min{x1, . . . , xn, c} states that the resultant variable r should be equal to

the minimum of the operand variables x1, . . . , xn and the constant c.

GRBGenConstr addGenConstrMin (GRBVar resvar,
const GRBVar* vars,
int len,
double constant=GRB_INFINITY,
string name="")

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
len: Number of operands in the new constraint (length of vars array).
constant (optional): The additional constant operand of the new constraint.
name (optional): Name for the new general constraint.

Return value:
New general constraint.

GRBModel::addGenConstrAbs()

Add a new general constraint of type GRB_GENCONSTR_ABS to a model.
An ABS constraint r = abs{x} states that the resultant variable r should be equal to the

absolute value of the argument variable x.

GRBGenConstr addGenConstrAbs (GRBVar resvar,
GRBVar argvar,
string name="")

Arguments:
resvar: The resultant variable of the new constraint.
argvar: The argument variable of the new constraint.
name (optional): Name for the new general constraint.

Return value:
New general constraint.

150

GRBModel::addGenConstrAnd()

Add a new general constraint of type GRB_GENCONSTR_AND to a model.
An AND constraint r = and{x1, . . . , xn} states that the binary resultant variable r should be 1

if and only if all of the operand variables x1, . . . , xn are equal to 1. If any of the operand variables
is 0, then the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent
of how they were created.

GRBGenConstr addGenConstrAnd (GRBVar resvar,
const GRBVar* vars,
int len,
string name="")

Arguments:
resvar: The resultant binary variable of the new constraint.
vars: Array of binary variables that are the operands of the new constraint.
len: Number of operands in the new constraint (length of vars array).
name (optional): Name for the new general constraint.

Return value:
New general constraint.

GRBModel::addGenConstrOr()

Add a new general constraint of type GRB_GENCONSTR_OR to a model.
An OR constraint r = or{x1, . . . , xn} states that the binary resultant variable r should be 1 if

and only if any of the operand variables x1, . . . , xn is equal to 1. If all operand variables are 0, then
the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent
of how they were created.

GRBGenConstr addGenConstrOr (GRBVar resvar,
const GRBVar* vars,
int len,
string name="")

Arguments:
resvar: The resultant binary variable of the new constraint.
vars: Array of binary variables that are the operands of the new constraint.
len: Number of operands in the new constraint (length of vars array).
name (optional): Name for the new general constraint.

Return value:
New general constraint.

151

GRBModel::addGenConstrIndicator()

Add a new general constraint of type GRB_GENCONSTR_INDICATOR to a model.
An INDICATOR constraint z = f → aTx ≤ b states that if the binary indicator variable z is

equal to f , where f ∈ {0, 1}, then the linear constraint aTx ≤ b should hold. On the other hand,
if z = 1 − f , the linear constraint may be violated. The sense of the linear constraint can also be
specified to be = or ≥.

Note that the indicator variable z of a constraint will be forced to be binary, independent of
how it was created.

Multiple signatures are available.

GRBGenConstr addGenConstrIndicator (GRBVar binvar,
int binval,
const GRBLinExpr& expr,
char sense,
double rhs,
string name="")

Arguments:
binvar: The binary indicator variable.
binval: The value for the binary indicator variable that would force the linear constraint
to be satisfied (0 or 1).

expr: Left-hand side expression for the linear constraint triggered by the indicator.
sense: Sense for the linear constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL, or GRB_-
GREATER_EQUAL.

rhs: Right-hand side value for the linear constraint.
name (optional): Name for the new general constraint.

Return value:
New general constraint.

GRBGenConstr addGenConstrIndicator (GRBVar binvar,
int binval,
const GRBTempConstr& constr,
string name="")

Arguments:
binvar: The binary indicator variable.
binval: The value for the binary indicator variable that would force the linear constraint
to be satisfied (0 or 1).

constr: Temporary constraint object defining the linear constraint that is triggered by the
indicator. The temporary constraint object is created using an overloaded comparison
operator. See GRBTempConstr for more information.

name (optional): Name for the new general constraint.
Return value:

New general constraint.

152

GRBModel::addGenConstrPWL()

Add a new general constraint of type GRB_GENCONSTR_PWL to a model.
A piecewise-linear (PWL) constraint states that the relationship y = f(x) must hold between

variables x and y, where f is a piecewise-linear function. The breakpoints for f are provided as
arguments. Refer to the description of piecewise-linear objectives for details of how piecewise-linear
functions are defined.

GRBGenConstr addGenConstrPWL (GRBVar xvar,
GRBVar yvar,
int npts,
const double* xpts,
const double* ypts,
std::string name="")

Arguments:
xvar: The x variable.
yvar: The y variable.
npts: The number of points that define the piecewise-linear function.
xpts: The x values for the points that define the piecewise-linear function. Must be in
non-decreasing order.

ypts: The y values for the points that define the piecewise-linear function.
name (optional): Name for the new general constraint.

Return value:
New general constraint.

GRBModel::addGenConstrPoly()

Add a new general constraint of type GRB_GENCONSTR_POLY to a model.
A polynomial function constraint states that the relationship y = p0x

d+p1x
d−1 + ...+pd−1x+pd

should hold between variables x and y.
A piecewise-linear approximation of the function is added to the model. The details of the

approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr addGenConstrPoly (GRBVar xvar,
GRBVar yvar,
int plen,
const double* p,
std::string name="",
std::string options="")

Arguments:
xvar: The x variable.
yvar: The y variable.
plen: The length of coefficient array p. If xd is the highest power term, then plen should
be d+ 1.

153

p: The coefficients for the polynomial function (starting with the coefficient for the highest
power).

name (optional): Name for the new general constraint.
options (optional): A string that can be used to set the attributes that control the
piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel::addGenConstrExp()

Add a new general constraint of type GRB_GENCONSTR_EXP to a model.
A natural exponential function constraint states that the relationship y = exp(x) should hold

for variables x and y.
A piecewise-linear approximation of the function is added to the model. The details of the

approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr addGenConstrExp (GRBVar xvar,
GRBVar yvar,
std::string name="",
std::string options="")

Arguments:
xvar: The x variable.
yvar: The y variable.
name (optional): Name for the new general constraint.
options (optional): A string that can be used to set the attributes that control the
piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel::addGenConstrExpA()

Add a new general constraint of type GRB_GENCONSTR_EXPA to a model.
An exponential function constraint states that the relationship y = ax should hold for variables

x and y, where a > 0 is the (constant) base.
A piecewise-linear approximation of the function is added to the model. The details of the

approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

154

GRBGenConstr addGenConstrExpA (GRBVar xvar,
GRBVar yvar,
double a,
std::string name="",
std::string options="")

Arguments:
xvar: The x variable.
yvar: The y variable.
a: The base of the function, a > 0.
name (optional): Name for the new general constraint.
options (optional): A string that can be used to set the attributes that control the
piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel::addGenConstrLog()

Add a new general constraint of type GRB_GENCONSTR_LOG to a model.
A natural logarithmic function constraint states that the relationship y = log(x) should hold

for variables x and y.
A piecewise-linear approximation of the function is added to the model. The details of the

approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr addGenConstrLog (GRBVar xvar,
GRBVar yvar,
std::string name="",
std::string options="")

Arguments:
xvar: The x variable.
yvar: The y variable.
name (optional): Name for the new general constraint.
options (optional): A string that can be used to set the attributes that control the
piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").

Return value:
New general constraint.

155

GRBModel::addGenConstrLogA()

Add a new general constraint of type GRB_GENCONSTR_LOGA to a model.
A logarithmic function constraint states that the relationship y = loga(x) should hold for

variables x and y, where a > 0 is the (constant) base.
A piecewise-linear approximation of the function is added to the model. The details of the

approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr addGenConstrLogA (GRBVar xvar,
GRBVar yvar,
double a,
std::string name="",
std::string options="")

Arguments:
xvar: The x variable.
yvar: The y variable.
a: The base of the function, a > 0.
name (optional): Name for the new general constraint.
options (optional): A string that can be used to set the attributes that control the
piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel::addGenConstrPow()

Add a new general constraint of type GRB_GENCONSTR_POW to a model.
A power function constraint states that the relationship y = xa should hold for variables x and

y, where a is the (constant) exponent. The lower bound of variable x must be nonnegative, even if
a is an integer.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr addGenConstrPow (GRBVar xvar,
GRBVar yvar,
double a,
std::string name="",
std::string options="")

Arguments:
xvar: The x variable.

156

yvar: The y variable.
a: The exponent of the function, a > 0.
name (optional): Name for the new general constraint.
options (optional): A string that can be used to set the attributes that control the
piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel::addGenConstrSin()

Add a new general constraint of type GRB_GENCONSTR_SIN to a model.
A sine function constraint states that the relationship y = sin(x) should hold for variables x

and y.
A piecewise-linear approximation of the function is added to the model. The details of the

approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr addGenConstrSin (GRBVar xvar,
GRBVar yvar,
std::string name="",
std::string options="")

Arguments:
xvar: The x variable.
yvar: The y variable.
name (optional): Name for the new general constraint.
options (optional): A string that can be used to set the attributes that control the
piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel::addGenConstrCos()

Add a new general constraint of type GRB_GENCONSTR_COS to a model.
A cosine function constraint states that the relationship y = cos(x) should hold for variables x

and y.
A piecewise-linear approximation of the function is added to the model. The details of the

approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

157

GRBGenConstr addGenConstrCos (GRBVar xvar,
GRBVar yvar,
std::string name="",
std::string options="")

Arguments:
xvar: The x variable.
yvar: The y variable.
name (optional): Name for the new general constraint.
options (optional): A string that can be used to set the attributes that control the
piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel::addGenConstrTan()

Add a new general constraint of type GRB_GENCONSTR_TAN to a model.
A tangent function constraint states that the relationship y = tan(x) should hold for variables

x and y.
A piecewise-linear approximation of the function is added to the model. The details of the

approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr addGenConstrTan (GRBVar xvar,
GRBVar yvar,
std::string name="",
std::string options="")

Arguments:
xvar: The x variable.
yvar: The y variable.
name (optional): Name for the new general constraint.
options (optional): A string that can be used to set the attributes that control the
piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").

Return value:
New general constraint.

GRBModel::addQConstr()

Add a quadratic constraint to a model. Multiple signatures are available.

158

Important note: Gurobi can handle both convex and non-convex quadratic constraints. The
differences between them can be both important and subtle. Refer to this discussion for additional
information.

GRBQConstr addQConstr (const GRBQuadExpr& lhsExpr,
char sense,
const GRBQuadExpr& rhsExpr,
string name="")

Add a quadratic constraint to a model.
Arguments:

lhsExpr: Left-hand side expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB_LESS_EQUAL or GRB_GREATER_EQUAL).
rhsExpr: Right-hand side expression for new quadratic constraint.
name (optional): Name for new constraint.

Return value:
New quadratic constraint object.

GRBQConstr addQConstr (const GRBQuadExpr& lhsExpr,
char sense,
GRBVar rhsVar,
string name="")

Add a quadratic constraint to a model.
Arguments:

lhsExpr: Left-hand side expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB_LESS_EQUAL or GRB_GREATER_EQUAL).
rhsVar: Right-hand side variable for new quadratic constraint.
name (optional): Name for new constraint.

Return value:
New quadratic constraint object.

GRBQConstr addQConstr (GRBTempConstr& tc,
string name="")

Add a quadratic constraint to a model.
Arguments:

tc: Temporary constraint object, created using an overloaded comparison operator. See
GRBTempConstr for more information.

name (optional): Name for new constraint.
Return value:

New quadratic constraint object.

159

GRBModel::addRange()

Add a single range constraint to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution.

Note that range constraints are stored internally as equality constraints. We add an extra
variable to the model to capture the range information. Thus, the Sense attribute on a range
constraint will always be GRB_EQUAL.

GRBConstr addRange (const GRBLinExpr& expr,
double lower,
double upper,
string name="")

Arguments:
expr: Linear expression for new range constraint.
lower: Lower bound for linear expression.
upper: Upper bound for linear expression.
name (optional): Name for new constraint.

Return value:
New constraint object.

GRBModel::addRanges()

Add new range constraints to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution.

GRBConstr* addRanges (const GRBLinExpr* exprs,
const double* lower,
const double* upper,
const string* names,
int count)

Arguments:
exprs: Linear expressions for the new range constraints.
lower: Lower bounds for linear expressions.
upper: Upper bounds for linear expressions.
name: Names for new range constraints.
count: Number of range constraints to add.

Return value:
Array of new constraint objects. Note that the result is heap-allocated, and must be returned
to the heap by the user.

GRBModel::addSOS()

Add an SOS constraint to the model. Please refer to this section for details on SOS constraints.

160

GRBSOS addSOS (const GRBVar* vars,
const double* weights,
int len,
int type)

Arguments:
vars: Array of variables that participate in the SOS constraint.
weights: Weights for the variables in the SOS constraint.
len: Number of members in the new SOS set (length of vars and weights arrays).
type: SOS type (can be GRB_SOS_TYPE1 or GRB_SOS_TYPE2).

Return value:
New SOS constraint.

GRBModel::addVar()
Add a single decision variable to a model.

GRBVar addVar (double lb,
double ub,
double obj,
char type,
string name="")

Add a variable; non-zero entries will be added later.
Arguments:

lb: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.
type: Variable type for new variable (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_-
SEMICONT, or GRB_SEMIINT).

name (optional): Name for new variable.
Return value:

New variable object.

GRBVar addVar (double lb,
double ub,
double obj,
char type,
int numnz,
const GRBConstr* constrs,
const double* coeffs,
string name="")

Add a variable, and the associated non-zero coefficients.
Arguments:

lb: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.

161

type: Variable type for new variable (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_-
SEMICONT, or GRB_SEMIINT).

numnz: Number of constraints in which this new variable participates.
constrs: Array of constraints in which the variable participates.
coeffs: Array of coefficients for each constraint in which the variable participates.
name (optional): Name for new variable.

Return value:
New variable object.

GRBVar addVar (double lb,
double ub,
double obj,
char type,
const GRBColumn& col,
string name="")

Add a variable, and the associated non-zero coefficients.
Arguments:

lb: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.
type: Variable type for new variable (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_-
SEMICONT, or GRB_SEMIINT).

col: GRBColumn object for specifying a set of constraints to which new variable belongs.
name (optional): Name for new variable.

Return value:
New variable object.

GRBModel::addVars()

Add new decision variables to a model.

GRBVar* addVars (int count,
char type=GRB_CONTINUOUS)

Add count new decision variables to a model. All associated attributes take their default values,
except the variable type, which is specified as an argument.

Arguments:
count: Number of variables to add.
type (optional): Variable type for new variables (GRB_CONTINUOUS, GRB_BINARY, GRB_-
INTEGER, GRB_SEMICONT, or GRB_SEMIINT).

Return value:
Array of new variable objects. Note that the result is heap-allocated, and must be returned
to the heap by the user.

162

GRBVar* addVars (const double* lb,
const double* ub,
const double* obj,
const char* type,
const string* names,
int count)

Add count new decision variables to a model. This signature allows you to use arrays to hold
the various variable attributes (lower bound, upper bound, etc.).

Arguments:
lb: Lower bounds for new variables. Can be NULL, in which case the variables get lower
bounds of 0.0.

ub: Upper bounds for new variables. Can be NULL, in which case the variables get infinite
upper bounds.

obj: Objective coefficients for new variables. Can be NULL, in which case the variables get
objective coefficients of 0.0.

type: Variable types for new variables (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_-
SEMICONT, or GRB_SEMIINT). Can be NULL, in which case the variables are assumed to be
continuous.

names: Names for new variables. Can be NULL, in which case all variables are given default
names.

count: The number of variables to add.
Return value:

Array of new variable objects. Note that the result is heap-allocated, and must be returned
to the heap by the user.

GRBVar* addVars (const double* lb,
const double* ub,
const double* obj,
const char* type,
const string* names,
const GRBColumn* cols,
int count)

Add new decision variables to a model. This signature allows you to specify the set of constraints
to which each new variable belongs using an array of GRBColumn objects.

Arguments:
lb: Lower bounds for new variables. Can be NULL, in which case the variables get lower
bounds of 0.0.

ub: Upper bounds for new variables. Can be NULL, in which case the variables get infinite
upper bounds.

obj: Objective coefficients for new variables. Can be NULL, in which case the variables get
objective coefficients of 0.0.

type: Variable types for new variables (GRB_CONTINUOUS, GRB_BINARY, GRB_INTEGER, GRB_-
SEMICONT, or GRB_SEMIINT). Can be NULL, in which case the variables are assumed to be
continuous.

163

names: Names for new variables. Can be NULL, in which case all variables are given default
names.

cols: GRBColumn objects for specifying a set of constraints to which each new column
belongs.

count: The number of variables to add.
Return value:

Array of new variable objects. Note that the result is heap-allocated, and must be returned
to the heap by the user.

GRBModel::chgCoeff()
Change one coefficient in the model. The desired change is captured using a GRBVar object, a
GRBConstr object, and a desired coefficient for the specified variable in the specified constraint. If
you make multiple changes to the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you
update the model (using GRBModel::update), optimize the model (using GRBModel::optimize),
or write the model to disk (using GRBModel::write).

void chgCoeff (GRBConstr constr,
GRBVar var,
double newvalue)

Arguments:
constr: Constraint for coefficient to be changed.
var: Variable for coefficient to be changed.
newvalue: Desired new value for coefficient.

GRBModel::chgCoeffs()
Change a list of coefficients in the model. Each desired change is captured using a GRBVar object,
a GRBConstr object, and a desired coefficient for the specified variable in the specified constraint.
The entries in the input arrays each correspond to a single desired coefficient change. If you make
multiple changes to the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you
update the model (using GRBModel::update), optimize the model (using GRBModel::optimize),
or write the model to disk (using GRBModel::write).

void chgCoeffs (const GRBConstr* constrs,
const GRBVar* vars,
const double* vals,
int len)

Arguments:
constrs: Constraints for coefficients to be changed.
vars: Variables for coefficients to be changed.
vals: Desired new values for coefficients.
len: Number of coefficients to change (length of vars, constrs, and vals arrays).

164

GRBModel::computeIIS()

Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints and
variable bounds with the following properties:

• It is still infeasible, and

• If a single constraint or bound is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily
the smallest one; there may exist others with fewer constraints or bounds.

IIS results are returned in a number of attributes: IISConstr, IISLB, IISUB, IISSOS, IISQCon-
str, and IISGenConstr. Each indicates whether the corresponding model element is a member of
the computed IIS.

The IIS log provides information about the progress of the algorithm, including a guess at the
eventual IIS size.

If an IIS computation is interrupted before completion, Gurobi will return the smallest infeasible
subsystem found to that point.

This method populates the IISConstr, IISQConstr, and IISGenConstr constraint attributes, the
IISSOS, SOS attribute, and the IISLB and IISUB variable attributes. You can also obtain informa-
tion about the results of the IIS computation by writing a .ilp format file (see GRBModel::write).
This file contains only the IIS from the original model.

Use the IISMethod parameter to adjust the behavior of the IIS algorithm.
Note that this method can be used to compute IISs for both continuous and MIP models.

void computeIIS ()

GRBModel::discardConcurrentEnvs()

Discard concurrent environments for a model.
The concurrent environments created by getConcurrentEnv will be used by every subsequent

call to the concurrent optimizer until the concurrent environments are discarded.

void discardConcurrentEnvs ()

GRBModel::discardMultiobjEnvs()

Discard all multi-objective environments associated with the model, thus restoring multi objective
optimization to its default behavior.

Please refer to the discussion of Multiple Objectives for information on how to specify multiple
objective functions and control the trade-off between them.

Use getMultiobjEnv to create a multi-objective environment.

void discardMultiobjEnvs ()

165

GRBModel::feasRelax()

Modifies the GRBModel object to create a feasibility relaxation. Note that you need to call optimize
on the result to compute the actual relaxed solution.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the
solution violates the bounds and linear constraints of the original model. This method provides a
number of options for specifying the relaxation.

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the
sum of the weighted magnitudes of the bound and constraint violations. The lbpen, ubpen, and
rhspen arguments specify the cost per unit violation in the lower bounds, upper bounds, and linear
constraints, respectively.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the
weighted sum of the squares of the bound and constraint violations. The lbpen, ubpen, and
rhspen arguments specify the coefficients on the squares of the lower bound, upper bound, and
linear constraint violations, respectively.

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the
weighted count of bound and constraint violations. The lbpen, ubpen, and rhspen arguments
specify the cost of violating a lower bound, upper bound, and linear constraint, respectively.

To give an example, if a constraint with rhspen value p is violated by 2.0, it would con-
tribute 2*p to the feasibility relaxation objective for relaxobjtype=0, it would contribute 2*2*p
for relaxobjtype=1, and it would contribute p for relaxobjtype=2.

The minrelax argument is a boolean that controls the type of feasibility relaxation that is
created. If minrelax=false, optimizing the returned model gives a solution that minimizes the
cost of the violation. If minrelax=true, optimizing the returned model finds a solution that
minimizes the original objective, but only from among those solutions that minimize the cost of the
violation. Note that feasRelax must solve an optimization problem to find the minimum possible
relaxation when minrelax=true, which can be quite expensive.

There are two signatures for this method. The more complex one takes a list of variables
and constraints, as well as penalties associated with relaxing the corresponding lower bounds,
upper bounds, and constraints. If a variable or constraint is not included in one of these lists,
the associated bounds or constraints may not be violated. The simpler signature takes a pair of
boolean arguments, vrelax and crelax, that indicate whether variable bounds and/or constraints
can be violated. If vrelax/crelax is true, then every bound/constraint is allowed to be violated,
respectively, and the associated cost is 1.0.

Note that this is a destructive method: it modifies the model on which it is invoked. If you
don’t want to modify your original model, use the GRBModel constructor to create a copy before
invoking this method.

166

double feasRelax (int relaxobjtype,
bool minrelax,
int vlen,
const GRBVar* vars,
const double* lbpen,
const double* ubpen,
int clen,
const GRBConstr* constrs,
const double* rhspen)

Create a feasibility relaxation model.
Arguments:

relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.
vlen: The length of the list of variables whose bounds are allowed to be violated.
vars: Variables whose bounds are allowed to be violated.
lbpen: Penalty for violating a variable lower bound. One entry for each variable in argument
vars.

ubpen: Penalty for violating a variable upper bound. One entry for each variable in argument
vars.

clen: The length of the list of linear constraints that are allowed to be violated.
constrs: Linear constraints that are allowed to be violated.
rhspen: Penalty for violating a linear constraint. One entry for each constraint in argument
constrs.

Return value:
Zero if minrelax is false. If minrelax is true, the return value is the objective value for
the relaxation performed. If the value is less than 0, it indicates that the method failed to
create the feasibility relaxation.

double feasRelax (int relaxobjtype,
bool minrelax,
bool vrelax,
bool crelax)

Simplified method for creating a feasibility relaxation model.
Arguments:

relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.
vrelax: Indicates whether variable bounds can be relaxed (with a cost of 1.0 for any viola-
tions.

crelax: Indicates whether linear constraints can be relaxed (with a cost of 1.0 for any
violations.

Return value:
Zero if minrelax is false. If minrelax is true, the return value is the objective value for
the relaxation performed. If the value is less than 0, it indicates that the method failed to
create the feasibility relaxation.

167

GRBModel::fixedModel()

Create the fixed model associated with a MIP model. The MIP model must have a solution loaded
(e.g., after a call to the optimize method). In the fixed model, each integer variable is fixed to the
value that variable takes in the MIP solution. In addition, continuous variables may be fixed to
satisfy SOS or general constraints. The result is a model without any integrality constraints, SOS
constraints, or general constraints.

Note that, while the fixed problem is always a continuous model, it may contain a non-convex
quadratic objective or non-convex quadratic constraints. As a result, it may still be solved using
the MIP algorithm.

GRBModel fixedModel ()
Return value:

Fixed model associated with calling object.

GRBModel::get()

Query the value(s) of a parameter or attribute. Use this method for parameters, for scalar model
attributes, or for arrays of constraint or variable attributes.

double get (GRB_DoubleParam param)

Query the value of a double-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

int get (GRB_IntParam param)

Query the value of an int-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

string get (GRB_StringParam param)

Query the value of a string-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

168

char* get (GRB_CharAttr attr,
const GRBVar* vars,
int count)

Query a char-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: An array of variables whose attribute values are being queried.
count: The number of variable attributes to retrieve.

Return value:
The current values of the requested attribute for each input variable. Note that the result
is heap-allocated, and must be returned to the heap by the user.

char* get (GRB_CharAttr attr,
const GRBConstr* constrs,
int count)

Query a char-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of constraints whose attribute values are being queried.
count: The number of constraint attributes to retrieve.

Return value:
The current values of the requested attribute for each input constraint. Note that the result
is heap-allocated, and must be returned to the heap by the user.

char* get (GRB_CharAttr attr,
const GRBQConstr* qconstrs,
int count)

Query a char-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of quadratic constraints whose attribute values are being queried.
count: The number of quadratic constraint attributes to retrieve.

Return value:
The current values of the requested attribute for each input quadratic constraint. Note that
the result is heap-allocated, and must be returned to the heap by the user.

double get (GRB_DoubleAttr attr)

Query the value of a double-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

169

double* get (GRB_DoubleAttr attr,
const GRBVar* vars,
int count)

Query a double-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: An array of variables whose attribute values are being queried.
count: The number of variable attributes to retrieve.

Return value:
The current values of the requested attribute for each input variable. Note that the result
is heap-allocated, and must be returned to the heap by the user.

double* get (GRB_DoubleAttr attr,
const GRBConstr* constrs,
int count)

Query a double-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of constraints whose attribute values are being queried.
count: The number of constraint attributes to retrieve.

Return value:
The current values of the requested attribute for each input constraint. Note that the result
is heap-allocated, and must be returned to the heap by the user.

double* get (GRB_DoubleAttr attr,
const GRBQConstr* qconstrs,
int count)

Query a double-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of quadratic constraints whose attribute values are being queried.
count: The number of quadratic constraint attributes to retrieve.

Return value:
The current values of the requested attribute for each input quadratic constraint. Note that
the result is heap-allocated, and must be returned to the heap by the user.

int get (GRB_IntAttr attr)

Query the value of an int-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

170

int* get (GRB_IntAttr attr,
const GRBVar* vars,
int count)

Query an int-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: An array of variables whose attribute values are being queried.
count: The number of variable attributes to retrieve.

Return value:
The current values of the requested attribute for each input variable. Note that the result
is heap-allocated, and must be returned to the heap by the user.

int* get (GRB_IntAttr attr,
const GRBConstr* constrs,
int count)

Query an int-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of constraints whose attribute values are being queried.
count: The number of constraint attributes to retrieve.

Return value:
The current values of the requested attribute for each input constraint. Note that the result
is heap-allocated, and must be returned to the heap by the user.

string get (GRB_StringAttr attr)

Query the value of a string-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

string* get (GRB_StringAttr attr,
const GRBVar* vars,
int count)

Query a string-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: An array of variables whose attribute values are being queried.
count: The number of variable attributes to retrieve.

Return value:
The current values of the requested attribute for each input variable. Note that the result
is heap-allocated, and must be returned to the heap by the user.

171

string* get (GRB_StringAttr attr,
const GRBConstr* constrs,
int count)

Query a string-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of constraints whose attribute values are being queried.
count: The number of constraint attributes to retrieve.

Return value:
The current values of the requested attribute for each input constraint. Note that the result
is heap-allocated, and must be returned to the heap by the user.

string* get (GRB_StringAttr attr,
const GRBQConstr* qconstrs,
int count)

Query a string-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
constrs: An array of quadratic constraints whose attribute values are being queried.
count: The number of quadratic constraint attributes to retrieve.

Return value:
The current values of the requested attribute for each input quadratic constraint. Note that
the result is heap-allocated, and must be returned to the heap by the user.

GRBModel::getCoeff()

Query the coefficient of variable var in linear constraint constr (note that the result can be zero).

double getCoeff (GRBConstr constr,
GRBVar var)

Arguments:
constr: The requested constraint.
var: The requested variable.

Return value:
The current value of the requested coefficient.

GRBModel::getCol()

Retrieve the list of constraints in which a variable participates, and the associated coefficients. The
result is returned as a GRBColumn object.

GRBColumn getCol (GRBVar var)

Arguments:

172

var: The variable of interest.
Return value:

A GRBColumn object that captures the set of constraints in which the variable participates.

GRBModel::getConcurrentEnv()

Create/retrieve a concurrent environment for a model.
This method provides fine-grained control over the concurrent optimizer. By creating your

own concurrent environments and setting appropriate parameters on these environments (e.g., the
Method parameter), you can control exactly which strategies the concurrent optimizer employs.
For example, if you create two concurrent environments, and set Method to primal simplex for
one and dual simplex for the other, subsequent concurrent optimizer runs will use the two simplex
algorithms rather than the default choices.

Note that you must create contiguously numbered concurrent environments, starting with
num=0. For example, if you want three concurrent environments, they must be numbered 0, 1,
and 2.

Once you create concurrent environments, they will be used for every subsequent concurrent
optimization on that model. Use discardConcurrentEnvs to revert back to default concurrent
optimizer behavior.

GRBEnv getConcurrentEnv (int num)

Arguments:
num: The concurrent environment number.

Return value:
The concurrent environment for the model.

GRBModel::getConstrByName()

Retrieve a linear constraint from its name. If multiple linear constraints have the same name, this
method chooses one arbitrarily.

GRBConstr getConstrByName (const string& name)

Arguments:
name: The name of the desired linear constraint.

Return value:
The requested linear constraint.

GRBModel::getConstrs()

Retrieve an array of all linear constraints in the model.

GRBConstr* getConstrs ()

173

Return value:
An array of all linear constraints in the model. Note that this array is heap-allocated, and
must be returned to the heap by the user.

GRBModel::getGenConstrXxx()

The following methods allow you to retrieve general constraints from your model.

GRBModel::getGenConstrMax

Retrieve the data associated with a general constraint of type MAX. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in lenP. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrMax for a description of the semantics of this general constraint type.

void getGenConstrMax (GRBGenConstr genc,
GRBVar* resvarP,
GRBVar* vars,
int* lenP,
double* constantP)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.
constantP: Pointer to store the additional constant operand of the constraint.

GRBModel::getGenConstrMin

Retrieve the data associated with a general constraint of type MIN. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in lenP. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrMin for a description of the semantics of this general constraint type.

174

void getGenConstrMin (GRBGenConstr genc,
GRBVar* resvarP,
GRBVar* vars,
int* lenP,
double* constantP)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.
constantP: Pointer to store the additional constant operand of the constraint.

GRBModel::getGenConstrAbs

Retrieve the data associated with a general constraint of type ABS. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrAbs for a description of the semantics of this general constraint type.

void getGenConstrAbs (GRBGenConstr genc,
GRBVar* resvarP,
GRBVar* argvarP)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
argvarP: Pointer to store the argument variable of the constraint.

GRBModel::getGenConstrAnd

Retrieve the data associated with a general constraint of type AND. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in lenP. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrAnd for a description of the semantics of this general constraint type.

void getGenConstrAnd (GRBGenConstr genc,
GRBVar* resvarP,
GRBVar* vars,
int* lenP)

Arguments:
genc: The general constraint object.

175

Any of the following arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.

GRBModel::getGenConstrOr

Retrieve the data associated with a general constraint of type OR. Calling this method for a general
constraint of a different type leads to an exception. You can query the GenConstrType attribute
to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in lenP. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrOr for a description of the semantics of this general constraint type.

void getGenConstrOr (GRBGenConstr genc,
GRBVar* resvarP,
GRBVar* vars,
int* lenP)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
resvarP: Pointer to store the resultant variable of the constraint.
vars: Array to store the operand variables of the constraint.
lenP: Pointer to store the number of operand variables of the constraint.

GRBModel::getGenConstrIndicator

Retrieve the data associated with a general constraint of type INDICATOR. Calling this method
for a general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrIndicator for a description of the semantics of this general constraint
type.

void getGenConstrIndicator (GRBGenConstr genc,
GRBVar* binvarP,
int* binvalP,
GRBLinExpr* exprP,
char* senseP,
double* rhsP)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
binvarP: Pointer to store the binary indicator variable of the constraint.

176

binvalP: Pointer to store the value that the indicator variable has to take in order to trigger
the linear constraint.

exprP: Pointer to a GRBLinExpr object to store the left-hand side expression of the linear
constraint that is triggered by the indicator.

senseP: Pointer to store the sense for the linear constraint. Options are GRB_LESS_EQUAL,
GRB_EQUAL, or GRB_GREATER_EQUAL.

rhsP: Pointer to store the right-hand side value for the linear constraint.

GRBModel::getGenConstrPWL

Retrieve the data associated with a general constraint of type PWL. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the xpts and ypts arguments. The routine returns the length
for the xpts and ypts arrays in nptsP. That allows you to make certain that the xpts and ypts
arrays are of sufficient size to hold the result of the second call.

See also addGenConstrPWL for a description of the semantics of this general constraint type.

void getGenConstrPWL (GRBGenConstr genc,
GRBVar* xvarP,
GRBVar* yvarP,
int* nptsP,
double* xpts,
double* ypts)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.
nptsP: Pointer to store the number of points that define the piecewise-linear function.
xpts: The x values for the points that define the piecewise-linear function.
ypts: The y values for the points that define the piecewise-linear function.

GRBModel::getGenConstrPoly

Retrieve the data associated with a general constraint of type POLY. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a NULL value for the p argument. The routine returns the length of the p array in
plenP. That allows you to make certain that the p array is of sufficient size to hold the result of
the second call.

See also addGenConstrPoly for a description of the semantics of this general constraint type.

177

void getGenConstrPoly (GRBGenConstr genc,
GRBVar* xvarP,
GRBVar* yvarP,
int* plenP,
double* p)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.
plenP: Pointer to store the array length for p. If xd is the highest power term, then d + 1
will be returned.

p: The coefficients for polynomial function.

GRBModel::getGenConstrExp

Retrieve the data associated with a general constraint of type EXP. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrExp for a description of the semantics of this general constraint type.

void getGenConstrExp (GRBGenConstr genc,
GRBVar* xvarP,
GRBVar* yvarP)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.

GRBModel::getGenConstrExpA

Retrieve the data associated with a general constraint of type EXPA. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrExpA for a description of the semantics of this general constraint type.

void getGenConstrExpA (GRBGenConstr genc,
GRBVar* xvarP,
GRBVar* yvarP,
double* aP)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.

178

yvarP: Pointer to store the y variable.
aP: Pointer to store the base of the function.

GRBModel::getGenConstrLog

Retrieve the data associated with a general constraint of type LOG. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrLog for a description of the semantics of this general constraint type.

void getGenConstrLog (GRBGenConstr genc,
GRBVar* xvarP,
GRBVar* yvarP)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.

GRBModel::getGenConstrLogA

Retrieve the data associated with a general constraint of type LOGA. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrLogA for a description of the semantics of this general constraint type.

void getGenConstrLogA (GRBGenConstr genc,
GRBVar* xvarP,
GRBVar* yvarP,
double* aP)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.
aP: Pointer to store the base of the function.

GRBModel::getGenConstrPow

Retrieve the data associated with a general constraint of type POW. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrPow for a description of the semantics of this general constraint type.

179

void getGenConstrPow (GRBGenConstr genc,
GRBVar* xvarP,
GRBVar* yvarP,
double* aP)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.
aP: Pointer to store the exponent of the function.

GRBModel::getGenConstrSin

Retrieve the data associated with a general constraint of type SIN. Calling this method for a general
constraint of a different type leads to an exception. You can query the GenConstrType attribute
to determine the type of the general constraint.

See also addGenConstrSin for a description of the semantics of this general constraint type.

void getGenConstrSin (GRBGenConstr genc,
GRBVar* xvarP,
GRBVar* yvarP)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.

GRBModel::getGenConstrCos

Retrieve the data associated with a general constraint of type COS. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrCos for a description of the semantics of this general constraint type.

void getGenConstrCos (GRBGenConstr genc,
GRBVar* xvarP,
GRBVar* yvarP)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.

180

GRBModel::getGenConstrTan

Retrieve the data associated with a general constraint of type TAN. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrTan for a description of the semantics of this general constraint type.

void getGenConstrTan (GRBGenConstr genc,
GRBVar* xvarP,
GRBVar* yvarP)

Arguments:
genc: The general constraint object.

Any of the following arguments can be NULL.
xvarP: Pointer to store the x variable.
yvarP: Pointer to store the y variable.

GRBModel::getGenConstrs()
Retrieve an array of all general constraints in the model.

GRBGenConstr* getGenConstrs ()
Return value:

An array of all general constraints in the model. Note that this array is heap-allocated, and
must be returned to the heap by the user.

GRBModel::getJSONSolution()
After a call to optimize, this method returns the resulting solution and related model attributes as
a JSON string. Please refer to the JSON solution format section for details.

getJSONSolution GRBModel ()
Return value:

A JSON string.

GRBModel::getMultiobjEnv()
Create/retrieve a multi-objective environment for the objective with the given index. This envi-
ronment enables fine-grained control over the multi-objective optimization process. Specifically, by
changing parameters on this environment, you modify the behavior of the optimization that occurs
during the corresponding pass of the multi-objective optimization.

Each multi-objective environment starts with a copy of the current model environment.
Please refer to the discussion of Multiple Objectives for information on how to specify multiple

objective functions and control the trade-off between them.
Use discardMultiobjEnvs to discard multi-objective environments and return to standard be-

havior.

181

GRBEnv getMultiobjEnv (int index)

Arguments:
index: The objective index.

Return value:
The multi-objective environment for the model.

GRBModel::getObjective()
Retrieve the optimization objective(s).

GRBQuadExpr getObjective ()
Retrieve the optimization objective.
Note that the constant and linear portions of the objective can also be retrieved using the

ObjCon and Obj attributes.
Return value:

The model objective.

GRBLinExpr getObjective (int index)

Retrieve an alternative optimization objective. Alternative objectives will always be linear. You
can also use this routine to retrieve the primary objective (using index = 0), but you will get an
exception if the primary objective contains quadratic terms.

Please refer to the discussion of Multiple Objectives for more information on the use of alter-
native objectives.

Note that alternative objectives can also be retrieved using the ObjNCon and ObjN attributes.
Arguments:

index: The index for the requested alternative objective.
Return value:

The requested alternate objective.

GRBModel::getPWLObj()
Retrieve the piecewise-linear objective function for a variable. The return value gives the number
of points that define the function, and the x and y arguments give the coordinates of the points,
respectively. The x and y arguments must be large enough to hold the result. Call this method
with NULL values for x and y if you just want the number of points.

Refer to this discussion for additional information on what the values in x and y mean.

int getPWLObj (GRBVar var,
double[] x,
double[] y)

Arguments:
var: The variable whose objective function is being retrieved.

182

x: The x values for the points that define the piecewise-linear function. These will always
be in non-decreasing order.

y: The y values for the points that define the piecewise-linear function.
Return value:

The number of points that define the piecewise-linear objective function.

GRBModel::getQCRow()

Retrieve the left-hand side expression from a quadratic constraint. The result is returned as a
GRBQuadExpr object.

GRBQuadExpr getQCRow (GRBQConstr qconstr)

Arguments:
qconstr: The quadratic constraint of interest.

Return value:
A GRBQuadExpr object that captures the left-hand side of the quadratic constraint.

GRBModel::getQConstrs()

Retrieve an array of all quadratic constraints in the model.

GRBQConstr* getQConstrs ()
Return value:

An array of all quadratic constraints in the model. Note that this array is heap-allocated,
and must be returned to the heap by the user.

GRBModel::getRow()

Retrieve a list of variables that participate in a constraint, and the associated coefficients. The
result is returned as a GRBLinExpr object.

GRBLinExpr getRow (GRBConstr constr)

Arguments:
constr: The constraint of interest. A GRBConstr object, typically obtained from addConstr
or getConstrs.

Return value:
A GRBLinExpr object that captures the set of variables that participate in the constraint.

183

GRBModel::getSOS()

Retrieve the list of variables that participate in an SOS constraint, and the associated coefficients.
The return value is the length of this list. If you would like to allocate space for the result before
retrieving the result, call the method first with NULL array arguments to determine the appropriate
array lengths.

int getSOS (GRBSOS sos,
GRBVar* vars,
double* weights,
int* typeP)

Arguments:
sos: The SOS set of interest.
vars: A list of variables that participate in sos.
weights: The SOS weights for each participating variable.
typeP: The type of the SOS set (either GRB_SOS_TYPE1 or GRB_SOS_TYPE2).

Return value:
The length of the result arrays.

GRBModel::getSOSs()

Retrieve an array of all SOS constraints in the model.

GRBSOS* getSOSs ()
Return value:

An array of all SOS constraints in the model. Note that this array is heap-allocated, and
must be returned to the heap by the user.

GRBModel::getTuneResult()

Use this method to retrieve the results of a previous tune call. Calling this method with argument
n causes tuned parameter set n to be copied into the model. Parameter sets are stored in order of
decreasing quality, with parameter set 0 being the best. The number of available sets is stored in
attribute TuneResultCount.

Once you have retrieved a tuning result, you can call optimize to use these parameter settings
to optimize the model, or write to write the changed parameters to a .prm file.

Please refer to the parameter tuning section for details on the tuning tool.

void getTuneResult (int n)

n: The index of the tuning result to retrieve. The best result is available as index 0. The
number of stored results is available in attribute TuneResultCount.

184

GRBModel::getVarByName()
Retrieve a variable from its name. If multiple variables have the same name, this method chooses
one arbitrarily.

GRBVar getVarByName (const string& name)

Arguments:
name: The name of the desired variable.

Return value:
The requested variable.

GRBModel::getVars()
Retrieve an array of all variables in the model.

GRBVar* getVars ()
Return value:

An array of all variables in the model. Note that this array is heap-allocated, and must be
returned to the heap by the user.

GRBModel::optimize()
Optimize the model. The algorithm used for the optimization depends on the model type (simplex
or barrier for a continuous model; branch-and-cut for a MIP model). Upon successful completion,
this method will populate the solution related attributes of the model. See the Attributes section
for more information on attributes.

Please consult this section for a discussion of some of the practical issues associated with solving
a precisely defined mathematical model using finite-precision floating-point arithmetic.

Note that this method will process all pending model modifications.

void optimize ()

GRBModel::optimizeasync()
Optimize a model asynchronously. This routine returns immediately. Your program can perform
other computations while optimization proceeds in the background. To check the state of the
asynchronous optimization, query the Status attribute for the model. A value of IN_PROGRESS
indicates that the optimization has not yet completed. When you are done with your foreground
tasks, you must call sync to sync your foreground program with the asynchronous optimization
task.

Note that the set of Gurobi calls that you are allowed to make while optimization is running in
the background is severely limited. Specifically, you can only perform attribute queries, and only
for a few attributes (listed below). Any other calls on the running model, or on any other models that
were built within the same Gurobi environment, will fail with error code OPTIMIZATION_IN_PROGRESS.

185

Note that there are no such restrictions on models built in other environments. Thus, for
example, you could create multiple environments, and then have a single foreground program
launch multiple simultaneous asynchronous optimizations, each in its own environment.

As already noted, you are allowed to query the value of the Status attribute while an asyn-
chronous optimization is in progress. The other attributes that can be queried are: ObjVal, Ob-
jBound, IterCount, NodeCount, and BarIterCount. In each case, the returned value reflects progress
in the optimization to that point. Any attempt to query the value of an attribute not on this list
will return an OPTIMIZATION_IN_PROGRESS error.

void optimizeasync ()

GRBModel::optimizeBatch()
Submit a new batch request to the Cluster Manager. Returns the BatchID (a string), which
uniquely identifies the job in the Cluster Manager and can be used to query the status of this
request (from this program or from any other). Once the request has completed, the BatchID can
also be used to retrieve the associated solution. To submit a batch request, you must tag at least
one element of the model by setting one of the VTag, CTag or QCTag attributes. For more details
on batch optimization, please refer to the Batch Optimization section.

Note that this routine will process all pending model modifications.

string optimizeBatch ()
Example usage:

GRBModel::presolve()
Perform presolve on a model.

GRBModel presolve ()
Return value:

Presolved version of original model.

GRBModel::read()
This method is the general entry point for importing data from a file into a model. It can be used
to read basis files for continuous models, start vectors for MIP models, or parameter settings. The
type of data read is determined by the file suffix. File formats are described in the File Format
section.

Note that this is not the method to use if you want to read a new model from a file. For that,
use the GRBModel constructor. One variant of the constructor takes the name of the file that
contains the new model as its argument.

void read (const string& filename)

186

Arguments:
filename: Name of the file to read. The suffix on the file must be either .bas (for an LP
basis), .mst or .sol (for a MIP start), .hnt (for MIP hints), .ord (for a priority order),
or .prm (for a parameter file). The suffix may optionally be followed by .zip, .gz, .bz2,
or .7z.

GRBModel::remove()

Remove a variable, constraint, or SOS from a model.

void remove (GRBConstr constr)

Remove a linear constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel::update), optimize
the model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

Arguments:
constr: The linear constraint to remove.

void remove (GRBGenConstr genconstr)

Remove a general constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel::update), optimize
the model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

Arguments:
genconstr: The general constraint to remove.

void remove (GRBQConstr qconstr)

Remove a quadratic constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel::update), optimize
the model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

Arguments:
qconstr: The quadratic constraint to remove.

void remove (GRBSOS sos)

Remove an SOS constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel::update), optimize
the model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

Arguments:
sos: The SOS constraint to remove.

187

void remove (GRBVar var)

Remove a variable from the model. Note that, due to our lazy update approach, the change
won’t actually take effect until you update the model (using GRBModel::update), optimize the
model (using GRBModel::optimize), or write the model to disk (using GRBModel::write).

Arguments:
var: The variable to remove.

GRBModel::reset()

void reset (int clearall=0)

Reset the model to an unsolved state, discarding any previously computed solution information.
Note that, due to our lazy update approach, the change won’t actually take effect until you update
the model (using GRBModel::update), optimize the model (using GRBModel::optimize), or write
the model to disk (using GRBModel::write).

clearall (optional): A value of 1 discards additional information that affects the solution
process but not the actual model (currently MIP starts, variable hints, branching priorities,
lazy flags, and partition information). The default value of 0 just discards the solution.

Arguments:

GRBModel::setCallback()

Set the callback object for a model. The callback() method on this object will be called period-
ically from the Gurobi solver. You will have the opportunity to obtain more detailed information
about the state of the optimization from this callback. See the documentation for GRBCallback
for additional information.

Note that a model can only have a single callback method, so this call will replace an existing
callback. To disable a previously set callback, call this method with a NULL argument.

void setCallback (GRBCallback* cb)

GRBModel::set()

Set the value(s) of a parameter or attribute. Use this method for parameters, for scalar model
attributes, and for arrays of constraint or variable attributes.

void set (GRB_DoubleParam param,
double newvalue)

Set the value of a double-valued parameter.
The difference between setting a parameter on a model and setting it on an environment (i.e.,

through GRBEnv::set) is that the former modifies the parameter for a single model, while the

188

latter modifies the parameter for every model that is subsequently built using that environment
(and leaves the parameter unchanged for models that were previously built using that environment).

Arguments:
param: The parameter being modified.
newvalue: The desired new value for the parameter.

void set (GRB_IntParam param,
int newvalue)

Set the value of an int-valued parameter.
The difference between setting a parameter on a model and setting it on an environment (i.e.,

through GRBEnv::set) is that the former modifies the parameter for a single model, while the
latter modifies the parameter for every model that is subsequently built using that environment
(and leaves the parameter unchanged for models that were previously built using that environment).

Arguments:
param: The parameter being modified.
newvalue: The desired new value for the parameter.

void set (GRB_StringParam param,
string newvalue)

Set the value of a string-valued parameter.
The difference between setting a parameter on a model and setting it on an environment (i.e.,

through GRBEnv::set) is that the former modifies the parameter for a single model, while the
latter modifies the parameter for every model that is subsequently built using that environment
(and leaves the parameter unchanged for models that were previously built using that environment).

Arguments:
param: The parameter being modified.
newvalue: The desired new value for the parameter.

void set (GRB_CharAttr attr,
const GRBVar* vars,
char* newvalues,
int count)

Set a char-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: An array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
count: The number of variable attributes to set.

void set (GRB_CharAttr attr,
const GRBConstr* constrs,
char* newvalues,
int count)

189

Set a char-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: An array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
count: The number of constraint attributes to set.

void set (GRB_CharAttr attr,
const GRBQConstr* qconstrs,
char* newvalues,
int count)

Set a char-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.
constrs: An array of quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.
count: The number of quadratic constraint attributes to set.

void set (GRB_DoubleAttr attr,
double newvalue)

Set the value of a double-valued model attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value for the attribute.

void set (GRB_DoubleAttr attr,
const GRBVar* vars,
double* newvalues,
int count)

Set a double-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: An array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
count: The number of variable attributes to set.

void set (GRB_DoubleAttr attr,
const GRBConstr* constrs,
double* newvalues,
int count)

Set a double-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: An array of constraints whose attribute values are being modified.

190

newvalues: The desired new values for the attribute for each input constraint.
count: The number of constraint attributes to set.

void set (GRB_DoubleAttr attr,
const GRBQConstr* qconstrs,
double* newvalues,
int count)

Set a double-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.
constrs: An array of quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.
count: The number of quadratic constraint attributes to set.

void set (GRB_IntAttr attr,
int newvalue)

Set the value of an int-valued model attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value for the attribute.

void set (GRB_IntAttr attr,
const GRBVar* vars,
int* newvalues,
int count)

Set an int-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: An array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
count: The number of variable attributes to set.

void set (GRB_IntAttr attr,
const GRBConstr* constrs,
int* newvalues,
int count)

Set an int-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: An array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
count: The number of constraint attributes to set.

191

void set (GRB_StringAttr attr,
string newvalue)

Set the value of a string-valued model attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value for the attribute.

void set (GRB_StringAttr attr,
const GRBVar* vars,
string* newvalues,
int count)

Set a string-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: An array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
count: The number of variable attributes to set.

void set (GRB_StringAttr attr,
const GRBConstr* constrs,
string* newvalues,
int count)

Set a string-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: An array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
count: The number of constraint attributes to set.

void set (GRB_StringAttr attr,
const GRBQConstr* qconstrs,
string* newvalues,
int count)

Set a string-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.
constrs: An array of quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.
count: The number of quadratic constraint attributes to set.

GRBModel::setObjective()

Set the model objective equal to a linear or quadratic expression (for multi-objective optimization,
see setObjectiveN).

192

Note that you can also modify the linear portion of a model objective using the Obj variable
attribute. If you wish to mix and match these two approaches, please note that this method replaces
the entire existing objective, while the Obj attribute can be used to modify individual linear terms.

void setObjective (GRBLinExpr linexpr,
int sense=0)

Arguments:
linexpr: New linear model objective.
sense (optional): Optimization sense (GRB_MINIMIZE for minimization, GRB_MAXIMIZE
for maximization). Omit this argument to use the ModelSense attribute value to determine
the sense.

void setObjective (GRBQuadExpr quadexpr,
int sense=0)

Arguments:
quadexpr: New quadratic model objective.
sense (optional): Optimization sense (GRB_MINIMIZE for minimization, GRB_MAXIMIZE
for maximization). Omit this argument to use the ModelSense attribute value.

GRBModel::setObjectiveN()

void setObjectiveN (GRBLinExpr expr,
int index,
int priority=0,
double weight=1,
double abstol=0,
double reltol=0,
string name="")

Set an alternative optimization objective equal to a linear expression.
Please refer to the discussion of Multiple Objectives for more information on the use of alter-

native objectives.
Note that you can also modify an alternative objective using the ObjN variable attribute. If

you wish to mix and match these two approaches, please note that this method replaces the entire
existing objective, while the ObjN attribute can be used to modify individual terms.

Arguments:
expr: New alternative objective.
index: Index for new objective. If you use an index of 0, this routine will change the primary
optimization objective.

priority: Priority for the alternative objective. This initializes the ObjNPriority attribute
for this objective.

weight: Weight for the alternative objective. This initializes the ObjNWeight attribute for
this objective.

193

abstol: Absolute tolerance for the alternative objective. This initializes the ObjNAbsTol
attribute for this objective.

reltol: Relative tolerance for the alternative objective. This initializes the ObjNRelTol
attribute for this objective.

name: Name of the alternative objective. This initializes the ObjNName attribute for this
objective.

GRBModel::setPWLObj()

Set a piecewise-linear objective function for a variable.
The arguments to this method specify a list of points that define a piecewise-linear objective

function for a single variable. Specifically, the x and y arguments give coordinates for the vertices
of the function.

For additional details on piecewise-linear objective functions, refer to this discussion.

void setPWLObj (GRBvar var,
int npoints,
double[] x,
double[] y)

Set the piecewise-linear objective function for a variable.
Arguments:

var: The variable whose objective function is being set.
npoints: Number of points that define the piecewise-linear function.
x: The x values for the points that define the piecewise-linear function. Must be in non-
decreasing order.

y: The y values for the points that define the piecewise-linear function.

GRBModel::singleScenarioModel()

Capture a single scenario from a multi-scenario model. Use the ScenarioNumber parameter to
indicate which scenario to capture.

The model on which this method is invoked must be a multi-scenario model, and the result will
be a single-scenario model.

GRBModel singleScenarioModel ()
Return value:

Model for a single scenario.

GRBModel::sync()

Wait for a previous asynchronous optimization call to complete.
Calling optimizeasync returns control to the calling routine immediately. The caller can perform

other computations while optimization proceeds, and can check on the progress of the optimization
by querying various model attributes. The sync call forces the calling program to wait until the

194

asynchronous optimization call completes. You must call sync before the corresponding model
object is deleted.

The sync call throws an exception if the optimization itself ran into any problems. In other
words, exceptions thrown by this method are those that optimize itself would have thrown, had
the original method not been asynchronous.

Note that you need to call sync even if you know that the asynchronous optimization has
already completed.

void sync ()

GRBModel::terminate()

Generate a request to terminate the current optimization. This method can be called at any time
during an optimization (from a callback, from another thread, from an interrupt handler, etc.).
Note that, in general, the request won’t be acted upon immediately.

When the optimization stops, the Status attribute will be equal to GRB_INTERRUPTED.

void terminate ()

GRBModel::tune()

Perform an automated search for parameter settings that improve performance. Upon completion,
this method stores the best parameter sets it found. The number of stored parameter sets can be
determined by querying the value of the TuneResultCount attribute. The actual settings can be
retrieved using getTuneResult.

Please refer to the parameter tuning section for details on the tuning tool.

void tune ()

GRBModel::update()

Process any pending model modifications.

void update ()

GRBModel::write()

This method is the general entry point for writing optimization data to a file. It can be used to
write optimization models, solutions vectors, basis vectors, start vectors, or parameter settings.
The type of data written is determined by the file suffix. File formats are described in the File
Format section.

Note that writing a model to a file will process all pending model modifications. However,
writing other model information (solutions, bases, etc.) will not.

195

Note also that when you write a Gurobi parameter file (PRM), both integer or double parameters
not at their default value will be saved, but no string parameter will be saved into the file.

void write (const string& filename)

Arguments:
filename: The name of the file to be written. The file type is encoded in the file name
suffix. Valid suffixes are .mps, .rew, .lp, or .rlp for writing the model itself, .ilp
for writing just the IIS associated with an infeasible model (see GRBModel::computeIIS
for further information), .sol for writing the current solution, .mst for writing a start
vector, .hnt for writing a hint file, .bas for writing an LP basis, .prm for writing modified
parameter settings, .attr for writing model attributes, or .json for writing solution
information in JSON format. If your system has compression utilities installed (e.g., 7z
or zip for Windows, and gzip, bzip2, or unzip for Linux or Mac OS), then the files can
be compressed, so additional suffixes of .gz, .bz2, or .7z are accepted.

196

3.3 GRBVar
Gurobi variable object. Variables are always associated with a particular model. You create a
variable object by adding a variable to a model (using GRBModel::addVar), rather than by using
a GRBVar constructor.

The methods on variable objects are used to get and set variable attributes. For example,
solution information can be queried by calling get(GRB_DoubleAttr_X). Note that you can also
query attributes for a set of variables at once. This is done using the attribute query method on
the GRBModel object (GRBModel::get).

GRBVar::get()
Query the value of a variable attribute.

char get (GRB_CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

double get (GRB_DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int get (GRB_IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

string get (GRB_StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

197

GRBVar::index()

int index ()
This method returns the current index, or order, of the variable in the underlying constraint

matrix.
Return value:

-2: removed, -1: not in model, otherwise: index of the variable in the model
Note that the index of a variable may change after subsequent model modifications.

GRBVar::sameAs()

bool sameAs (GRBVar var2)

Check whether two variable objects refer to the same variable.
Arguments:

var2: The other variable.
Return value:

Boolean result indicates whether the two variable objects refer to the same model variable.

GRBVar::set()
Set the value of a variable attribute.

void set (GRB_CharAttr attr,
char newvalue)

Set the value of a char-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_DoubleAttr attr,
double newvalue)

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_IntAttr attr,
int newvalue)

Set the value of an int-valued attribute.
Arguments:

attr: The attribute being modified.

198

newvalue: The desired new value of the attribute.

void set (GRB_StringAttr attr,
const string& newvalue)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

199

3.4 GRBConstr
Gurobi constraint object. Constraints are always associated with a particular model. You create
a constraint object by adding a constraint to a model (using GRBModel::addConstr), rather than
by using a GRBConstr constructor.

The methods on constraint objects are used to get and set constraint attributes. For example,
constraint right-hand sides can be queried by calling get(GRB_DoubleAttr_RHS). Note that you
can also query attributes for a set of constraints at once. This is done using the attribute query
method on the GRBModel object (GRBModel::get).

GRBConstr::get()
Query the value of a constraint attribute.

char get (GRB_CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

double get (GRB_DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int get (GRB_IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

string get (GRB_StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

200

GRBConstr::index()

int index ()
This method returns the current index, or order, of the constraint in the underlying constraint

matrix.
Note that the index of a constraint may change after subsequent model modifications.
Return value:

-2: removed, -1: not in model, otherwise: index of the constraint in the model

GRBConstr::sameAs()

bool sameAs (GRBConstr constr2)

Check whether two constraint objects refer to the same constraint.
Arguments:

constr2: The other constraint.
Return value:

Boolean result indicates whether the two constraint objects refer to the same model con-
straint.

GRBConstr::set()
Set the value of a constraint attribute.

void set (GRB_CharAttr attr,
char newvalue)

Set the value of a char-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_DoubleAttr attr,
double newvalue)

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_IntAttr attr,
int newvalue)

Set the value of an int-valued attribute.
Arguments:

201

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_StringAttr attr,
const string& newvalue)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

202

3.5 GRBQConstr
Gurobi quadratic constraint object. Quadratic constraints are always associated with a partic-
ular model. You create a quadratic constraint object by adding a constraint to a model (using
GRBModel::addQConstr), rather than by using a GRBQConstr constructor.

The methods on quadratic constraint objects are used to get and set quadratic constraint
attributes. For example, quadratic constraint right-hand sides can be queried by calling
get(GRB_DoubleAttr_QCRHS). Note, however, that it is generally more efficient to query attributes
for a set of constraints at once. This is done using the attribute query method on the GRBModel
object (GRBModel::get).

GRBQConstr::get()

Query the value of a quadratic constraint attribute.

char get (GRB_CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

double get (GRB_DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int get (GRB_IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

string get (GRB_StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

203

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBQConstr::set()
Set the value of a quadratic constraint attribute.

void set (GRB_CharAttr attr,
char newvalue)

Set the value of a char-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_DoubleAttr attr,
double newvalue)

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_StringAttr attr,
const string& newvalue)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

204

3.6 GRBSOS
Gurobi SOS constraint object. SOS constraints are always associated with a particular model.
You create an SOS object by adding an SOS constraint to a model (using GRBModel::addSOS),
rather than by using a GRBSOS constructor. Similarly, SOS constraints are removed using the
GRBModel::remove method.

An SOS constraint can be of type 1 or 2 (GRB_SOS_TYPE1 or GRB_SOS_TYPE2). A type 1 SOS
constraint is a set of variables for which at most one variable in the set may take a value other than
zero. A type 2 SOS constraint is an ordered set of variables where at most two variables in the set
may take non-zero values. If two take non-zero values, they must be contiguous in the ordered set.

SOS constraint objects have one attribute, IISSOS, which can be queried with the GRBSOS::get
method.

GRBSOS::get()
Query the value of an SOS attribute.

int get (GRB_IntAttr attr)

Arguments:
attr: The attribute being queried.

Return value:
The current value of the requested attribute.

205

3.7 GRBGenConstr
Gurobi general constraint object. General constraints are always associated with a particular
model. You create a general constraint object by adding a constraint to a model (using one of the
GRBModel::addGenConstrXxx methods), rather than by using a GRBGenConstr constructor.

The methods on general constraint objects are used to get and set general constraint attributes.
For example, general constraint types can be queried by calling
get(GRB_IntAttr_GenConstrType). Note, however, that it is generally more efficient to query
attributes for a set of constraints at once. This is done using the attribute query method on the
GRBModel object (GRBModel::get).

GRBGenConstr::get()
Query the value of a general constraint attribute.

double get (GRB_DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int get (GRB_IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

string get (GRB_StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBGenConstr::set()
Set the value of a general constraint attribute.

void set (GRB_DoubleAttr attr,
double newvalue)

206

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_IntAttr attr,
int newvalue)

Set the value of an int-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void set (GRB_StringAttr attr,
const string& newvalue)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

207

3.8 GRBExpr
Abstract base class for the GRBLinExpr and GRBQuadExpr classes. Expressions are used to build
objectives and constraints. They are temporary objects that typically have short lifespans.

GRBExpr::getValue()
Compute the value of an expression for the current solution.

double getValue ()
Return value:

Value of the expression for the current solution.

208

3.9 GRBLinExpr
Gurobi linear expression object. A linear expression consists of a constant term, plus a list of
coefficient-variable pairs that capture the linear terms. Linear expressions are used to build con-
straints. They are temporary objects that typically have short lifespans.

The GRBLinExpr class is a sub-class of the abstract base class GRBExpr.
You generally build linear expressions using overloaded operators. For example, if x is a GRB-

Var object, then x + 1 is a GRBLinExpr object. Expressions can be built from constants (e.g.,
expr = 0), variables (e.g., expr = 1 * x + 2 * y), or from other expressions (e.g., expr2 = 2 * expr1 + x,
or expr3 = expr1 + 2 * expr2). You can also modify existing expressions (e.g., expr += x, or
expr2 -= expr1).

Another option for building expressions is to use the addTerms method, which adds an array
of new terms at once. Terms can also be removed from an expression, using remove.

Note that the cost of building expressions depends heavily on the approach you use. While
you can generally ignore this issue when building small expressions, you should be aware of a few
efficiency issues when building large expressions:

• You should avoid using expr = expr + x in a loop. It will lead to runtimes that are quadratic
in the number of terms in the expression.

• Using expr += x (or expr -= x) is much more efficient than expr = expr + x. Building a
large expression by looping over += statements is reasonably efficient, but it isn’t the most
efficient approach.

• The most efficient way to build a large expression is to make a single call to addTerms.

To add a linear constraint to your model, you generally build one or two linear expression
objects (expr1 and expr2) and then use an overloaded comparison operator to build an argument
for GRBModel::addConstr. To give a few examples:

model.addConstr(expr1 <= expr2)
model.addConstr(expr1 == 1)
model.addConstr(2 ∗ x+ 3 ∗ y <= 4)

Once you add a constraint to your model, subsequent changes to the expression object you used to
build the constraint will not change the constraint (you would use GRBModel::chgCoeff for that).

Individual terms in a linear expression can be queried using the getVar, getCoeff, and getCon-
stant methods. You can query the number of terms in the expression using the size method.

Note that a linear expression may contain multiple terms that involve the same variable. These
duplicate terms are merged when creating a constraint from an expression, but they may be visible
when inspecting individual terms in the expression (e.g., when using getVar).

GRBLinExpr()
Linear expression constructor. Create a constant expression or an expression with one term.

GRBLinExpr GRBLinExpr (double constant=0.0)

209

Create a constant linear expression.
Arguments:

constant (optional): Constant value for expression.
Return value:

A constant expression object.

GRBLinExpr GRBLinExpr (GRBVar var,
double coeff=1.0)

Create an expression with one term.
Arguments:

var: Variable for expression term.
coeff (optional): Coefficient for expression term.

Return value:
An expression object containing one linear term.

GRBLinExpr::addTerms()

Add new terms into a linear expression.

void addTerms (const double* coeffs,
const GRBVar* vars,
int count)

Arguments:
coeffs: Coefficients for new terms.
vars: Variables for new terms.
count: Number of terms to add to the expression.

GRBLinExpr::clear()

Set a linear expression to 0.
You should use the overloaded expr = 0 instead. The clear method is mainly included for

consistency with our interfaces to non-overloaded languages.

void clear ()

GRBLinExpr::getConstant()

Retrieve the constant term from a linear expression.

double getConstant ()
Return value:

Constant from expression.

210

GRBLinExpr::getCoeff()

Retrieve the coefficient from a single term of the expression.

double getCoeff (int i)

Arguments:
i: Index for coefficient of interest.

Return value:
Coefficient for the term at index i in the expression.

GRBLinExpr::getValue()

Compute the value of a linear expression for the current solution.

double getValue ()
Return value:

Value of the expression for the current solution.

GRBLinExpr::getVar()

Retrieve the variable object from a single term of the expression.

GRBVar getVar (int i)

Arguments:
i: Index for term of interest.

Return value:
Variable for the term at index i in the expression.

GRBLinExpr::operator=

Set an expression equal to another expression.

GRBLinExpr operator= (const GRBLinExpr& rhs)

Arguments:
rhs: Source expression.

Return value:
New expression object.

211

GRBLinExpr::operator+

Add one expression into another, producing a result expression.

GRBLinExpr operator+ (const GRBLinExpr& rhs)

Arguments:
rhs: Expression to add.

Return value:
Expression object which is equal the sum of the invoking expression and the argument
expression.

GRBLinExpr::operator-

Subtract one expression from another, producing a result expression.

GRBLinExpr operator- (const GRBLinExpr& rhs)

Arguments:
rhs: Expression to subtract.

Return value:
Expression object which is equal the invoking expression minus the argument expression.

GRBLinExpr::operator+=

Add an expression into the invoking expression.

void operator+= (const GRBLinExpr& expr)

Arguments:
expr: Expression to add.

GRBLinExpr::operator-=

Subtract an expression from the invoking expression.

void operator-= (const GRBLinExpr& expr)

Arguments:
expr: Expression to subtract.

212

GRBLinExpr::operator*=
Multiply the invoking expression by a constant.

void operator*= (double multiplier)

Arguments:
multiplier: Constant multiplier.

GRBLinExpr::remove()
Remove a term from a linear expression.

void remove (int i)

Remove the term stored at index i of the expression.
Arguments:

i: The index of the term to be removed.

boolean remove (GRBVar var)

Remove all terms associated with variable var from the expression.
Arguments:

var: The variable whose term should be removed.
Return value:

Returns true if the variable appeared in the linear expression (and was removed).

GRBLinExpr::size()
Retrieve the number of terms in the linear expression (not including the constant).

unsigned int size ()
Return value:

Number of terms in the expression.

213

3.10 GRBQuadExpr
Gurobi quadratic expression object. A quadratic expression consists of a linear expression, plus a
list of coefficient-variable-variable triples that capture the quadratic terms. Quadratic expressions
are used to build quadratic objective functions and quadratic constraints. They are temporary
objects that typically have short lifespans.

The GRBQuadExpr class is a sub-class of the abstract base class GRBExpr.
You generally build quadratic expressions using overloaded operators. For example, if x is a

GRBVar object, then x * x is a GRBQuadExpr object. Expressions can be built from constants
(e.g., expr = 0), variables (e.g., expr = 1 * x *x + 2 * x * y), or from other expressions (e.g.,
expr2 = 2 * expr1 + x * x, or expr3 = expr1 + 2 * expr2). You can also modify existing
expressions (e.g., expr += x * x, or expr2 -= expr1).

The other option for building expressions is to start with an empty expression (using the GRB-
QuadExpr constructor), and then add terms. Terms can be added individually (using addTerm)
or in groups (using addTerms). Terms can also be removed from an expression (using remove).

Note that the cost of building expressions depends heavily on the approach you use. While
you can generally ignore this issue when building small expressions, you should be aware of a few
efficiency issues when building large expressions:

• You should avoid using expr = expr + x*x in a loop. It will lead to runtimes that are
quadratic in the number of terms in the expression.

• Using expr += x*x (or expr -= x*x) is much more efficient than expr = expr + x*x. Build-
ing a large expression by looping over += statements is reasonably efficient, but it isn’t the
most efficient approach.

• The most efficient way to build a large expression is to make a single call addTerms.

To add a quadratic constraint to your model, you generally build one or two quadratic expression
objects (qexpr1 and qexpr2) and then use an overloaded comparison operator to build an argument
for GRBModel::addQConstr. To give a few examples:

model.addQConstr(qexpr1 <= qexpr2)
model.addQConstr(qexpr1 == 1)
model.addQConstr(2 ∗ x ∗ x+ 3 ∗ y ∗ y <= 4)

Once you add a constraint to your model, subsequent changes to the expression object you used to
build the constraint will have no effect on that constraint.

Individual terms in a quadratic expression can be queried using the getVar1, getVar2, and
getCoeff methods. You can query the number of quadratic terms in the expression using the size
method. To query the constant and linear terms associated with a quadratic expression, first obtain
the linear portion of the quadratic expression using getLinExpr, and then use the getConstant,
getCoeff, or getVar on the resulting GRBLinExpr object.

Note that a quadratic expression may contain multiple terms that involve the same variable
pair. These duplicate terms are merged when creating the model objective from an expression, but
they may be visible when inspecting individual terms in the expression (e.g., when using getVar1
and getVar2).

214

GRBQuadExpr()
Quadratic expression constructor. Create a constant expression or an expression with one term.

GRBQuadExpr GRBQuadExpr (double constant=0.0)

Create a constant quadratic expression.
Arguments:

constant (optional): Constant value for expression.
Return value:

A constant expression object.

GRBQuadExpr GRBQuadExpr (GRBVar var,
double coeff=1.0)

Create an expression with one term.
Arguments:

var: Variable for expression term.
coeff (optional): Coefficient for expression term.

Return value:
An expression object containing one quadratic term.

GRBQuadExpr GRBQuadExpr (GRBLinExpr linexpr)

Initialize a quadratic expression from an existing linear expression.
Arguments:

orig: Existing linear expression to copy.
Return value:

Quadratic expression object whose initial value is taken from the input linear expression.

GRBQuadExpr::addTerm()
Add a single new term into a quadratic expression.

void addTerm (double coeff,
GRBVar var)

Add a new linear term into a quadratic expression.
Arguments:

coeff: Coefficient for new linear term.
var: Variable for new linear term.

void addTerm (double coeff,
GRBVar var1,
GRBVar var2)

215

Add a new quadratic term into a quadratic expression.
Arguments:

coeff: Coefficient for new quadratic term.
var1: Variable for new quadratic term.
var2: Variable for new quadratic term.

GRBQuadExpr::addTerms()
Add new terms into a quadratic expression.

void addTerms (const double* coeffs,
const GRBVar* vars,
int count)

Add new linear terms into a quadratic expression.
Arguments:

coeffs: Coefficients for new linear terms.
vars: Variables for new linear terms.
count: Number of linear terms to add to the quadratic expression.

void addTerms (const double* coeffs,
const GRBVar* vars1,
const GRBVar* vars2,
int count)

Add new quadratic terms into a quadratic expression.
Arguments:

coeffs: Coefficients for new quadratic terms.
vars1: First variables for new quadratic terms.
vars2: Second variables for new quadratic terms.
count: Number of quadratic terms to add to the quadratic expression.

GRBQuadExpr::clear()
Set a quadratic expression to 0.

You should use the overloaded expr = 0 instead. The clear method is mainly included for
consistency with our interfaces to non-overloaded languages.

void clear ()

GRBQuadExpr::getCoeff()
Retrieve the coefficient from a single quadratic term of the quadratic expression.

double getCoeff (int i)

216

Arguments:
i: Index for coefficient of interest.

Return value:
Coefficient for the quadratic term at index i in the quadratic expression.

GRBQuadExpr::getLinExpr()

A quadratic expression is represented as a linear expression, plus a list of quadratic terms. This
method retrieves the linear expression associated with the quadratic expression.

GRBLinExpr getLinExpr ()
Return value:

Linear expression associated with the quadratic expression.

GRBQuadExpr::getValue()

Compute the value of a quadratic expression for the current solution.

double getValue ()
Return value:

Value of the expression for the current solution.

GRBQuadExpr::getVar1()

Retrieve the first variable object associated with a single quadratic term from the expression.

GRBVar getVar1 (int i)

Arguments:
i: Index for term of interest.

Return value:
First variable for the quadratic term at index i in the quadratic expression.

GRBQuadExpr::getVar2()

Retrieve the second variable object associated with a single quadratic term from the expression.

GRBVar getVar2 (int i)

Arguments:
i: Index for term of interest.

Return value:
Second variable for the quadratic term at index i in the quadratic expression.

217

GRBQuadExpr::operator=

Set a quadratic expression equal to another quadratic expression.

GRBQuadExpr operator= (const GRBQuadExpr& rhs)

Arguments:
rhs: Source quadratic expression.

Return value:
New quadratic expression object.

GRBQuadExpr::operator+

Add one expression into another, producing a result expression.

GRBQuadExpr operator+ (const GRBQuadExpr& rhs)

Arguments:
rhs: Expression to add.

Return value:
Expression object which is equal the sum of the invoking expression and the argument
expression.

GRBQuadExpr::operator-

Subtract one expression from another, producing a result expression.

GRBQuadExpr operator- (const GRBQuadExpr& rhs)

Arguments:
rhs: Expression to subtract.

Return value:
Expression object which is equal the invoking expression minus the argument expression.

GRBQuadExpr::operator+=

Add an expression into the invoking expression.

void operator+= (const GRBQuadExpr& expr)

Arguments:
expr: Expression to add.

218

GRBQuadExpr::operator-=
Subtract an expression from the invoking expression.

void operator-= (const GRBQuadExpr& expr)

Arguments:
expr: Expression to subtract.

GRBQuadExpr::operator*=
Multiply the invoking expression by a constant.

void operator*= (double multiplier)

Arguments:
multiplier: Constant multiplier.

GRBQuadExpr::remove()
Remove a quadratic term from a quadratic expression.

void remove (int i)

Remove the quadratic term stored at index i of the expression.
Arguments:

i: The index of the term to be removed.

boolean remove (GRBVar var)

Remove all quadratic terms associated with variable var from the quadratic expression.
Arguments:

var: The variable whose term should be removed.
Return value:

Returns true if the variable appeared in the quadratic expression (and was removed).

GRBQuadExpr::size()
Retrieve the number of quadratic terms in the quadratic expression.

unsigned int size ()
Return value:

Number of quadratic terms in the expression.

219

3.11 GRBTempConstr
Gurobi temporary constraint object. Objects of this class are created as intermediate results when
building constraints using overloaded operators. There are no member functions on this class.
Instead, GRBTempConstr objects are created by a set of non-member functions: ==, <=, and >=.
You will generally never store objects of this class in your own variables.

Consider the following examples:

model.addConstr(x + y <= 1);
model.addQConstr(x*x + y*y <= 1);

The overloaded <= operator creates an object of type GRBTempContr, which is then immediately
passed to method GRBModel::addConstr or GRBModel::addQConstr.

220

3.12 GRBColumn
Gurobi column object. A column consists of a list of coefficient, constraint pairs. Columns are used
to represent the set of constraints in which a variable participates, and the associated coefficients.
They are temporary objects that typically have short lifespans.

You generally build columns by starting with an empty column (using the GRBColumn con-
structor), and then adding terms. Terms can be added individually, using addTerm, or in groups,
using addTerms. Terms can also be removed from a column, using remove.

Individual terms in a column can be queried using the getConstr, and getCoeff methods. You
can query the number of terms in the column using the size method.

GRBColumn()
Column constructor. Create an empty column.

GRBColumn GRBColumn ()
Return value:

An empty column object.

GRBColumn::addTerm()
Add a single term into a column.

void addTerm (double coeff,
GRBConstr constr)

Arguments:
coeff: Coefficient for new term.
constr: Constraint for new term.

GRBColumn::addTerms()
Add new terms into a column.

void addTerms (const double* coeffs,
const GRBConstr* constrs,
int count)

Add a list of terms into a column.
Arguments:

coeffs: Coefficients for new terms.
constrs: Constraints for new terms.
count: Number of terms to add to the column.

GRBColumn::clear()
Remove all terms from a column.

void clear ()

221

GRBColumn::getCoeff()
Retrieve the coefficient from a single term in the column.

double getCoeff (int i)

Return value:
Coefficient for the term at index i in the column.

GRBColumn::getConstr()
Retrieve the constraint object from a single term in the column.

GRBConstr getConstr (int i)

Return value:
Constraint for the term at index i in the column.

GRBColumn::remove()
Remove a single term from a column.

void remove (int i)

Remove the term stored at index i of the column.
Arguments:

i: The index of the term to be removed.

boolean remove (GRBConstr constr)

Remove the term associated with constraint constr from the column.
Arguments:

constr: The constraint whose term should be removed.
Return value:

Returns true if the constraint appeared in the column (and was removed).

GRBColumn::size()
Retrieve the number of terms in the column.

unsigned int size ()
Return value:

Number of terms in the column.

222

3.13 GRBCallback
Gurobi callback class. This is an abstract class. To implement a callback, you should create a
subclass of this class and implement a callback() method. If you pass an object of this subclass
to method GRBModel::setCallback before calling GRBModel::optimize, the callback() method
of the class will be called periodically. Depending on where the callback is called from, you can
obtain various information about the progress of the optimization.

Note that this class contains one protected int member variable: where. You can query this
variable from your callback() method to determine where the callback was called from.

Gurobi callbacks can be used both to monitor the progress of the optimization and to modify
the behavior of the Gurobi optimizer. A simple user callback function might call the GRBCall-
back::getIntInfo or GRBCallback::getDoubleInfo methods to produce a custom display, or perhaps
to terminate optimization early (using GRBCallback::abort). More sophisticated MIP callbacks
might use GRBCallback::getNodeRel or GRBCallback::getSolution to retrieve values from the so-
lution to the current node, and then use GRBCallback::addCut or GRBCallback::addLazy to add a
constraint to cut off that solution, or GRBCallback::setSolution to import a heuristic solution built
from that solution. For multi-objective problems, you might use GRBCallback::stopOneMultiObj
to interrupt the optimization process of one of the optimization steps in a multi-objective MIP
problem without stopping the hierarchical optimization process.

When solving a model using multiple threads, the user callback is only ever called from a single
thread, so you don’t need to worry about the thread-safety of your callback.

Note that changing parameters from within a callback is not supported, doing so may lead to
undefined behavior.

You can look at the callback_c++.cpp example for details of how to use Gurobi callbacks.

GRBCallback()

Callback constructor.

GRBCallback GRBCallback ()
Return value:

A callback object.

GRBCallback::abort()

Abort optimization. When the optimization stops, the Status attribute will be equal to
GRB_INTERRUPTED.

void abort ()

GRBCallback::addCut()

Add a cutting plane to the MIP model from within a callback function. Note that this method can
only be invoked when the where member variable is equal to GRB_CB_MIPNODE (see the Callback
Codes section for more information).

223

Cutting planes can be added at any node of the branch-and-cut tree. However, they should be
added sparingly, since they increase the size of the relaxation model that is solved at each node
and can significantly degrade node processing speed.

Cutting planes are typically used to cut off the current relaxation solution. To retrieve the
relaxation solution at the current node, you should first call getNodeRel.

You should consider setting parameter PreCrush to value 1 when adding your own cuts. This
setting shuts off a few presolve reductions that can sometimes prevent your cut from being applied
to the presolved model (which would result in your cut being silently ignored).

Note that cutting planes added through this method must truly be cutting planes -- they can
cut off continuous solutions, but they may not cut off integer solutions that respect the original
constraints of the model. Ignoring this restriction will lead to incorrect solutions.

void addCut (const GRBLinExpr& lhsExpr,
char sense,
double rhsVal)

Arguments:
lhsExpr: Left-hand side expression for new cutting plane.
sense: Sense for new cutting plane (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_EQUAL).
rhsVal: Right-hand side value for new cutting plane.

void addCut (GRBTempConstr& tc)

Arguments:
tc: Temporary constraint object, created using an overloaded comparison operator. See
GRBTempConstr for more information.

GRBCallback::addLazy()

Add a lazy constraint to the MIP model from within a callback function. Note that this method can
only be invoked when the where member variable is equal to GRB_CB_MIPNODE or GRB_CB_MIPSOL
(see the Callback Codes section for more information).

Lazy constraints are typically used when the full set of constraints for a MIP model is too large
to represent explicitly. By only including the constraints that are actually violated by solutions
found during the branch-and-cut search, it is sometimes possible to find a proven optimal solution
while only adding a fraction of the full set of constraints.

You would typically add a lazy constraint by first querying the current node solution (by calling
getSolution from a GRB_CB_MIPSOL callback, or getNodeRel from a GRB_CB_MIPNODE callback), and
then calling addLazy() to add a constraint that cuts off the solution. Gurobi guarantees that you
will have the opportunity to cut off any solutions that would otherwise be considered feasible.

Your callback should be prepared to cut off solutions that violate any of your lazy constraints,
including those that have already been added. Node solutions will usually respect previously added
lazy constraints, but not always.

Note that you must set the LazyConstraints parameter if you want to use lazy constraints.

224

void addLazy (const GRBLinExpr& lhsExpr,
char sense,
double rhsVal)

Arguments:
lhsExpr: Left-hand side expression for new lazy constraint.
sense: Sense for new lazy constraint (GRB_LESS_EQUAL, GRB_EQUAL, or GRB_GREATER_-
EQUAL).

rhsVal: Right-hand side value for new lazy constraint.

void addLazy (GRBTempConstr& tc)

Arguments:
tc: Temporary constraint object, created using an overloaded comparison operator. See
GRBTempConstr for more information.

GRBCallback::getDoubleInfo()

Request double-valued callback information. The available information depends on the value of the
where member. For information on possible values of where, and the double-valued information
that can be queried for different values of where, please refer to the Callback section.

double getDoubleInfo (int what)

Arguments:
what: Information requested (refer the list of Gurobi Callback Codes for possible values).

Return value:
Value of requested callback information.

GRBCallback::getIntInfo()

Request int-valued callback information. The available information depends on the value of the
where member. For information on possible values of where, and the int-valued information that
can be queried for different values of where, please refer to the Callback section.

int getIntInfo (int what)

Arguments:
what: Information requested (refer to the list of Gurobi Callback Codes for possible values).

Return value:
Value of requested callback information.

225

GRBCallback::getNodeRel()

Retrieve values from the node relaxation solution at the current node. Only available when the
where member variable is equal to GRB_CB_MIPNODE, and GRB_CB_MIPNODE_STATUS is equal to
GRB_OPTIMAL.

double getNodeRel (GRBVar v)

Arguments:
v: The variable whose value is desired.

Return value:
The value of the specified variable in the node relaxation for the current node.

double* getNodeRel (const GRBVar* xvars,
int len)

Arguments:
xvars: The list of variables whose values are desired.
len: The number of variables in the list.

Return value:
The values of the specified variables in the node relaxation for the current node. Note that
the result is heap-allocated, and must be returned to the heap by the user.

GRBCallback::getSolution()

Retrieve values from the current solution vector. Only available when the where member variable
is equal to GRB_CB_MIPSOL or GRB_CB_MULTIOBJ.

double getSolution (GRBVar v)

Arguments:
v: The variable whose value is desired.

Return value:
The value of the specified variable in the current solution vector.

double* getSolution (const GRBVar* xvars,
int len)

Arguments:
xvars: The list of variables whose values are desired.
len: The number of variables in the list.

Return value:
The values of the specified variables in the current solution. Note that the result is heap-
allocated, and must be returned to the heap by the user.

226

GRBCallback::getStringInfo()
Request string-valued callback information. The available information depends on the value of the
where member. For information on possible values of where, and the string-valued information
that can be queried for different values of where, please refer to the Callback section.

string getStringInfo (int what)

Arguments:
what: Information requested (refer to the list of Gurobi Callback Codes for possible values).

Return value:
Value of requested callback information.

GRBCallback::setSolution()
Import solution values for a heuristic solution. Only available when the where member variable is
equal to GRB_CB_MIPNODE.

When you specify a heuristic solution from a callback, variables initially take undefined values.
You should use this method to specify variable values. You can make multiple calls to setSolution
from one callback invocation to specify values for multiple sets of variables. After the callback, if
values have been specified for any variables, the Gurobi optimizer will try to compute a feasible
solution from the specified values, possibly filling in values for variables whose values were left unde-
fined. You can also optionally call useSolution within your callback function to try to immediately
compute a feasible solution from the specified values.

void setSolution (GRBVar v,
double val)

Arguments:
v: The variable whose values is being set.
val: The value of the variable in the new solution.

void setSolution (const GRBVar* xvars,
const double* sol,
int len)

Arguments:
xvars: The variables whose values are being set.
sol: The values of the variables in the new solution.
len: The number of variables.

GRBCallback::stopOneMultiObj()
Interrupt the optimization process of one of the optimization steps in a multi-objective MIP problem
without stopping the hierarchical optimization process. Only available for multi-objective MIP
models and when the where member variable is not equal to GRB_CB_MULTIOBJ (see the Callback
Codes section for more information).

227

You would typically stop a multi-objective optimization step by querying the last finished num-
ber of multi-objectives steps, and using that number to stop the current step and move on to the
next hierarchical objective (if any) as shown in the following example:

Example usage:

#include <ctime>

class mycallback: public GDBCallback
{
public:

int objcnt = 0;
time_t starttime = time();

protected:
void callback () {
if (where == GRB_CB_MULTIOBJ) {

/* get current objective number */
objcnt = getIntInfo(GRB_CB_MULTIOBJ_OBJCNT);

/* reset start time to current time */
starttime = time();

} else if (time() - startime > BIG ||
/* takes too long or good enough */) {

/* stop only this optimization step */
stopOneMultiObj(objcnt);

}
}

}

You should refer to the section on Multiple Objectives for information on how to specify multiple
objective functions and control the trade-off between them.

void stopOneMultiObj (int objcnt)

Arguments:
objnum: The number of the multi-objective optimization step to interrupt. For processes
running locally, this argument can have the special value -1, meaning to stop the current
step.

GRBCallback::useSolution()

Once you have imported solution values using setSolution, you can optionally call useSolution to
immediately use these values to try to compute a heuristic solution.

double useSolution ()

228

Return value:
The objective value for the solution obtained from your solution values (or GRB_INFINITY
if no improved solution is found).

229

3.14 GRBException
Gurobi exception object. Exceptions can be thrown by nearly every method in the Gurobi C++
API.

GRBException()
Exception constructor.

GRBException GRBException (int errcode=0)

Create a Gurobi exception.
Arguments:

errcode (optional): Error code for exception.
Return value:

An exception object.

GRBException GRBException (string errmsg,
int errcode=0)

Create a Gurobi exception.
Arguments:

errmsg: Error message for exception.
errcode (optional): Error code for exception.

Return value:
An exception object.

GRBException::getErrorCode()
Retrieve the error code associated with a Gurobi exception.

int getErrorCode ()
Return value:

The error code associated with the exception.

GRBException::getMessage()
Retrieve the error message associated with a Gurobi exception.

const string getMessage ()
Return value:

The error message associated with the exception.

230

3.15 GRBBatch
Gurobi batch object. Batch optimization is a feature available with the Gurobi Cluster Manager.
It allows a client program to build an optimization model, submit it to a Compute Server cluster
(through a Cluster Manager), and later check on the status of the model and retrieve its solution.
For more information, please refer to the Batch Optimization section.

Commonly used methods on batch objects include update (refresh attributes from the Cluster
Manager), abort (abort execution of a batch request), retry (retry optimization for an interrupted
or failed batch), discard (remove the batch request and all related information from the Cluster
Manager), and getJSONSolution (query solution information for the batch request).

These methods are built on top of calls to the Cluster Manager REST API. They are meant to
simplify such calls, but note that you always have the option of calling the REST API directly.

Batch objects have four attributes:

• BatchID: Unique ID for the batch request.

• BatchStatus: Last batch status.

• BatchErrorCode: Last error code.

• BatchErrorMessage: Last error message.

You can access their values by using get. Note that all Batch attributes are locally cached, and are
only updated when you create a client-side batch object or when you explicitly update this cache,
which can done by calling update.

GRBBatch()

Constructor for GRBBatch.
Given a BatchID, as returned by optimizeBatch, and a Gurobi environment that can connect to

the appropriate Cluster Manager (i.e., one where parameters CSManager, UserName, and Server-
Password have been set appropriately), this function returns a GRBBatch object. With it, you
can query the current status of the associated batch request and, once the batch request has been
processed, you can query its solution. Please refer to the Batch Optimization section for details
and examples.

GRBBatch GRBBatch (GRBEnv& env,
string& batchID)

Arguments:
env: The environment in which the new batch object should be created.
batchID: ID of the batch request for which you want to access status and other information.

Return value:
New batch object.

Example usage:

GRBBatch batch = GRBBatch(env, batchID);

231

GRBBatch::abort()
This method instructs the Cluster Manager to abort the processing of this batch request, chang-
ing its status to ABORTED. Please refer to the Batch Status Codes section for further details.
void abort ()

Example usage:

// Abort this batch if it is taking too long
time_t curtime = time(NULL);
if (curtime - starttime > maxwaittime) {

batch ->abort ();
break ;

}

GRBBatch::discard()
This method instructs the Cluster Manager to remove all information related to the batch request
in question, including the stored solution if available. Further queries for the associated batch
request will fail with error code GRB_ERROR_DATA_NOT_AVAILABLE. Use this function with care, as
the removed information can not be recovered later on. void discard ()

Example usage:

void
batchdiscard (string batchID)

GRBBatch::getJSONSolution()
This method retrieves the solution of a completed batch request from a Cluster Manager. The
solution is returned as a JSON solution string. For this call to succeed, the status of the batch
request must be COMPLETED. Please refer to the Batch Status Codes section for further details.
string getJSONSolution () Return value:

The requested solution in JSON format.
Example usage:

// Pretty printing the general solution information
cout << "JSON solution :" << batch -> getJSONSolution () << endl;

GRBBatch::get()
Query the value of an attribute.

int get (GRB_IntAttr attr)

232

Query the value of an int-valued batch attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

string get (GRB_StringAttr attr)

Query the value of a string-valued batch attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBBatch::retry()

This method instructs the Cluster Manager to retry optimization of a failed or aborted batch
request, changing its status to SUBMITTED. Please refer to the Batch Status Codes section for
further details. void retry ()

Example usage:

// If the batch failed , we try again
if (BatchStatus == GRB_BATCH_FAILED)

batch ->retry ();

GRBBatch::update()

All Batch attribute values are cached locally, so queries return the value received during the last
communication with the Cluster Manager. This method refreshes the values of all attributes with
the values currently available in the Cluster Manager (which involves network communication).
void update ()

Example usage:

// Update the resident attribute cache of the Batch object with the
// latest values from the cluster manager .
batch -> update ();
BatchStatus = batch ->get(GRB_IntAttr_BatchStatus);

233

GRBBatch::writeJSONSolution()
This method returns the stored solution of a completed batch request from a Cluster Manager. The
solution is returned in a gzip-compressed JSON file. The file name you provide must end with a
.json.gz extension. The JSON format is described in the JSON solution format section. Note that
for this call to succeed, the status of the batch request must be COMPLETED. Please refer to the Batch
Status Codes section for further details. void writeJSONSolution (string& filename)

Arguments:
filename: Name of file where the solution should be stored (in JSON format).

Example usage:

// Write the full JSON solution string to a file
batch -> writeJSONSolution ("batch -sol.json.gz");

234

3.16 Non-Member Functions
Several Gurobi C++ interface functions aren’t member functions on a particular object.

operator==

Create an equality constraint

GRBTempConstr operator== (GRBQuadExpr lhsExpr,
GRBQuadExpr rhsExpr)

Arguments:
lhsExpr: Left-hand side of equality constraint.
rhsExpr: Right-hand side of equality constraint.

Return value:
A constraint of type GRBTempConstr. The result is typically immediately passed to GRB-
Model::addConstr.

operator<=

Create an inequality constraint

GRBTempConstr operator<= (GRBQuadExpr lhsExpr,
GRBQuadExpr rhsExpr)

Arguments:
lhsExpr: Left-hand side of inequality constraint.
rhsExpr: Right-hand side of inequality constraint.

Return value:
A constraint of type GRBTempConstr. The result is typically immediately passed to GRB-
Model::addConstr or GRBModel::addQConstr.

operator>=

Create an inequality constraint

GRBTempConstr operator>= (GRBQuadExpr lhsExpr,
GRBQuadExpr rhsExpr)

Arguments:
lhsExpr: Left-hand side of inequality constraint.
rhsExpr: Right-hand side of inequality constraint.

Return value:
A constraint of type GRBTempConstr. The result is typically immediately passed to GRB-
Model::addConstr or GRBModel::addQConstr.

235

operator+
Overloaded operator on expression objects.

GRBLinExpr operator+ (const GRBLinExpr& expr1,
const GRBLinExpr& expr2)

Add a pair of expressions.
Arguments:

expr1: First expression to be added.
expr2: Second expression to be added.

Return value:
Sum expression.

GRBLinExpr operator+ (const GRBLinExpr& expr)

Allow plus sign to be used before an expression.
Arguments:

expr: Expression.
Return value:

Result expression.

GRBLinExpr operator+ (GRBVar x,
GRBVar y)

Add a pair of variables.
Arguments:

x: First variable to be added.
y: Second variable to be added.

Return value:
Sum expression.

GRBQuadExpr operator+ (const GRBQuadExpr& expr1,
const GRBQuadExpr& expr2)

Add a pair of expressions.
Arguments:

expr1: First expression to be added.
expr2: Second expression to be added.

Return value:
Sum expression.

GRBQuadExpr operator+ (const GRBQuadExpr& expr)

Allow plus sign to be used before an expression.
Arguments:

236

expr: Expression.
Return value:

Result expression.

operator-

Overloaded operator on expression objects.

GRBLinExpr operator- (const GRBLinExpr& expr1,
const GRBLinExpr& expr2)

Subtract one expression from another.
Arguments:

expr1: Start expression.
expr2: Expression to be subtracted.

Return value:
Difference expression.

GRBLinExpr operator- (const GRBLinExpr& expr)

Negate an expression.
Arguments:

expr: Expression.
Return value:

Negation of expression.

GRBQuadExpr operator- (const GRBQuadExpr& expr1,
const GRBQuadExpr& expr2)

Subtract one expression from another.
Arguments:

expr1: Start expression.
expr2: Expression to be subtracted.

Return value:
Difference expression.

GRBQuadExpr operator- (const GRBQuadExpr& expr)

Negate an expression.
Arguments:

expr: Expression.
Return value:

Negation of expression.

237

operator*
Overloaded operator on expression objects.

GRBLinExpr operator* (GRBVar x,
double a)

Multiply a variable and a constant.
Arguments:

x: Variable.
a: Constant multiplier.

Return value:
Expression that represents the result of multiplying the variable by a constant.

GRBLinExpr operator* (double a,
GRBVar x)

Multiply a variable and a constant.
Arguments:

a: Constant multiplier.
x: Variable.

Return value:
Expression that represents the result of multiplying the variable by a constant.

GRBLinExpr operator* (const GRBLinExpr& expr,
double a)

Multiply an expression and a constant.
Arguments:

expr: Expression.
a: Constant multiplier.

Return value:
Expression that represents the result of multiplying the expression by a constant.

GRBLinExpr operator* (double a,
const GRBLinExpr& expr)

Multiply an expression and a constant.
Arguments:

a: Constant multiplier.
expr: Expression.

Return value:
Expression that represents the result of multiplying the expression by a constant.

GRBQuadExpr operator* (const GRBQuadExpr& expr,
double a)

Multiply an expression and a constant.

238

Arguments:
expr: Expression.
a: Constant multiplier.

Return value:
Expression that represents the result of multiplying the expression by a constant.

GRBQuadExpr operator* (double a,
const GRBQuadExpr& expr)

Multiply an expression and a constant.
Arguments:

a: Constant multiplier.
expr: Expression.

Return value:
Expression that represents the result of multiplying the expression by a constant.

GRBQuadExpr operator* (GRBVar x,
GRBVar y)

Multiply a pair of variables.
Arguments:

x: First variable.
y: Second variable.

Return value:
Expression that represents the result of multiplying the argument variables.

GRBQuadExpr operator* (GRBVar var,
const GRBLinExpr& expr)

Multiply an expression and a variable.
Arguments:

var: Variable.
expr: Expression.

Return value:
Expression that represents the result of multiplying the expression by a variable.

GRBQuadExpr operator* (const GRBLinExpr& expr,
GRBVar var)

Multiply an expression and a variable.
Arguments:

var: Variable.
expr: Expression.

Return value:
Expression that represents the result of multiplying the expression by a variable.

GRBQuadExpr operator* (const GRBLinExpr& expr1,
const GRBLinExpr& expr2)

239

Multiply a pair of expressions.
Arguments:

expr1: First expression.
expr2: Second expression.

Return value:
Expression that represents the result of multiplying the argument expressions.

operator/
Overloaded operator to divide a variable or expression by a constant.

GRBLinExpr operator/ (GRBVar x,
double a)

Arguments:
x: Variable.
a: Constant divisor.

Return value:
Expression that represents the result of dividing the variable by a constant.

GRBLinExpr operator/ (const GRBLinExpr& expr,
double a)

Arguments:
expr: Expression.
a: Constant divisor.

Return value:
Expression that represents the result of dividing the expression by a constant.

GRBLinExpr operator/ (const GRBQuadExpr& expr,
double a)

Arguments:
expr: Expression.
a: Constant divisor.

Return value:
Expression that represents the result of dividing the expression by a constant.

240

3.17 Attribute Enums
These enums are used to get or set Gurobi attributes. The complete list of attributes can be found
in the Attributes section.

GRB_CharAttr
This enum is used to get or set char-valued attributes (through GRBModel::get or GRBModel::set).
Please refer to the Attributes section to see a list of all char attributes and their functions.

GRB_DoubleAttr
This enum is used to get or set double-valued attributes (through GRBModel::get or GRBModel::set).
Please refer to the Attributes section to see a list of all double attributes and their functions.

GRB_IntAttr
This enum is used to get or set int-valued attributes (through GRBModel::get or GRBModel::set).
Please refer to the Attributes section to see a list of all int attributes and their functions.

GRB_StringAttr
This enum is used to get or set string-valued attributes (through GRBModel::get or GRBModel::set).
Please refer to the Attributes section to see a list of all string attributes and their functions.

241

3.18 Parameter Enums
These enums are used to get or set Gurobi parameters. The complete of parameters can be found
in the Parameters section.

GRB_DoubleParam
This enum is used to get or set double-valued parameters (through GRBModel::get, GRBModel::set.
GRBEnv::get, or GRBEnv::set). Please refer to the Parameters section to see a list of all double
parameters and their functions.

GRB_IntParam
This enum is used to get or set int-valued parameters (through GRBModel::get, GRBModel::set.
GRBEnv::get, or GRBEnv::set). Please refer to the Parameters section to see a list of all int
parameters and their functions.

GRB_StringParam
This enum is used to get or set string-valued parameters (through GRBModel::get, GRBModel::set,
GRBEnv::get, or GRBEnv::set). Please refer to the Parameters section to see a list of all int
parameters and their functions.

242

Java API Overview

This section documents the Gurobi Java interface. This manual begins with a quick overview of
the classes exposed in the interface and the most important methods on those classes. It then
continues with a comprehensive presentation of all of the available classes and methods.

If you prefer Javadoc format, documentation for the Gurobi Java interface is also available in file
gurobi-javadoc.jar. Javadoc format is particularly helpful when used from an integrated devel-
opment environment like Eclipse R©. Please consult the documentation for your IDE for information
on how to import Javadoc files.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide
or the Example Tour. These documents provide concrete examples of how to use the classes and
methods described here.
Environments

The first step in using the Gurobi Java interface is to create an environment object. Environments
are represented using the GRBEnv class. An environment acts as the container for all data associ-
ated with a set of optimization runs. You will generally only need one environment object in your
program.

For more advanced usecases, you can use an empty environment to create an uninitialized
environment and then, programmatically, set all required options for your specific requirements.
For further details see the Environment section.
Models

You can create one or more optimization models within an environment. Each model is repre-
sented as an object of class GRBModel. A model consists of a set of decision variables (objects of
class GRBVar), a linear or quadratic objective function on these variables (specified using GRB-
Model.setObjective), and a set of constraints on these variables (objects of class GRBConstr, GR-
BQConstr, GRBSOS, or GRBGenConstr). Each variable has an associated lower bound, upper
bound, and type (continuous, binary, etc.). Each linear or quadratic constraint has an associated
sense (less-than-or-equal, greater-than-or-equal, or equal), and right-hand side value. Refer to this
section in the Reference Manual for more information on variables, constraints, and objectives.

Linear constraints are specified by building linear expressions (objects of class GRBLinExpr),
and then specifying relationships between these expressions (for example, requiring that one expres-
sion be equal to another). Quadratic constraints are built in a similar fashion, but using quadratic
expressions (objects of class GRBQuadExpr) instead.

An optimization model may be specified all at once, by loading the model from a file (using the
appropriate GRBModel constructor), or built incrementally, by first constructing an empty object
of class GRBModel and then subsequently calling GRBModel.addVar or GRBModel.addVars to add
additional variables, and GRBModel.addConstr, GRBModel.addQConstr, GRBModel.addSOS, or
any of the GRBModel.addGenConstrXxx methods to add additional constraints. Models are dy-
namic entities; you can always add or remove variables or constraints.

We often refer to the class of an optimization model. A model with a linear objective function,

243

https://www.gurobi.com/documentation/9.1/quickstart_windows/index.html
https://www.gurobi.com/documentation/9.1/examples/index.html

linear constraints, and continuous variables is a Linear Program (LP). If the objective is quadratic,
the model is a Quadratic Program (QP). If any of the constraints are quadratic, the model is
a Quadratically-Constrained Program (QCP). We will sometimes refer to a few special cases of
QCP: QCPs with convex constraints, QCPs with non-convex constraints, bilinear programs, and
Second-Order Cone Programs (SOCP). If the model contains any integer variables, semi-continuous
variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the
model is a Mixed Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, in-
cluding Mixed Integer Linear Programs (MILP), Mixed Integer Quadratic Programs (MIQP), Mixed
Integer Quadratically-Constrained Programs (MIQCP), and Mixed Integer Second-Order Cone Pro-
grams (MISOCP). The Gurobi Optimizer handles all of these model classes.
Solving a Model

Once you have built a model, you can call GRBModel.optimize to compute a solution. By default,
optimize will use the concurrent optimizer to solve LP models, the barrier algorithm to solve QP
models with convex objectives and QCP models with convex constraints, and the branch-and-cut
algorithm otherwise. The solution is stored in a set of attributes of the model. These attributes
can be queried using a set of attribute query methods on the GRBModel, GRBVar, GRBConstr,
GRBQConstr, GRBSOS, and GRBGenConstr, and classes.

The Gurobi algorithms keep careful track of the state of the model, so calls to GRBModel.optimize
will only perform further optimization if relevant data has changed since the model was last op-
timized. If you would like to discard previously computed solution information and restart the
optimization from scratch without changing the model, you can call GRBModel.reset.

After a MIP model has been solved, you can call GRBModel.fixedModel to compute the asso-
ciated fixed model. This model is identical to the original, except that the integer variables are
fixed to their values in the MIP solution. If your model contains SOS constraints, some continuous
variables that appear in these constraints may be fixed as well. In some applications, it can be
useful to compute information on this fixed model (e.g., dual variables, sensitivity information,
etc.), although you should be careful in how you interpret this information.
Multiple Solutions, Objectives, and Scenarios

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to
a single model with a single objective function. Gurobi provides the following features that allow
you to relax these assumptions:

• Solution Pool: Allows you to find more solutions.

• Multiple Scenarios: Allows you to find solutions to multiple, related models.

• Multiple Objectives: Allows you to specify multiple objective functions and control the trade-
off between them.

Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause of the
infeasibility, attempt to repair the infeasibility, or both. To obtain information that can be useful
for diagnosing the cause of an infeasibility, call GRBModel.computeIIS to compute an Irreducible
Inconsistent Subsystem (IIS). This method can be used for both continuous and MIP models, but
you should be aware that the MIP version can be quite expensive. This method populates a set of
IIS attributes.

244

To attempt to repair an infeasibility, call GRBModel.feasRelax to compute a feasibility relax-
ation for the model. This relaxation allows you to find a solution that minimizes the magnitude of
the constraint violation.
Querying and Modifying Attributes

Most of the information associated with a Gurobi model is stored in a set of attributes. Some
attributes are associated with the variables of the model, some with the constraints of the model,
and some with the model itself. To give a simple example, solving an optimization model causes
the X variable attribute to be populated. Attributes such as X that are computed by the Gurobi
optimizer cannot be modified directly by the user, while others, such as the variable lower bound
(the LB attribute) can.

Attributes are queried using GRBVar.get, GRBConstr.get, GRBQConstr.get, GRBSOS.get,
GRBGenConstr.get, or GRBModel.get, and modified using GRBVar.set, GRBConstr.set, GRBQ-
Constr.set, GRBGenConstr.set, or GRBModel.set. Attributes are grouped into a set of enums by
type (GRB.CharAttr, GRB.DoubleAttr, GRB.IntAttr,
GRB.StringAttr). The get() and set() methods are overloaded, so the type of the attribute
determines the type of the returned value. Thus, constr.get(GRB.DoubleAttr.RHS) returns a
double, while constr.get(GRB.CharAttr.Sense) returns a char.

If you wish to retrieve attribute values for a set of variables or constraints, it is usually more
efficient to use the array methods on the associated GRBModel object. Method GRBModel.get
includes signatures that allow you to query or modify attribute values for one-, two-, and three-
dimensional arrays of variables or constraints.

The full list of attributes can be found in the Attributes section.
Additional Model Modification Information

Most modifications to an existing model are done through the attribute interface (e.g., changes to
variable bounds, constraint right-hand sides, etc.). The main exceptions are modifications to the
constraint matrix and to the objective function.

The constraint matrix can be modified in a few ways. The first is to call the chgCoeff method
on a GRBModel object to change individual matrix coefficients. This method can be used to
modify the value of an existing non-zero, to set an existing non-zero to zero, or to create a new
non-zero. The constraint matrix is also modified when you remove a variable or constraint from the
model (through the GRBModel.remove method). The non-zero values associated with the deleted
constraint or variable are removed along with the constraint or variable itself.

The model objective function can also be modified in a few ways. The easiest is to build an
expression that captures the objective function (a GRBLinExpr or GRBQuadExpr object), and
then pass that expression to method GRBModel.setObjective. If you wish to modify the objective,
you can simply call setObjective again with a new GRBLinExpr or GRBQuadExpr object.

For linear objective functions, an alternative to setObjective is to use the Obj variable attribute
to modify individual linear objective coefficients.

If your variables have piecewise-linear objectives, you can specify them using the
GRBModel.setPWLObj method. Call this method once for each relevant variable. The Gurobi
simplex solver includes algorithmic support for convex piecewise-linear objective functions, so for
continuous models you should see a substantial performance benefit from using this feature. To
clear a previously specified piecewise-linear objective function, simply set the Obj attribute on the
corresponding variable to 0.

245

Lazy Updates

One important item to note about model modification in the Gurobi optimizer is that it is performed
in a lazy fashion, meaning that modifications don’t affect the model immediately. Rather, they
are queued and applied later. If your program simply creates a model and solves it, you will
probably never notice this behavior. However, if you ask for information about the model before
your modifications have been applied, the details of the lazy update approach may be relevant to
you.

As we just noted, model modifications (bound changes, right-hand side changes, objective
changes, etc.) are placed in a queue. These queued modifications can be applied to the model
in three different ways. The first is by an explicit call to GRBModel.update. The second is by a
call to GRBModel.optimize. The third is by a call to GRBModel.write to write out the model. The
first case gives you fine-grained control over when modifications are applied. The second and third
make the assumption that you want all pending modifications to be applied before you optimize
your model or write it to disk.

Why does the Gurobi interface behave in this manner? There are a few reasons. The first is
that this approach makes it much easier to perform multiple modifications to a model, since the
model remains unchanged between modifications. The second is that processing model modifica-
tions can be expensive, particularly in a Compute Server environment, where modifications require
communication between machines. Thus, it is useful to have visibility into exactly when these
modifications are applied. In general, if your program needs to make multiple modifications to
the model, you should aim to make them in phases, where you make a set of modifications, then
update, then make more modifications, then update again, etc. Updating after each individual
modification can be extremely expensive.

If you forget to call update, your program won’t crash. Your query will simply return the value
of the requested data from the point of the last update. If the object you tried to query didn’t
exist then, you’ll get a NOT_IN_MODEL exception instead.

The semantics of lazy updates have changed since earlier Gurobi versions. While the vast
majority of programs are unaffected by this change, you can use the UpdateMode parameter to
revert to the earlier behavior if you run into an issue.

Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of
the optimization process. Factors like feasibility and optimality tolerances, choices of algorithms,
strategies for exploring the MIP search tree, etc., can be controlled by modifying Gurobi parameters
before beginning the optimization. Parameters can be of type int, double, or string.

The simplest way to set parameters is through the GRBModel.set method on the model object.
Similarly, parameter values can be queried with GRBModel.get.

Parameters can also be set on the Gurobi environment object, using GRBEnv.set. Note that
each model gets its own copy of the environment when it is created, so parameter changes to the
original environment have no effect on existing models.

You can read a set of parameter settings from a file using GRBEnv.readParams, or write the
set of changed parameters using GRBEnv.writeParams.

We also include an automated parameter tuning tool that explores many different sets of pa-
rameter changes in order to find a set that improves performance. You can call GRBModel.tune to
invoke the tuning tool on a model. Refer to the parameter tuning tool section for more information.

246

The full list of Gurobi parameters can be found in the Parameters section.

Memory Management

Users typically do not need to concern themselves with memory management in Java, since it
is handled automatically by the garbage collector. The Gurobi Java interface utilizes the same
garbage collection mechanism as other Java programs, but there are a few specifics of our memory
management that users should be aware of.

In general, Gurobi objects live in the same Java heap as other Java objects. When they are
no longer referenced, they become candidates for garbage collection, and are returned to the pool
of free space at the next invocation of the garbage collector. Two important exceptions are the
GRBEnv and GRBModel objects. A GRBModel object has a small amount of memory associated
with it in the Java heap, but the majority of the space associated with a model lives in the heap
of the Gurobi native code library (the Gurobi DLL in Windows, or the Gurobi shared library in
Linux or Mac). The Java heap manager is unaware of the memory associated with the model in
the native code library, so it does not consider this memory usage when deciding whether to invoke
the garbage collector. When the garbage collector eventually collects the Java GRBModel object,
the memory associated with the model in the Gurobi native code library will be freed, but this
collection may come later than you might want. Similar considerations apply to the GRBEnv object.

If you are writing a Java program that makes use of multiple Gurobi models or environments,
we recommend that you call GRBModel.dispose when you are done using the associated GRBModel
object, and GRBEnv.dispose when you are done using the associated GRBEnv object and after you
have called GRBModel.dispose on all of the models created using that GRBEnv object.

Native Code

As noted earlier, the Gurobi Java interface is a thin layer that sits on top of our native code
library (the Gurobi DLL on Windows, and the Gurobi shared library on Linux or Mac). Thus, an
application that uses the Gurobi Java library will load the Gurobi native code library at runtime.
In order for this happen, you need to make sure that two things are true. First, you need to make
sure that the native code library is available in the search path of the target machine (PATH on
Windows, LD_LIBRARY_PATH on Linux, or DYLD_LIBRARY_PATH on Mac). These paths are set up
as part of the installation of the Gurobi Optimizer, but may not be configured appropriately on a
machine where the full Gurobi Optimizer has not been installed. Second, you need to be sure that
the Java JVM and the Gurobi native library use the same object format. In particular, you need
to use a 64-bit Java JVM to use the 64-bit Gurobi native library.

Monitoring Progress - Logging and Callbacks

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will
send output to the screen. A few simple controls are available for modifying the default logging
behavior. If you would like to direct output to a file as well as to the screen, specify the log file
name in the GRBEnv constructor. You can modify the LogFile parameter if you wish to redirect
the log to a different file after creating the environment object. The frequency of logging output can
be controlled with the DisplayInterval parameter, and logging can be turned off entirely with the
OutputFlag parameter. A detailed description of the Gurobi log file can be found in the Logging
section.

More detailed progress monitoring can be done through the GRBCallback class. The GRB-
Model.setCallback method allows you to receive a periodic callback from the Gurobi optimizer.

247

You do this by sub-classing the GRBCallback abstract class, and writing your own Callback()
method on this class. You can call GRBCallback.getDoubleInfo, GRBCallback.getIntInfo, GRB-
Callback.getStringInfo, or GRBCallback.getSolution from within the callback to obtain additional
information about the state of the optimization.
Modifying Solver Behavior - Callbacks

Callbacks can also be used to modify the behavior of the Gurobi optimizer. The simplest control
callback is GRBCallback.abort, which asks the optimizer to terminate at the earliest convenient
point. Method GRBCallback.setSolution allows you to inject a feasible solution (or partial solution)
during the solution of a MIP model. Methods GRBCallback.addCut and GRBCallback.addLazy al-
low you to add cutting planes and lazy constraints during a MIP optimization, respectively. Method
GRBCallback.stopOneMultiObj allows you to interrupt the optimization process of one of the op-
timization steps in a multi-objective MIP problem without stopping the hierarchical optimization
process.
Batch Optimization

Gurobi Compute Server enables programs to offload optimization computations onto dedicated
servers. The Gurobi Cluster Manager adds a number of additional capabilities on top of this.
One important one, batch optimization, allows you to build an optimization model with your client
program, submit it to a Compute Server cluster (through the Cluster Manager), and later check
on the status of the model and retrieve its solution. You can use a Batch object to make it easier
to work with batches. For details on batches, please refer to the Batch Optimization section.
Error Handling

All of the methods in the Gurobi Java library can throw an exception of type GRBException.
When an exception occurs, additional information on the error can be obtained by retrieving the
error code (using method GRBException.getErrorCode), or by retrieving the exception message
(using method GRBException.getMessage from the parent class). The list of possible error return
codes can be found in the Error Codes section.

248

4.1 GRBEnv
Gurobi environment object. Gurobi models are always associated with an environment. You must
create an environment before can you create and populate a model. You will generally only need
a single environment object in your program.

The methods on environment objects are mainly used to manage Gurobi parameters (e.g., get,
getParamInfo, set).

While the Java garbage collector will eventually collect an unused GRBEnv object, an environment
will hold onto resources (Gurobi licenses, file descriptors, etc.) until that collection occurs. If your
program creates multiple GRBEnv objects, we recommend that you call GRBEnv.dispose when you
are done using one.

GRBEnv()
Constructor for GRBEnv object. You have the option of constructing either a local environment,
which solves Gurobi models on the local machine, or a client environment for a Gurobi compute
server, which will solve Gurobi models on a server machine. For the latter, choose the signature that
allows you to specify the names of the Gurobi compute servers and the priority of the associated
job.

GRBEnv GRBEnv ()
Create a Gurobi environment (with logging disabled). This method will also populate any

parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified in your gurobi.lic
file. This method will also check the current working directory for a file named gurobi.env, and
it will attempt to read parameter settings from this file if it exists. The file should be in PRM
format (briefly, each line should contain a parameter name, followed by the desired value for that
parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Return value:
An environment object (with no associated log file).

GRBEnv GRBEnv (boolean empty)

Create an empty Gurobi environment. Use start to start the environment.
If the environment is not empty, This method will also populate any parameter (ComputeServer,

TokenServer, ServerPassword, etc.) specified in your gurobi.lic file. This method will also check
the current working directory for a file named gurobi.env, and it will attempt to read parameter
settings from this file if it exists. The file should be in PRM format (briefly, each line should contain
a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating

249

and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Arguments:
empty: Indicates whether the environment should be empty. You should use empty=true if
you want to set parameters before actually starting the environment. This can be useful
if you want to connect to a Compute Server, a Token Server, the Gurobi Instant Cloud or
a Cluster Manager. See the Environment Section for more details.

Return value:
An environment object.

GRBEnv GRBEnv (String logFileName)

Create a Gurobi environment (with logging enabled). This method will also populate any
parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified in your gurobi.lic
file. This method will also check the current working directory for a file named gurobi.env, and
it will attempt to read parameter settings from this file if it exists. The file should be in PRM
format (briefly, each line should contain a parameter name, followed by the desired value for that
parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Arguments:
logFileName: The desired log file name.

Return value:
An environment object.

GRBEnv GRBEnv (String logFileName,
String computeServer,
String router,
String password,
String group,
int CStlsInsecure,
int priority,
double timeout)

Create a client Gurobi environment on a compute server. This method will also check the
current working directory for a file named gurobi.env, and it will attempt to read parameter
settings from this file if it exists. The file should be in PRM format (briefly, each line should
contain a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded

250

program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Arguments:
logFileName: The name of the log file for this environment. Pass an empty string for no
log file.

computeServer: A Compute Server. You can refer to the server using its name or its IP
address. If you are using a non-default port, the server name should be followed by the
port number (e.g., server1:61000)

router: The router for a Compute Server cluster. A router can be used to improve the
robustness of a Compute Server deployment. You should refer to the router using either
its name or its IP address. If no router is used (which is the typical case), pass an empty
string.

password: The password for gaining access to the specified Compute Server cluster. Pass
an empty string if no password is required.

group: The name of the Compute Server group.
CStlsInsecure: Indicates whether to use insecure mode in the TLS (Transport Layer Se-
curity). Set this to 0 unless your server administrator tells you otherwise.

priority: The priority of the job. Priorities must be between -100 and 100, with a default
value of 0 (by convention). Higher priority jobs are chosen from the server job queue before
lower priority jobs. Depending on the configuration of the server, a job with priority 100
runs immediately, bypassing the job queue and ignoring the job limit on the server. You
should exercise caution with priority 100 jobs, since they can severely overload a server,
which can cause jobs to fail, and in extreme cases can cause the server to crash. This
behavior is managed by the HARDJOBLIMIT, and is disabled by default. Refer to the
Gurobi Remote Services Reference Manual for more information on starting Compute
Server options.

timeout: Queue timeout (in seconds). If the job doesn’t reach the front of the queue before
the specified timeout, the call will exit with a JOB_REJECTED error. Use -1 to indicate that
the call should never timeout.

Return value:
An environment object.

GRBEnv GRBEnv (String logfilename,
String accessID,
String secretKey,
String pool,
int priority)

Create a Gurobi environment on Gurobi Instant Cloud. This method will also check the current
working directory for a file named gurobi.env, and it will attempt to read parameter settings from
this file if it exists. The file should be in PRM format (briefly, each line should contain a parameter
name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded

251

https://www.gurobi.com/documentation/9.1/remoteservices/remoteservices.html

program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Arguments:
logfilename: The name of the log file for this environment. May be NULL (or an empty
string), in which case no log file is created.

accessID: The access ID for your Gurobi Instant Cloud license. This can be retrieved from
the Gurobi Instant Cloud website. When used in combination with your secretKey, this
allows you to launch Instant Cloud instances and submit jobs to them.

secretKey: The secret key for your Gurobi Instant Cloud license. This can be retrieved
from the Gurobi Instant Cloud website. When used in combination with your accessID,
this allows you to launch Instant Cloud instances and submit jobs to them. Note that you
should keep your secret key private.

pool: The machine pool. Machine pools allow you to create fixed configurations on the
Instant Cloud website (capturing things like type of machine, geographic region, etc.),
and then launch and share machines from client programs without having to restart the
configuration information each time you launch a machine. May be NULL (or an empty
string), in which case your job will be launched in the default pool associated with your
cloud license.

priority: The priority of the job. Priorities must be between -100 and 100, with a default
value of 0 (by convention). Higher priority jobs are chosen from the server job queue
before lower priority jobs.

Return value:
An environment object.

GRBEnv.dispose()

Release the resources associated with a GRBEnv object. While the Java garbage collector will
eventually reclaim these resources, we recommend that you call the dispose method when you are
done using an environment if your program creates more than one.

The dispose method on a GRBEnv should be called only after you have called dispose on all
of the models that were created within that environment. You should not attempt to use a GRBEnv
object after calling dispose.

void dispose ()

GRBEnv.get()

Query the value of a parameter.

double get (GRB.DoubleParam param)

Query the value of a double-valued parameter.
Arguments:

252

param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

Return value:
The current value of the requested parameter.

int get (GRB.IntParam param)

Query the value of an int-valued parameter.
Arguments:

param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

Return value:
The current value of the requested parameter.

String get (GRB.StringParam param)

Query the value of a string-valued parameter.
Arguments:

param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

Return value:
The current value of the requested parameter.

GRBEnv.getErrorMsg()

Query the error message for the most recent exception associated with this environment.

String getErrorMsg ()
Return value:

The error string.

GRBEnv.getParamInfo()

Obtain information about a parameter.

void getParamInfo (GRB.DoubleParam param,
double[] info)

Obtain detailed information about a double parameter.
Arguments:

253

param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

info: The returned information. The result will contain four entries: the current value of
the parameter, the minimum allowed value, the maximum allowed value, and the default
value.

void getParamInfo (GRB.IntParam param,
int[] info)

Obtain detailed information about an integer parameter.
Arguments:

param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

info: The returned information. The result will contain four entries: the current value of
the parameter, the minimum allowed value, the maximum allowed value, and the default
value.

void getParamInfo (GRB.StringParam param,
String[] info)

Obtain detailed information about a string parameter.
Arguments:

param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

info: The returned information. The result will contain two entries: the current value of
the parameter and the default value.

GRBEnv.message()

Write a message to the console and the log file.

void message (String message)

Arguments:
message: Print a message to the console and to the log file. Note that this call has no effect
unless the OutputFlag parameter is set.

GRBEnv.readParams()

Read new parameter settings from a file.
Please consult the parameter section for a complete list of Gurobi parameters, including de-

scriptions of their purposes and their minimum, maximum, and default values.

254

void readParams (String paramFile)

Arguments:
paramFile: Name of the file containing parameter settings. Parameters should be listed
one per line, with the parameter name first and the desired value second. For example:

Gurobi parameter file
Threads 1
MIPGap 0

Blank lines and lines that begin with the hash symbol are ignored.

GRBEnv.release()
Release the license associated with this environment. You will no longer be able to call optimize
on models created with this environment after the license has been released.

void release ()

GRBEnv.resetParams()
Reset all parameters to their default values.

Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

void resetParams ()

GRBEnv.set()
Set the value of a parameter.

Important notes:
Note that a model gets its own copy of the environment when it is created. Changes to the

original environment have no effect on the copy. Use GRBModel.set to change a parameter on an
existing model.

void set (GRB.DoubleParam param,
double newval)

Set the value of a double-valued parameter.
Arguments:

param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

newval: The desired new value of the parameter.

void set (GRB.IntParam param,
int newval)

255

Set the value of an int-valued parameter.
Arguments:

param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

newval: The desired new value of the parameter.

void set (GRB.StringParam param,
String newval)

Set the value of a string-valued parameter.
Arguments:

param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

newval: The desired new value of the parameter.

void set (String param,
String newval)

Set the value of any parameter using strings alone.
Arguments:

param: The name of the parameter being modified. Please consult the parameter section
for a complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

newval: The desired new value of the parameter.

GRBEnv.start()

Start an empty environment. If the environment has already been started, this method will do
nothing. If the call fails, the environment will have the same state as it had before the call to this
method.

This method will also populate any parameter (ComputeServer, TokenServer, ServerPassword,
etc.) specified in your gurobi.lic file. This method will also check the current working directory
for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists.
The file should be in PRM format (briefly, each line should contain a parameter name, followed by
the desired value for that parameter). After that, it will apply all parameter changes specified by
the user prior to this call. Note that this might overwrite parameters set in the license file, or in
the gurobi.env file, if present.

After all these changes are performed, the code will actually activate the environment, and
make it ready to work with models.

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

256

Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

void start ()

GRBEnv.writeParams()
Write all non-default parameter settings to a file.

Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

void writeParams (String paramFile)

Arguments:
paramFile: Name of the file to which non-default parameter settings should be written.
The previous contents are overwritten.

257

4.2 GRBModel
Gurobi model object. Commonly used methods include addVar (adds a new decision variable to the
model), addConstr (adds a new constraint to the model), optimize (optimizes the current model),
and get (retrieves the value of an attribute).

While the Java garbage collector will eventually collect an unused GRBModel object, the vast
majority of the memory associated with a model is stored outside of the Java heap. As a result,
the garbage collector can’t see this memory usage, and thus it can’t take this quantity into account
when deciding whether collection is necessary. We recommend that you call GRBModel.dispose
when you are done using a model.

GRBModel()
Constructor for GRBModel. The simplest version creates an empty model. You can then call
addVar and addConstr to populate the model with variables and constraints. The more complex
constructors can read a model from a file, or make a copy of an existing model.

GRBModel GRBModel (GRBEnv env)

Model constructor.
Arguments:

env: Environment for new model.
Return value:

New model object. Model initially contains no variables or constraints.

GRBModel GRBModel (GRBEnv env,
String filename)

Read a model from a file. Note that the type of the file is encoded in the file name suffix.
Valid suffixes are .mps, .rew, .lp, .rlp, .ilp, or .opb. The files can be compressed, so additional
suffixes of .zip, .gz, .bz2, or .7z are accepted.

Arguments:
env: Environment for new model.
filename: Name of the file containing the model.

Return value:
New model object.

GRBModel GRBModel (GRBModel model)

Create a copy of an existing model. Note that due to the lazy update approach in Gurobi, you
have to call update before copying it.

Arguments:
model: Model to copy.

Return value:
New model object. Model is a clone of the input model.

258

GRBModel.addConstr()

Add a single linear constraint to a model. Multiple signatures are available.

GRBConstr addConstr (GRBLinExpr lhsExpr,
char sense,
GRBLinExpr rhsExpr,
String name)

Add a single linear constraint to a model.
Arguments:

lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhsExpr: Right-hand side expression for new linear constraint.
name: Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr (GRBLinExpr lhsExpr,
char sense,
GRBVar rhsVar,
String name)

Add a single linear constraint to a model.
Arguments:

lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhsVar: Right-hand side variable for new linear constraint.
name: Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr (GRBLinExpr lhsExpr,
char sense,
double rhs,
String name)

Add a single linear constraint to a model.
Arguments:

lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhs: Right-hand side value for new linear constraint.
name: Name for new constraint.

Return value:

259

New constraint object.

GRBConstr addConstr (GRBVar lhsVar,
char sense,
GRBLinExpr rhsExpr,
String name)

Add a single linear constraint to a model.
Arguments:

lhsVar: Left-hand side variable for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhsExpr: Right-hand side expression for new linear constraint.
name: Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr (GRBVar lhsVar,
char sense,
GRBVar rhsVar,
String name)

Add a single linear constraint to a model.
Arguments:

lhsVar: Left-hand side variable for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhsVar: Right-hand side variable for new linear constraint.
name: Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr (GRBVar lhsVar,
char sense,
double rhs,
String name)

Add a single linear constraint to a model.
Arguments:

lhsVar: Left-hand side variable for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhs: Right-hand side value for new linear constraint.
name: Name for new constraint.

Return value:
New constraint object.

260

GRBConstr addConstr (double lhs,
char sense,
GRBVar rhsVar,
String name)

Add a single linear constraint to a model.
Arguments:

lhs: Left-hand side value for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhsVar: Right-hand side variable for new linear constraint.
name: Name for new constraint.

Return value:
New constraint object.

GRBConstr addConstr (double lhs,
char sense,
GRBLinExpr rhsExpr,
String name)

Add a single linear constraint to a model.
Arguments:

lhs: Left-hand side value for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhsExpr: Right-hand side expression for new linear constraint.
name: Name for new constraint.

Return value:
New constraint object.

GRBModel.addConstrs()

Add new linear constraints to a model.
We recommend that you build your model one constraint at a time (using addConstr), since it

introduces no significant overhead and we find that it produces simpler code. Feel free to use these
methods if you disagree, though.

GRBConstr[] addConstrs (int count)

Add count new linear constraints to a model. The new constraints are all of the form 0 <= 0.
Arguments:

count: Number of constraints to add.
Return value:

Array of new constraint objects.

261

GRBConstr[] addConstrs (GRBLinExpr[] lhsExprs,
char[] senses,
double[] rhss,
String[] names)

Add new linear constraints to a model. The number of added constraints is determined by the
length of the input arrays (which must be consistent across all arguments).

Arguments:
lhsExprs: Left-hand side expressions for the new linear constraints.
senses: Senses for new linear constraints (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhss: Right-hand side values for the new linear constraints.
names: Names for new constraints.

Return value:
Array of new constraint objects.

GRBConstr[] addConstrs (GRBLinExpr[] lhsExprs,
char[] senses,
double[] rhss,
String[] names,
int start,
int len)

Add new linear constraints to a model. This signature allows you to use arrays to hold the
various constraint attributes (left-hand side, sense, etc.), without forcing you to add one constraint
for each entry in the array. The start and len arguments allow you to specify which constraints
to add.

Arguments:
lhsExprs: Left-hand side expressions for the new linear constraints.
senses: Senses for new linear constraints (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhss: Right-hand side values for the new linear constraints.
names: Names for new constraints.
start: The first constraint in the list to add.
len: The number of constraints to add.

Return value:
Array of new constraint objects.

GRBModel.addGenConstrXxx()

Each of the functions described below adds a new general constraint to a model.
Mathematical programming has traditionally defined a set of fundamental constraint types:

variable bound constraints, linear constraints, quadratic constraints, integrality constraints, and
SOS constraints. These are typically treated directly by the underlying solver (although not always),
and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general
(function) constraints. These are typically not treated directly by the solver. Rather, they are

262

transformed by presolve into constraints (and variables) chosen from among the fundamental types
listed above. In some cases, the resulting constraint or constraints are mathematically equivalent
to the original; in others, they are approximations. If such constraints appear in your model, but
if you prefer to reformulate them yourself using fundamental constraint types instead, you can
certainly do so. However, note that Gurobi can sometimes exploit information contained in the
other constraints in the model to build a more efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:

• addGenConstrMax: y = max(x1, x2, ..., c)

• addGenConstrMin: y = min(x1, x2, ..., c)

• addGenConstrAbs: y = |x|

• addGenConstrAnd: y = x1 ∧ x2 ∧ x3...

• addGenConstrOr: y = x1 ∨ x2 ∨ x3...

• addGenConstrIndicator: y = 1→ a′x ≤ b (an indicator constraint)

• addGenConstrPWL: y = pwl(x) (a piecewise-linear function, specified using breakpoints)

• addGenConstrPoly: y = p0x
d + p1x

d−1 + ...+ pd−1x+ pd

• addGenConstrExp: y = ex

• addGenConstrExpA: y = ax

• addGenConstrLog: y = loge(x)

• addGenConstrLogA: y = loga(x)

• addGenConstrPow: y = xa

• addGenConstrSin: y = sin(x)

• addGenConstrCos: y = cos(x)

• addGenConstrTan: y = tan(x)

For additional details please refer to the General Constraints section in the Reference Manual.

GRBModel.addGenConstrMax()

Add a new general constraint of type GRB.GENCONSTR_MAX to a model.
A MAX constraint r = max{x1, . . . , xn, c} states that the resultant variable r should be equal

to the maximum of the operand variables x1, . . . , xn and the constant c.

GRBGenConstr addGenConstrMax (GRBVar resvar,
GRBVar[] vars,
double constant,
String name)

263

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
constant: The additional constant operand of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.addGenConstrMin()

Add a new general constraint of type GRB.GENCONSTR_MIN to a model.
A MIN constraint r = min{x1, . . . , xn, c} states that the resultant variable r should be equal to

the minimum of the operand variables x1, . . . , xn and the constant c.

GRBGenConstr addGenConstrMin (GRBVar resvar,
GRBVar[] vars,
double constant,
String name)

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
constant: The additional constant operand of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.addGenConstrAbs()

Add a new general constraint of type GRB.GENCONSTR_ABS to a model.
An ABS constraint r = abs{x} states that the resultant variable r should be equal to the

absolute value of the argument variable x.

GRBGenConstr addGenConstrAbs (GRBVar resvar,
GRBVar argvar,
String name)

Arguments:
resvar: The resultant variable of the new constraint.
argvar: The argument variable of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

264

GRBModel.addGenConstrAnd()

Add a new general constraint of type GRB.GENCONSTR_AND to a model.
An AND constraint r = and{x1, . . . , xn} states that the binary resultant variable r should be 1

if and only if all of the operand variables x1, . . . , xn are equal to 1. If any of the operand variables
is 0, then the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent
of how they were created.

GRBGenConstr addGenConstrAnd (GRBVar resvar,
GRBVar[] vars,
String name)

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.addGenConstrOr()

Add a new general constraint of type GRB.GENCONSTR_OR to a model.
An OR constraint r = or{x1, . . . , xn} states that the binary resultant variable r should be 1 if

and only if any of the operand variables x1, . . . , xn is equal to 1. If all operand variables are 0, then
the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent
of how they were created.

GRBGenConstr addGenConstrOr (GRBVar resvar,
GRBVar[] vars,
String name)

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.addGenConstrIndicator()

Add a new general constraint of type GRB.GENCONSTR_INDICATOR to a model.
An INDICATOR constraint z = f → aTx ≤ b states that if the binary indicator variable z is

equal to f , where f ∈ {0, 1}, then the linear constraint aTx ≤ b should hold. On the other hand,
if z = 1 − f , the linear constraint may be violated. The sense of the linear constraint can also be
specified to be = or ≥.

265

Note that the indicator variable z of a constraint will be forced to be binary, independent of
how it was created.

GRBGenConstr addGenConstrIndicator (GRBVar binvar,
int binval,
GRBLinExpr expr,
char sense,
double rhs,
String name)

Arguments:
binvar: The binary indicator variable.
binval: The value for the binary indicator variable that would force the linear constraint
to be satisfied (0 or 1).

expr: Left-hand side expression for the linear constraint triggered by the indicator.
sense: Sense for the linear constraint. Options are GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL.

rhs: Right-hand side value for the linear constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.addGenConstrPWL()

Add a new general constraint of type GRB.GENCONSTR_PWL to a model.
A piecewise-linear (PWL) constraint states that the relationship y = f(x) must hold between

variables x and y, where f is a piecewise-linear function. The breakpoints for f are provided as
arguments. Refer to the description of piecewise-linear objectives for details of how piecewise-linear
functions are defined.

GRBGenConstr addGenConstrPWL (GRBVar xvar,
GRBVar yvar,
double[] xpts,
double[] ypts,
String name)

Arguments:
xvar: The x variable.
yvar: The y variable.
xpts: The x values for the points that define the piecewise-linear function. Must be in
non-decreasing order.

ypts: The y values for the points that define the piecewise-linear function.
name: Name for the new general constraint.

Return value:
New general constraint.

266

GRBModel.addGenConstrPoly()

Add a new general constraint of type GRB.GENCONSTR_POLY to a model.
A polynomial function constraint states that the relationship y = p0x

d+p1x
d−1 + ...+pd−1x+pd

should hold between variables x and y.
A piecewise-linear approximation of the function is added to the model. The details of the

approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr addGenConstrPoly (GRBVar xvar,
GRBVar yvar,
double[] p,
String name,
String options)

Arguments:
xvar: The x variable.
yvar: The y variable.
p: The coefficients for the polynomial function (starting with the coefficient for the highest
power).

name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Return value:
New general constraint.

GRBModel.addGenConstrExp()

Add a new general constraint of type GRB.GENCONSTR_EXP to a model.
A natural exponential function constraint states that the relationship y = exp(x) should hold

for variables x and y.
A piecewise-linear approximation of the function is added to the model. The details of the

approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr addGenConstrExp (GRBVar xvar,
GRBVar yvar,
String name,
String options)

Arguments:
xvar: The x variable.
yvar: The y variable.

267

name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Return value:
New general constraint.

GRBModel.addGenConstrExpA()

Add a new general constraint of type GRB.GENCONSTR_EXPA to a model.
An exponential function constraint states that the relationship y = ax should hold for variables

x and y, where a > 0 is the (constant) base.
A piecewise-linear approximation of the function is added to the model. The details of the

approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr addGenConstrExpA (GRBVar xvar,
GRBVar yvar,
double a,
String name,
String options)

Arguments:
xvar: The x variable.
yvar: The y variable.
a: The base of the function, a > 0.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Return value:
New general constraint.

GRBModel.addGenConstrLog()

Add a new general constraint of type GRB.GENCONSTR_LOG to a model.
A natural logarithmic function constraint states that the relationship y = log(x) should hold

for variables x and y.
A piecewise-linear approximation of the function is added to the model. The details of the

approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

268

GRBGenConstr addGenConstrLog (GRBVar xvar,
GRBVar yvar,
String name,
String options)

Arguments:
xvar: The x variable.
yvar: The y variable.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Return value:
New general constraint.

GRBModel.addGenConstrLogA()

Add a new general constraint of type GRB.GENCONSTR_LOGA to a model.
A logarithmic function constraint states that the relationship y = loga(x) should hold for

variables x and y, where a > 0 is the (constant) base.
A piecewise-linear approximation of the function is added to the model. The details of the

approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr addGenConstrLogA (GRBVar xvar,
GRBVar yvar,
double a,
String name,
String options)

Arguments:
xvar: The x variable.
yvar: The y variable.
a: The base of the function, a > 0.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Return value:
New general constraint.

269

GRBModel.addGenConstrPow()

Add a new general constraint of type GRB.GENCONSTR_POW to a model.
A power function constraint states that the relationship y = xa should hold for variables x and

y, where a is the (constant) exponent. The lower bound of variable x must be nonnegative, even if
a is an integer.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr addGenConstrPow (GRBVar xvar,
GRBVar yvar,
double a,
String name,
String options)

Arguments:
xvar: The x variable.
yvar: The y variable.
a: The exponent of the function, a > 0.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Return value:
New general constraint.

GRBModel.addGenConstrSin()

Add a new general constraint of type GRB.GENCONSTR_SIN to a model.
A sine function constraint states that the relationship y = sin(x) should hold for variables x

and y.
A piecewise-linear approximation of the function is added to the model. The details of the

approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr addGenConstrSin (GRBVar xvar,
GRBVar yvar,
String name,
String options)

Arguments:
xvar: The x variable.
yvar: The y variable.

270

name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Return value:
New general constraint.

GRBModel.addGenConstrCos()

Add a new general constraint of type GRB.GENCONSTR_COS to a model.
A cosine function constraint states that the relationship y = cos(x) should hold for variables x

and y.
A piecewise-linear approximation of the function is added to the model. The details of the

approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr addGenConstrCos (GRBVar xvar,
GRBVar yvar,
String name,
String options)

Arguments:
xvar: The x variable.
yvar: The y variable.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Return value:
New general constraint.

GRBModel.addGenConstrTan()

Add a new general constraint of type GRB.GENCONSTR_TAN to a model.
A tangent function constraint states that the relationship y = tan(x) should hold for variables

x and y.
A piecewise-linear approximation of the function is added to the model. The details of the

approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

271

GRBGenConstr addGenConstrTan (GRBVar xvar,
GRBVar yvar,
String name,
String options)

Arguments:
xvar: The x variable.
yvar: The y variable.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Return value:
New general constraint.

GRBModel.addQConstr()
Add a quadratic constraint to a model. Multiple signatures are available.

Important note: Gurobi can handle both convex and non-convex quadratic constraints. The
differences between them can be both important and subtle. Refer to this discussion for additional
information.

GRBQConstr addQConstr (GRBQuadExpr lhsExpr,
char sense,
GRBQuadExpr rhsExpr,
String name)

Add a quadratic constraint to a model.
Arguments:

lhsExpr: Left-hand side quadratic expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side quadratic expression for new quadratic constraint.
name: Name for new constraint.

Return value:
New quadratic constraint object.

GRBQConstr addQConstr (GRBQuadExpr lhsExpr,
char sense,
GRBVar rhsVar,
String name)

Add a quadratic constraint to a model.
Arguments:

lhsExpr: Left-hand side quadratic expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
rhsVar: Right-hand side variable for new quadratic constraint.

272

name: Name for new constraint.
Return value:

New quadratic constraint object.

GRBQConstr addQConstr (GRBQuadExpr lhsExpr,
char sense,
GRBLinExpr rhsExpr,
String name)

Add a quadratic constraint to a model.
Arguments:

lhsExpr: Left-hand side quadratic expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side linear expression for new quadratic constraint.
name: Name for new constraint.

Return value:
New quadratic constraint object.

GRBQConstr addQConstr (GRBQuadExpr lhsExpr,
char sense,
double rhs,
String name)

Add a quadratic constraint to a model.
Arguments:

lhsExpr: Left-hand side quadratic expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
rhs: Right-hand side value for new quadratic constraint.
name: Name for new constraint.

Return value:
New quadratic constraint object.

GRBQConstr addQConstr (GRBLinExpr lhsExpr,
char sense,
GRBQuadExpr rhsExpr,
String name)

Add a quadratic constraint to a model.
Arguments:

lhsExpr: Left-hand side linear expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side quadratic expression for new quadratic constraint.
name: Name for new constraint.

Return value:
New quadratic constraint object.

273

GRBQConstr addQConstr (GRBVar lhsVar,
char sense,
GRBQuadExpr rhsExpr,
String name)

Add a quadratic constraint to a model.
Arguments:

lhsVar: Left-hand side variable for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side quadratic expression for new quadratic constraint.
name: Name for new constraint.

Return value:
New quadratic constraint object.

GRBQConstr addQConstr (double lhs,
char sense,
GRBQuadExpr rhsExpr,
String name)

Add a quadratic constraint to a model.
Arguments:

lhs: Left-hand side value for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side quadratic expression for new quadratic constraint.
name: Name for new constraint.

Return value:
New quadratic constraint object.

GRBModel.addRange()
Add a single range constraint to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution.

Note that range constraints are stored internally as equality constraints. We add an extra
variable to the model to capture the range information. Thus, the Sense attribute on a range
constraint will always be GRB.EQUAL.

GRBConstr addRange (GRBLinExpr expr,
double lower,
double upper,
String name)

Arguments:
expr: Linear expression for new range constraint.
lower: Lower bound for linear expression.
upper: Upper bound for linear expression.
name: Name for new constraint.

Return value:
New constraint object.

274

GRBModel.addRanges()
Add new range constraints to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution.

GRBConstr[] addRanges (GRBLinExpr[] exprs,
double[] lower,
double[] upper,
String[] names)

Arguments:
exprs: Linear expressions for the new range constraints.
lower: Lower bounds for linear expressions.
upper: Upper bounds for linear expressions.
names: Names for new range constraints.

Return value:
Array of new constraint objects.

GRBModel.addSOS()
Add an SOS constraint to the model. Please refer to the SOS Constraints section in the Reference
Manual for additional details.

GRBSOS addSOS (GRBVar[] vars,
double[] weights,
int type)

Arguments:
vars: Array of variables that participate in the SOS constraint.
weights: Weights for the variables in the SOS constraint.
type: SOS type (can be GRB.SOS_TYPE1 or GRB.SOS_TYPE2).

Return value:
New SOS constraint.

GRBModel.addVar()
Add a single decision variable to a model.

GRBVar addVar (double lb,
double ub,
double obj,
char type,
String name)

Add a variable to a model; non-zero entries will be added later.
Arguments:

lb: Lower bound for new variable.
ub: Upper bound for new variable.

275

obj: Objective coefficient for new variable.
type: Variable type for new variable (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT).

name: Name for new variable.
Return value:

New variable object.

GRBVar addVar (double lb,
double ub,
double obj,
char type,
GRBConstr[] constrs,
double[] coeffs,
String name)

Add a variable to a model, and the associated non-zero coefficients.
Arguments:

lb: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.
type: Variable type for new variable (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT).

constrs: Array of constraints in which the variable participates.
coeffs: Array of coefficients for each constraint in which the variable participates. The
lengths of the constrs and coeffs arrays must be identical.

name: Name for new variable.
Return value:

New variable object.

GRBVar addVar (double lb,
double ub,
double obj,
char type,
GRBColumn col,
String name)

Add a variable to a model. This signature allows you to specify the set of constraints to which
the new variable belongs using a GRBColumn object.

Arguments:
lb: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.
type: Variable type for new variable (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT).

col: GRBColumn object for specifying a set of constraints to which new variable belongs.
name: Name for new variable.

276

Return value:
New variable object.

GRBModel.addVars()

Add new decision variables to a model.

GRBVar[] addVars (int count,
char type)

Add count new decision variables to a model. All associated attributes take their default values,
except the variable type, which is specified as an argument.

Arguments:
count: Number of variables to add.
type: Variable type for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT).

Return value:
Array of new variable objects.

GRBVar[] addVars (double[] lb,
double[] ub,
double[] obj,
char[] type,
String[] names)

Add new decision variables to a model. The number of added variables is determined by the
length of the input arrays (which must be consistent across all arguments).

Arguments:
lb: Lower bounds for new variables. Can be null, in which case the variables get lower
bounds of 0.0.

ub: Upper bounds for new variables. Can be null, in which case the variables get infinite
upper bounds.

obj: Objective coefficients for new variables. Can be null, in which case the variables get
objective coefficients of 0.0.

type: Variable types for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT). Can be null, in which case the variables are assumed
to be continuous.

names: Names for new variables. Can be null, in which case all variables are given default
names.

Return value:
Array of new variable objects.

277

GRBVar[] addVars (double[] lb,
double[] ub,
double[] obj,
char[] type,
String[] names,
int start,
int len)

Add new decision variables to a model. This signature allows you to use arrays to hold the
various variable attributes (lower bound, upper bound, etc.), without forcing you to add a variable
for each entry in the array. The start and len arguments allow you to specify which variables to
add.

Arguments:
lb: Lower bounds for new variables. Can be null, in which case the variables get lower
bounds of 0.0.

ub: Upper bounds for new variables. Can be null, in which case the variables get infinite
upper bounds.

obj: Objective coefficients for new variables. Can be null, in which case the variables get
objective coefficients of 0.0.

type: Variable types for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT). Can be null, in which case the variables are assumed
to be continuous.

names: Names for new variables. Can be null, in which case all variables are given default
names.

start: The first variable in the list to add.
len: The number of variables to add.

Return value:
Array of new variable objects.

GRBVar[] addVars (double[] lb,
double[] ub,
double[] obj,
char[] type,
String[] names,
GRBColumn[] cols)

Add new decision variables to a model. This signature allows you to specify the list of constraints
to which each new variable belongs using an array of GRBColumn objects.

Arguments:
lb: Lower bounds for new variables. Can be null, in which case the variables get lower
bounds of 0.0.

ub: Upper bounds for new variables. Can be null, in which case the variables get infinite
upper bounds.

obj: Objective coefficients for new variables. Can be null, in which case the variables get
objective coefficients of 0.0.

type: Variable types for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT). Can be null, in which case the variables are assumed

278

to be continuous.
names: Names for new variables. Can be null, in which case all variables are given default
names.

cols: GRBColumn objects for specifying a set of constraints to which each new column
belongs.

Return value:
Array of new variable objects.

GRBModel.chgCoeff()

Change one coefficient in the model. The desired change is captured using a GRBVar object, a
GRBConstr object, and a desired coefficient for the specified variable in the specified constraint. If
you make multiple changes to the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you
update the model (using GRBModel.update), optimize the model (using GRBModel.optimize), or
write the model to disk (using GRBModel.write).

void chgCoeff (GRBConstr constr,
GRBVar var,
double newval)

Arguments:
constr: Constraint for coefficient to be changed.
var: Variable for coefficient to be changed.
newval: Desired new value for coefficient.

GRBModel.chgCoeffs()

Change a list of coefficients in the model. Each desired change is captured using a GRBVar object,
a GRBConstr object, and a desired coefficient for the specified variable in the specified constraint.
The entries in the input arrays each correspond to a single desired coefficient change. The lengths
of the input arrays must all be the same. If you make multiple changes to the same coefficient, the
last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you
update the model (using GRBModel.update), optimize the model (using GRBModel.optimize), or
write the model to disk (using GRBModel.write).

void chgCoeffs (GRBConstr[] constrs,
GRBVar[] vars,
double[] newvals)

Arguments:
constrs: Constraints for coefficients to be changed.
vars: Variables for coefficients to be changed.
newvals: Desired new values for coefficients.

279

GRBModel.computeIIS()

Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints and
variable bounds with the following properties:

• It is still infeasible, and

• If a single constraint or bound is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily
the smallest one; there may exist others with fewer constraints or bounds.

IIS results are returned in a number of attributes: IISConstr, IISLB, IISUB, IISSOS, IISQCon-
str, and IISGenConstr. Each indicates whether the corresponding model element is a member of
the computed IIS.

The IIS log provides information about the progress of the algorithm, including a guess at the
eventual IIS size.

If an IIS computation is interrupted before completion, Gurobi will return the smallest infeasible
subsystem found to that point.

This method populates the IISConstr, IISQConstr, and IISGenConstr constraint attributes, the
IISSOS, SOS attribute, and the IISLB and IISUB variable attributes. You can also obtain informa-
tion about the results of the IIS computation by writing a .ilp format file (see GRBModel.write).
This file contains only the IIS from the original model.

Use the IISMethod parameter to adjust the behavior of the IIS algorithm.
Note that this method can be used to compute IISs for both continuous and MIP models.

void computeIIS ()

GRBModel.discardConcurrentEnvs()

Discard concurrent environments for a model.
The concurrent environments created by getConcurrentEnv will be used by every subsequent

call to the concurrent optimizer until the concurrent environments are discarded.
Use getMultiobjEnv to create a multi-objective environment.

void discardConcurrentEnvs ()

GRBModel.discardMultiobjEnvs()

Discard all multi-objective environments associated with the model, thus restoring multi objective
optimization to its default behavior.

Please refer to the discussion of Multiple Objectives for information on how to specify multiple
objective functions and control the trade-off between them.

Use getMultiobjEnv to create a multi-objective environments.

void discardMultiobjEnvs ()

280

GRBModel.dispose()
Release the resources associated with a GRBModel object. While the Java garbage collector will
eventually reclaim these resources, we recommend that you call the dispose method when you are
done using a model.

You should not attempt to use a GRBModel object after calling dispose on it.

void dispose ()

GRBModel.feasRelax()
Modifies the GRBModel object to create a feasibility relaxation. Note that you need to call optimize
on the result to compute the actual relaxed solution.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the
solution violates the bounds and linear constraints of the original model. This method provides a
number of options for specifying the relaxation.

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the
sum of the weighted magnitudes of the bound and constraint violations. The lbpen, ubpen, and
rhspen arguments specify the cost per unit violation in the lower bounds, upper bounds, and linear
constraints, respectively.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the
weighted sum of the squares of the bound and constraint violations. The lbpen, ubpen, and
rhspen arguments specify the coefficients on the squares of the lower bound, upper bound, and
linear constraint violations, respectively.

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the
weighted count of bound and constraint violations. The lbpen, ubpen, and rhspen arguments
specify the cost of violating a lower bound, upper bound, and linear constraint, respectively.

To give an example, if a constraint with rhspen value p is violated by 2.0, it would con-
tribute 2*p to the feasibility relaxation objective for relaxobjtype=0, it would contribute 2*2*p
for relaxobjtype=1, and it would contribute p for relaxobjtype=2.

The minrelax argument is a boolean that controls the type of feasibility relaxation that is
created. If minrelax=false, optimizing the returned model gives a solution that minimizes the
cost of the violation. If minrelax=true, optimizing the returned model finds a solution that
minimizes the original objective, but only from among those solutions that minimize the cost of the
violation. Note that feasRelax must solve an optimization problem to find the minimum possible
relaxation when minrelax=true, which can be quite expensive.

There are two signatures for this method. The more complex one takes a list of variables
and constraints, as well as penalties associated with relaxing the corresponding lower bounds,
upper bounds, and constraints. If a variable or constraint is not included in one of these lists,
the associated bounds or constraints may not be violated. The simpler signature takes a pair of
boolean arguments, vrelax and crelax, that indicate whether variable bounds and/or constraints
can be violated. If vrelax/crelax is true, then every bound/constraint is allowed to be violated,
respectively, and the associated cost is 1.0.

Note that this is a destructive method: it modifies the model on which it is invoked. If you
don’t want to modify your original model, use the GRBModel constructor to create a copy before
invoking this method.

281

double feasRelax (int relaxobjtype,
boolean minrelax,
GRBVar[] vars,
double[] lbpen,
double[] ubpen,
GRBConstr[] constrs,
double[] rhspen)

Create a feasibility relaxation model.
Arguments:

relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.
vars: Variables whose bounds are allowed to be violated.
lbpen: Penalty for violating a variable lower bound. One entry for each variable in argument
vars.

ubpen: Penalty for violating a variable upper bound. One entry for each variable in argument
vars.

constrs: Linear constraints that are allowed to be violated.
rhspen: Penalty for violating a linear constraint. One entry for each constraint in argument
constrs.

Arguments:
Return value:

Zero if minrelax is false. If minrelax is true, the return value is the objective value for
the relaxation performed. If the value is less than 0, it indicates that the method failed to
create the feasibility relaxation.

double feasRelax (int relaxobjtype,
boolean minrelax,
boolean vrelax,
boolean crelax)

Simplified method for creating a feasibility relaxation model.
Arguments:

relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.
vrelax: Indicates whether variable bounds can be relaxed (with a cost of 1.0 for any viola-
tions.

crelax: Indicates whether linear constraints can be relaxed (with a cost of 1.0 for any
violations.

Return value:
Zero if minrelax is false. If minrelax is true, the return value is the objective value for
the relaxation performed. If the value is less than 0, it indicates that the method failed to
create the feasibility relaxation.

GRBModel.fixedModel()
Create the fixed model associated with a MIP model. The MIP model must have a solution loaded
(e.g., after a call to the optimize method). In the fixed model, each integer variable is fixed to the

282

value that variable takes in the MIP solution. In addition, continuous variables may be fixed to
satisfy SOS or general constraints. The result is a model without any integrality constraints, SOS
constraints, or general constraints.

Note that, while the fixed problem is always a continuous model, it may contain a non-convex
quadratic objective or non-convex quadratic constraints. As a result, it may still be solved using
the MIP algorithm.

GRBModel fixedModel ()
Return value:

Fixed model associated with calling object.

GRBModel.get()

Query the value(s) of a parameter or attribute. Use this method for parameters, for scalar model
attributes, and for arrays of constraint or variable attributes.

double get (GRB.DoubleParam param)

Query the value of a double-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

int get (GRB.IntParam param)

Query the value of an int-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

String get (GRB.StringParam param)

Query the value of a string-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

char[] get (GRB.CharAttr attr,
GRBVar[] vars)

283

Query a char-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: The variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

char[] get (GRB.CharAttr attr,
GRBVar[] vars,
int start,
int len)

Query a char-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being queried.
vars: A one-dimensional array of variables whose attribute values are being queried.
start: The index of the first variable of interest in the list.
len: The number of variables.

Return value:
The current values of the requested attribute for each input variable.

char[][] get (GRB.CharAttr attr,
GRBVar[][] vars)

Query a char-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A two-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

char[][][] get (GRB.CharAttr attr,
GRBVar[][][] vars)

Query a char-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A three-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

char[] get (GRB.CharAttr attr,
GRBConstr[] constrs)

Query a char-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.

284

constrs: The constraints whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input constraint.

char[] get (GRB.CharAttr attr,
GRBConstr[] constrs,
int start,
int len)

Query a char-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A one-dimensional array of constraints whose attribute values are being queried.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

Return value:
The current values of the requested attribute for each input constraint.

char[][] get (GRB.CharAttr attr,
GRBConstr[][] constrs)

Query a char-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A two-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

char[][][] get (GRB.CharAttr attr,
GRBConstr[][][] constrs)

Query a char-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A three-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

char[] get (GRB.CharAttr attr,
GRBQConstr[] qconstrs)

Query a char-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: The quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

285

char[] get (GRB.CharAttr attr,
GRBQConstr[] qconstrs,
int start,
int len)

Query a char-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being queried.

start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

Return value:
The current values of the requested attribute for each input quadratic constraint.

char[][] get (GRB.CharAttr attr,
GRBQConstr[][] qconstrs)

Query a char-valued quadratic constraint attribute for a two-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being queried.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

char[][][] get (GRB.CharAttr attr,
GRBQConstr[][][] qconstrs)

Query a char-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being queried.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

double get (GRB.DoubleAttr attr)

Query the value of a double-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

286

double[] get (GRB.DoubleAttr attr,
GRBVar[] vars)

Query a double-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: The variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

double[] get (GRB.DoubleAttr attr,
GRBVar[] vars,
int start,
int len)

Query a double-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being queried.
vars: A one-dimensional array of variables whose attribute values are being queried.
start: The index of the first variable of interest in the list.
len: The number of variables.

Return value:
The current values of the requested attribute for each input variable.

double[][] get (GRB.DoubleAttr attr,
GRBVar[][] vars)

Query a double-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A two-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

double[][][] get (GRB.DoubleAttr attr,
GRBVar[][][] vars)

Query a double-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A three-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

double[] get (GRB.DoubleAttr attr,
GRBConstr[] constrs)

Query a double-valued constraint attribute for an array of constraints.

287

Arguments:
attr: The attribute being queried.
constrs: The constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

double[] get (GRB.DoubleAttr attr,
GRBConstr[] constrs,
int start,
int len)

Query a double-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A one-dimensional array of constraints whose attribute values are being queried.
start: The first constraint of interest in the list.
len: The number of constraints.

Return value:
The current values of the requested attribute for each input constraint.

double[][] get (GRB.DoubleAttr attr,
GRBConstr[][] constrs)

Query a double-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A two-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

double[][][] get (GRB.DoubleAttr attr,
GRBConstr[][][] constrs)

Query a double-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A three-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

double[] get (GRB.DoubleAttr attr,
GRBQConstr[] qconstrs)

Query a double-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: The quadratic constraints whose attribute values are being queried.

288

Return value:
The current values of the requested attribute for each input quadratic constraint.

double[] get (GRB.DoubleAttr attr,
GRBQConstr[] qconstrs,
int start,
int len)

Query a double-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being queried.

start: The first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

Return value:
The current values of the requested attribute for each input quadratic constraint.

double[][] get (GRB.DoubleAttr attr,
GRBQConstr[][] qconstrs)

Query a double-valued quadratic constraint attribute for a two-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being queried.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

double[][][] get (GRB.DoubleAttr attr,
GRBQConstr[][][] qconstrs)

Query a double-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being queried.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

int get (GRB.IntAttr attr)

Query the value of an int-valued model attribute.
Arguments:

289

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int[] get (GRB.IntAttr attr,
GRBVar[] vars)

Query an int-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: The variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

int[] get (GRB.IntAttr attr,
GRBVar[] vars,
int start,
int len)

Query an int-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being queried.
vars: A one-dimensional array of variables whose attribute values are being queried.
start: The index of the first variable of interest in the list.
len: The number of variables.

Return value:
The current values of the requested attribute for each input variable.

int[][] get (GRB.IntAttr attr,
GRBVar[][] vars)

Query an int-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A two-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

int[][][] get (GRB.IntAttr attr,
GRBVar[][][] vars)

Query an int-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A three-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

290

int[] get (GRB.IntAttr attr,
GRBConstr[] constrs)

Query an int-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: The constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

int[] get (GRB.IntAttr attr,
GRBConstr[] constrs,
int start,
int len)

Query an int-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A one-dimensional array of constraints whose attribute values are being queried.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

Return value:
The current values of the requested attribute for each input constraint.

int[][] get (GRB.IntAttr attr,
GRBConstr[][] constrs)

Query an int-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A two-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

int[][][] get (GRB.IntAttr attr,
GRBConstr[][][] constrs)

Query an int-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A three-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

int[] get (GRB.IntAttr attr,
GRBQConstr[] qconstrs)

Query an int-valued quadratic constraint attribute for an array of quadratic constraints.

291

Arguments:
attr: The attribute being queried.
qconstrs: The quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

int[] get (GRB.IntAttr attr,
GRBQConstr[] qconstrs,
int start,
int len)

Query an int-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being queried.

start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

Return value:
The current values of the requested attribute for each input quadratic constraint.

int[][] get (GRB.IntAttr attr,
GRBQConstr[][] qconstrs)

Query an int-valued quadratic constraint attribute for a two-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being queried.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

int[][][] get (GRB.IntAttr attr,
GRBQConstr[][][] qconstrs)

Query an int-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being queried.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

int[] get (GRB.IntAttr attr,
GRBGenConstr[] genconstrs)

292

Query an int-valued general constraint attribute for an array of general constraints.
Arguments:

attr: The attribute being queried.
genconstrs: The general constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input general constraint.

int[] get (GRB.IntAttr attr,
GRBGenConstr[] genconstrs,
int start,
int len)

Query an int-valued general constraint attribute for a sub-array of general constraints.
Arguments:

attr: The attribute being queried.
genconstrs: A one-dimensional array of general constraints whose attribute values are
being queried.

start: The index of the first general constraint of interest in the list.
len: The number of general constraints.

Return value:
The current values of the requested attribute for each input general constraint.

int[][] get (GRB.IntAttr attr,
GRBGenConstr[][] genconstrs)

Query an int-valued general constraint attribute for a two-dimensional array of general con-
straints.

Arguments:
attr: The attribute being queried.
genconstrs: A two-dimensional array of general constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input general constraint.

int[][][] get (GRB.IntAttr attr,
GRBGenConstr[][][] genconstrs)

Query an int-valued general constraint attribute for a three-dimensional array of general con-
straints.

Arguments:
attr: The attribute being queried.
genconstrs: A three-dimensional array of general constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input general constraint.

293

String get (GRB.StringAttr attr)

Query the value of a string-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

String[] get (GRB.StringAttr attr,
GRBVar[] vars)

Query a String-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: The variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

String[] get (GRB.StringAttr attr,
GRBVar[] vars,
int start,
int len)

Query a String-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being queried.
vars: A one-dimensional array of variables whose attribute values are being queried.
start: The index of the first variable of interest in the list.
len: The number of variables.

Return value:
The current values of the requested attribute for each input variable.

String[][] get (GRB.StringAttr attr,
GRBVar[][] vars)

Query a String-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A two-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

String[][][] get (GRB.StringAttr attr,
GRBVar[][][] vars)

Query a String-valued variable attribute for a three-dimensional array of variables.
Arguments:

294

attr: The attribute being queried.
vars: A three-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

String[] get (GRB.StringAttr attr,
GRBConstr[] constrs)

Query a String-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: The constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

String[] get (GRB.StringAttr attr,
GRBConstr[] constrs,
int start,
int len)

Query a String-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A one-dimensional array of constraints whose attribute values are being queried.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

Return value:
The current values of the requested attribute for each input constraint.

String[][] get (GRB.StringAttr attr,
GRBConstr[][] constrs)

Query a String-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A two-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

String[][][] get (GRB.StringAttr attr,
GRBConstr[][][] constrs)

Query a String-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A three-dimensional array of constraints whose attribute values are being queried.

Return value:

295

The current values of the requested attribute for each input constraint.

String[] get (GRB.StringAttr attr,
GRBQConstr[] qconstrs)

Query a String-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: The quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

String[] get (GRB.StringAttr attr,
GRBQConstr[] qconstrs,
int start,
int len)

Query a String-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being queried.

start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

Return value:
The current values of the requested attribute for each input quadratic constraint.

String[][] get (GRB.StringAttr attr,
GRBQConstr[][] qconstrs)

Query a String-valued quadratic constraint attribute for a two-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being queried.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

String[][][] get (GRB.StringAttr attr,
GRBQConstr[][][] qconstrs)

Query a String-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being queried.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being queried.

296

Return value:
The current values of the requested attribute for each input quadratic constraint.

String[] get (GRB.StringAttr attr,
GRBGenConstr[] genconstrs)

Query a String-valued general constraint attribute for an array of general constraints.
Arguments:

attr: The attribute being queried.
genconstrs: The general constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input general constraint.

String[] get (GRB.StringAttr attr,
GRBGenConstr[] genconstrs,
int start,
int len)

Query a String-valued general constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being queried.
genconstrs: A one-dimensional array of general constraints whose attribute values are
being queried.

start: The index of the first general constraint of interest in the list.
len: The number of general constraints.

Return value:
The current values of the requested attribute for each input general constraint.

String[][] get (GRB.StringAttr attr,
GRBGenConstr[][] genconstrs)

Query a String-valued constraint attribute for a two-dimensional array of general constraints.
Arguments:

attr: The attribute being queried.
genconstrs: A two-dimensional array of general constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input general constraint.

String[][][] get (GRB.StringAttr attr,
GRBGenConstr[][][] genconstrs)

Query a String-valued constraint attribute for a three-dimensional array of general constraints.
Arguments:

attr: The attribute being queried.
genconstrs: A three-dimensional array of general constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input general constraint.

297

GRBModel.getCoeff()
Query the coefficient of variable var in linear constraint constr (note that the result can be zero).

double getCoeff (GRBConstr constr,
GRBVar var)

Arguments:
constr: The requested constraint.
var: The requested variable.

Return value:
The current value of the requested coefficient.

GRBModel.getCol()
Retrieve the list of constraints in which a variable participates, and the associated coefficients. The
result is returned as a GRBColumn object.

GRBColumn getCol (GRBVar var)

Arguments:
var: The variable of interest.

Return value:
A GRBColumn object that captures the set of constraints in which the variable participates.

GRBModel.getConcurrentEnv()
Create/retrieve a concurrent environment for a model.

This method provides fine-grained control over the concurrent optimizer. By creating your
own concurrent environments and setting appropriate parameters on these environments (e.g., the
Method parameter), you can control exactly which strategies the concurrent optimizer employs.
For example, if you create two concurrent environments, and set Method to primal simplex for
one and dual simplex for the other, subsequent concurrent optimizer runs will use the two simplex
algorithms rather than the default choices.

Note that you must create contiguously numbered concurrent environments, starting with
num=0. For example, if you want three concurrent environments, they must be numbered 0, 1,
and 2.

Once you create concurrent environments, they will be used for every subsequent concurrent
optimization on that model. Use discardConcurrentEnvs to revert back to default concurrent
optimizer behavior.

GRBEnv getConcurrentEnv (int num)

Arguments:
num: The concurrent environment number.

Return value:
The concurrent environment for the model.

298

GRBModel.getConstrByName()
Retrieve a linear constraint from its name. If multiple linear constraints have the same name, this
method chooses one arbitrarily. Returns null if no constraint has that name.

GRBConstr getConstrByName (String name)

Arguments:
name: The name of the desired linear constraint.

Return value:
The requested linear constraint.

GRBModel.getConstrs()
Retrieve an array of all linear constraints in the model.

GRBConstr[] getConstrs ()
Return value:

All linear constraints in the model.

GRBModel.getGenConstrXxx()
The following methods allow you to retrieve general constraints from your model.

GRBModel.getGenConstrMax

Retrieve the data associated with a general constraint of type MAX. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a null value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in len. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrMax for a description of the semantics of this general constraint type.

void getGenConstrMax (GRBGenConstr genc,
GRBVar[] resvar,
GRBVar[] vars,
int[] len,
double[] constant)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
resvar: Store the resultant variable of the constraint at resvar[0].
vars: Array to store the operand variables of the constraint.

299

len: Store the number of operand variables of the constraint at len[0].
constant: Store the additional constant operand of the constraint at constant[0].

GRBModel.getGenConstrMin

Retrieve the data associated with a general constraint of type MIN. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a null value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in len. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrMin for a description of the semantics of this general constraint type.

void getGenConstrMin (GRBGenConstr genc,
GRBVar[] resvar,
GRBVar[] vars,
int[] len,
double[] constant)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
resvar: Store the resultant variable of the constraint at resvar[0].
vars: Array to store the operand variables of the constraint.
len: Store the number of operand variables of the constraint at len[0].
constant: Store the additional constant operand of the constraint at constant[0].

GRBModel.getGenConstrAbs

Retrieve the data associated with a general constraint of type ABS. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrAbs for a description of the semantics of this general constraint type.

void getGenConstrAbs (GRBGenConstr genc,
GRBVar[] resvar,
GRBVar[] argvar)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
resvar: Store the resultant variable of the constraint at resvar[0].
argvar: Store the argument variable of the constraint at resvar[0].

300

GRBModel.getGenConstrAnd

Retrieve the data associated with a general constraint of type AND. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a null value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in len. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrAnd for a description of the semantics of this general constraint type.

void getGenConstrAnd (GRBGenConstr genc,
GRBVar[] resvar,
GRBVar[] vars,
int[] len)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
resvar: Store the resultant variable of the constraint at resvar[0].
vars: Array to store the operand variables of the constraint.
len: Store the number of operand variables of the constraint at len[0].

GRBModel.getGenConstrOr

Retrieve the data associated with a general constraint of type OR. Calling this method for a general
constraint of a different type leads to an exception. You can query the GenConstrType attribute
to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a null value for the vars argument. The routine returns the total number of
operand variables in the specified general constraint in len. That allows you to make certain that
the vars array is of sufficient size to hold the result of the second call.

See also addGenConstrOr for a description of the semantics of this general constraint type.

void getGenConstrOr (GRBGenConstr genc,
GRBVar[] resvar,
GRBVar[] vars,
int[] len)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
resvar: Store the resultant variable of the constraint at resvar[0].
vars: Array to store the operand variables of the constraint.
len: Store the number of operand variables of the constraint at len[0].

301

GRBModel.getGenConstrIndicator

Retrieve the data associated with a general constraint of type INDICATOR. Calling this method
for a general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrIndicator for a description of the semantics of this general constraint
type.

void getGenConstrIndicator (GRBGenConstr genc,
GRBVar[] binvar,
int[] binval,
GRBLinExpr[] expr,
char[] sense,
double[] rhs)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
binvar: Store the binary indicator variable of the constraint at binvar[0].
binval: Store the value that the indicator variable has to take in order to trigger the linear
constraint at binval[0].

expr: Create a GRBLinExpr object to store the left-hand side expression of the linear
constraint that is triggered by the indicator at expr[0].

sense: Store the sense for the linear constraint at sense[0]. Options are GRB.LESS_EQUAL,
GRB.EQUAL, or GRB.GREATER_EQUAL.

rhs: Store the right-hand side value for the linear constraint at rhs[0].

GRBModel.getGenConstrPWL

Retrieve the data associated with a general constraint of type PWL. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a null value for the xpts and ypts arguments. The routine returns the length for
the xpts and ypts arrays in npts. That allows you to make certain that the xpts and ypts arrays
are of sufficient size to hold the result of the second call.

See also addGenConstrPWL for a description of the semantics of this general constraint type.

void getGenConstrPWL (GRBGenConstr genc,
GRBVar[] xvar,
GRBVar[] yvar,
int[] npts,
double[] xpts,
double[] ypts)

Arguments:
genc: The general constraint object.

302

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.
npts: Store the number of points that define the piecewise-linear function.
xpts: The x values for the points that define the piecewise-linear function.
ypts: The y values for the points that define the piecewise-linear function.

GRBModel.getGenConstrPoly

Retrieve the data associated with a general constraint of type POLY. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a null value for the p argument. The routine returns the length of the p array in
plen. That allows you to make certain that the p array is of sufficient size to hold the result of the
second call.

See also addGenConstrPoly for a description of the semantics of this general constraint type.

void getGenConstrPoly (GRBGenConstr genc,
GRBVar[] xvar,
GRBVar[] yvar,
int[] plen,
double[] p)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.
plen: Store the array length for p. If xd is the highest power term, then d + 1 will be
returned.

p: The coefficients for polynomial function.

GRBModel.getGenConstrExp

Retrieve the data associated with a general constraint of type EXP. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrExp for a description of the semantics of this general constraint type.

void getGenConstrExp (GRBGenConstr genc,
GRBVar[] xvar,
GRBVar[] yvar)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.

303

xvar: Store the x variable.
yvar: Store the y variable.

GRBModel.getGenConstrExpA

Retrieve the data associated with a general constraint of type EXPA. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrExpA for a description of the semantics of this general constraint type.

void getGenConstrExpA (GRBGenConstr genc,
GRBVar[] xvar,
GRBVar[] yvar,
double[] a)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.
a: Store the base of the function.

GRBModel.getGenConstrLog

Retrieve the data associated with a general constraint of type LOG. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrLog for a description of the semantics of this general constraint type.

void getGenConstrLog (GRBGenConstr genc,
GRBVar[] xvar,
GRBVar[] yvar)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.

GRBModel.getGenConstrLogA

Retrieve the data associated with a general constraint of type LOGA. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrLogA for a description of the semantics of this general constraint type.

304

void getGenConstrLogA (GRBGenConstr genc,
GRBVar[] xvar,
GRBVar[] yvar,
double[] a)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.
a: Store the base of the function.

GRBModel.getGenConstrPow

Retrieve the data associated with a general constraint of type POW. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrPow for a description of the semantics of this general constraint type.

void getGenConstrPow (GRBGenConstr genc,
GRBVar[] xvar,
GRBVar[] yvar,
double[] a)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.
a: Store the exponent of the function.

GRBModel.getGenConstrSin

Retrieve the data associated with a general constraint of type SIN. Calling this method for a general
constraint of a different type leads to an exception. You can query the GenConstrType attribute
to determine the type of the general constraint.

See also addGenConstrSin for a description of the semantics of this general constraint type.

void getGenConstrSin (GRBGenConstr genc,
GRBVar[] xvar,
GRBVar[] yvar)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.

305

GRBModel.getGenConstrCos

Retrieve the data associated with a general constraint of type COS. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrCos for a description of the semantics of this general constraint type.

void getGenConstrCos (GRBGenConstr genc,
GRBVar[] xvar,
GRBVar[] yvar)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.

GRBModel.getGenConstrTan

Retrieve the data associated with a general constraint of type TAN. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrTan for a description of the semantics of this general constraint type.

void getGenConstrTan (GRBGenConstr genc,
GRBVar[] xvar,
GRBVar[] yvar)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.

GRBModel.getGenConstrs()

Retrieve an array of all general constraints in the model.

GRBGenConstr[] getGenConstrs ()
Return value:

All general constraints in the model.

306

GRBModel.getJSONSolution()
After a call to optimize, this method returns the resulting solution and related model attributes as
a JSON string. Please refer to the JSON solution format section for details.

String getJSONSolution ()
Return value:

A JSON string.

GRBModel.getMultiobjEnv()
Create/retrieve a multi-objective environment for the objective with the given index. This envi-
ronment enables fine-grained control over the multi-objective optimization process. Specifically, by
changing parameters on this environment, you modify the behavior of the optimization that occurs
during the corresponding pass of the multi-objective optimization.

Each multi-objective environment starts with a copy of the current model environment.
Please refer to the discussion of Multiple Objectives for information on how to specify multiple

objective functions and control the trade-off between them.
Use discardMultiobjEnvs to discard multi-objective environments and return to standard be-

havior.

GRBEnv getMultiobjEnv (int index)

Arguments:
index: The objective index.

Return value:
The multi-objective environment for the model.

GRBModel.getObjective()
Retrieve the model objective(s).

GRBExpr getObjective ()
Retrieve the optimization objective.
Note that the constant and linear portions of the objective can also be retrieved using the

ObjCon and Obj attributes.
Return value:

The model objective.

GRBLinExpr getObjective (int index)

Retrieve an alternative optimization objective. Alternative objectives will always be linear. You
can also use this routine to retrieve the primary objective (using index = 0), but you will get an
exception if the primary objective contains quadratic terms.

307

Please refer to the discussion of Multiple Objectives for more information on the use of alter-
native objectives.

Note that alternative objectives can also be retrieved using the ObjNCon and ObjN attributes.
Arguments:

index: The index for the requested alternative objective.
Return value:

The requested alternative objective.

GRBModel.getPWLObj()
Retrieve the piecewise-linear objective function for a variable. The return value gives the number
of points that define the function, and the x and y arguments give the coordinates of the points,
respectively. The x and y arguments must be large enough to hold the result. Call this method
with null values for x and y if you just want the number of points.

Refer to this discussion for additional information on what the values in x and y mean.

int getPWLObj (GRBVar var,
double[] x,
double[] y)

Arguments:
var: The variable whose objective function is being retrieved.
x: The x values for the points that define the piecewise-linear function. These will always
be in non-decreasing order.

y: The y values for the points that define the piecewise-linear function.
Return value:

The number of points that define the piecewise-linear objective function.

GRBModel.getQCRow()
Retrieve the left-hand side expression from a quadratic constraint. The result is returned as a
GRBQuadExpr object.

GRBQuadExpr getQCRow (GRBQConstr qc)

Arguments:
qc: The quadratic constraint of interest.

Return value:
A GRBQuadExpr object that captures the left-hand side of the quadratic constraint.

GRBModel.getQConstrs()
Retrieve an array of all quadratic constraints in the model.

GRBQConstr[] getQConstrs ()
Return value:

All quadratic constraints in the model.

308

GRBModel.getRow()

Retrieve a list of variables that participate in a constraint, and the associated coefficients. The
result is returned as a GRBLinExpr object.

GRBLinExpr getRow (GRBConstr constr)

Arguments:
constr: The constraint of interest. A GRBConstr object, typically obtained from addConstr
or getConstrs.

Return value:
A GRBLinExpr object that captures the set of variables that participate in the constraint.

GRBModel.getSOS()

Retrieve the list of variables that participate in an SOS constraint, and the associated coefficients.
The return value is the length of this list. Note that the argument arrays must be long enough to
accommodate the result. Call the method with null array arguments to determine the appropriate
array lengths.

int getSOS (GRBSOS sos,
GRBVar[] vars,
double[] weights,
int[] type)

Arguments:
sos: The SOS set of interest.
vars: A list of variables that participate in sos. Can be null.
weights: The SOS weights for each participating variable. Can be null.
type: The type of the SOS set (either GRB.SOS_TYPE1 or GRB.SOS_TYPE2) is returned in
type[0].

Return value:
The number of entries placed in the output arrays. Note that you should consult the return
value to determine the length of the result; the arrays sizes won’t necessarily match the
result size.

GRBModel.getSOSs()

Retrieve an array of all SOS constraints in the model.

GRBSOS[] getSOSs ()
Return value:

All SOS constraints in the model.

309

GRBModel.getTuneResult()
Use this method to retrieve the results of a previous tune call. Calling this method with argument
n causes tuned parameter set n to be copied into the model. Parameter sets are stored in order of
decreasing quality, with parameter set 0 being the best. The number of available sets is stored in
attribute TuneResultCount.

Once you have retrieved a tuning result, you can call optimize to use these parameter settings
to optimize the model, or write to write the changed parameters to a .prm file.

Please refer to the Parameter Tuning section in the Reference Manual for details on the tuning
tool.

void getTuneResult (int i)

i: The index of the tuning result to retrieve. The best result is available as index 0. The
number of stored results is available in attribute TuneResultCount.

GRBModel.getVarByName()
Retrieve a variable from its name. If multiple variables have the same name, this method chooses
one arbitrarily. Returns null if no variable has that name.

GRBVar getVarByName (String name)

Arguments:
name: The name of the desired variable.

Return value:
The requested variable.

GRBModel.getVars()
Retrieve an array of all variables in the model.

GRBVar[] getVars ()
Return value:

All variables in the model.

GRBModel.optimize()
Optimize the model. The algorithm used for the optimization depends on the model type (simplex
or barrier for a continuous model; branch-and-cut for a MIP model). Upon successful completion,
this method will populate the solution related attributes of the model. See the Attributes section
in the Reference Manual for more information on attributes.

Please consult this section in the Reference Manual for a discussion of some of the practical issues
associated with solving a precisely defined mathematical model using finite-precision floating-point
arithmetic.

310

Note that this method will process all pending model modifications.

void optimize ()

GRBModel.optimizeasync()

Optimize a model asynchronously. This routine returns immediately. Your program can perform
other computations while optimization proceeds in the background. To check the state of the
asynchronous optimization, query the Status attribute for the model. A value of IN_PROGRESS
indicates that the optimization has not yet completed. When you are done with your foreground
tasks, you must call sync to sync your foreground program with the asynchronous optimization
task.

Note that the set of Gurobi calls that you are allowed to make while optimization is running in
the background is severely limited. Specifically, you can only perform attribute queries, and only
for a few attributes (listed below). Any other calls on the running model, or on any other models that
were built within the same Gurobi environment, will fail with error code OPTIMIZATION_IN_PROGRESS.

Note that there are no such restrictions on models built in other environments. Thus, for
example, you could create multiple environments, and then have a single foreground program
launch multiple simultaneous asynchronous optimizations, each in its own environment.

As already noted, you are allowed to query the value of the Status attribute while an asyn-
chronous optimization is in progress. The other attributes that can be queried are: ObjVal, Ob-
jBound, IterCount, NodeCount, and BarIterCount. In each case, the returned value reflects progress
in the optimization to that point. Any attempt to query the value of an attribute not on this list
will return an OPTIMIZATION_IN_PROGRESS error.

void optimizeasync ()

GRBModel.optimizeBatch()

Submit a new batch request to the Cluster Manager. Returns the BatchID (a string), which
uniquely identifies the job in the Cluster Manager and can be used to query the status of this
request (from this program or from any other). Once the request has completed, the BatchID can
also be used to retrieve the associated solution. To submit a batch request, you must tag at least
one element of the model by setting one of the VTag, CTag or QCTag attributes. For more details
on batch optimization, please refer to the Batch Optimization section.

Note that this routine will process all pending model modifications.

String optimizeBatch ()
Return value:

A unique string identifier for the batch request.

311

GRBModel.presolve()
Perform presolve on a model.

GRBModel presolve ()
Return value:

Presolved version of original model.

GRBModel.read()
This method is the general entry point for importing data from a file into a model. It can be used
to read basis files for continuous models, start vectors for MIP models, or parameter settings. The
type of data read is determined by the file suffix. File formats are described in the File Formats
section of the Reference Manual.

Note that this is not the method to use if you want to read a new model from a file. For that,
use the GRBModel constructor. One variant of the constructor takes the name of the file that
contains the new model as its argument.

void read (String filename)

Arguments:
filename: Name of the file to read. The suffix on the file must be either .bas (for an LP
basis), .mst or .sol (for a MIP start), .hnt (for MIP hints), .ord (for a priority order),
or .prm (for a parameter file). The suffix may optionally be followed by .zip, .gz, .bz2,
or .7z.

GRBModel.remove()
Remove a variable, constraint, or SOS from a model.

void remove (GRBConstr constr)

Remove a linear constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel.update), optimize
the model (using GRBModel.optimize), or write the model to disk (using GRBModel.write).

Arguments:
constr: The linear constraint to remove.

void remove (GRBGenConstr genconstr)

Remove a general constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel.update), optimize
the model (using GRBModel.optimize), or write the model to disk (using GRBModel.write).

Arguments:

312

genconstr: The general constraint to remove.

void remove (GRBQConstr qconstr)

Remove a quadratic constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel.update), optimize
the model (using GRBModel.optimize), or write the model to disk (using GRBModel.write).

Arguments:
qconstr: The quadratic constraint to remove.

void remove (GRBSOS sos)

Remove an SOS constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel.update), optimize
the model (using GRBModel.optimize), or write the model to disk (using GRBModel.write).

Arguments:
sos: The SOS constraint to remove.

void remove (GRBVar var)

Remove a variable from the model. Note that, due to our lazy update approach, the change
won’t actually take effect until you update the model (using GRBModel.update), optimize the
model (using GRBModel.optimize), or write the model to disk (using GRBModel.write).

Arguments:
var: The variable to remove.

GRBModel.reset()

Reset the model to an unsolved state, discarding any previously computed solution information.

void reset ()

void reset (int clearall)

Arguments:
clearall: A value of 1 discards additional information that affects the solution process but
not the actual model (currently MIP starts, variable hints, branching priorities, lazy flags,
and partition information). Pass 0 to just discard the solution.

313

GRBModel.setCallback()
Set the callback object for a model. The callback() method on this object will be called period-
ically from the Gurobi solver. You will have the opportunity to obtain more detailed information
about the state of the optimization from this callback. See the documentation for GRBCallback
for additional information.

Note that a model can only have a single callback method, so this call will replace an existing
callback.

void setCallback (GRBCallback cb)

Arguments:
cb: New callback object. To disable a previously set callback, call this method with a null
argument.

GRBModel.set()
Set the value(s) of a parameter or attribute. Use this method for parameters, for scalar model
attributes, or for arrays of constraint or variable attributes.

void set (GRB.DoubleParam param,
double newval)

Set the value of a double-valued parameter.
The difference between setting a parameter on a model and setting it on an environment (i.e.,

through GRBEnv.set) is that the former modifies the parameter for a single model, while the latter
modifies the parameter for every model that is subsequently built using that environment (and
leaves the parameter unchanged for models that were previously built using that environment).

Arguments:
param: The parameter being modified.
newval: The desired new value for the parameter.

void set (GRB.IntParam param,
int newval)

Set the value of an int-valued parameter.
The difference between setting a parameter on a model and setting it on an environment (i.e.,

through GRBEnv.set) is that the former modifies the parameter for a single model, while the latter
modifies the parameter for every model that is subsequently built using that environment (and
leaves the parameter unchanged for models that were previously built using that environment).

Arguments:
param: The parameter being modified.
newval: The desired new value for the parameter.

void set (GRB.StringParam param,
String newval)

314

Set the value of a string-valued parameter.
The difference between setting a parameter on a model and setting it on an environment (i.e.,

through GRBEnv.set) is that the former modifies the parameter for a single model, while the latter
modifies the parameter for every model that is subsequently built using that environment (and
leaves the parameter unchanged for models that were previously built using that environment).

Arguments:
param: The parameter being modified.
newval: The desired new value for the parameter.

void set (String param,
String newval)

Set the value of any parameter using strings alone.
The difference between setting a parameter on a model and setting it on an environment (i.e.,

through GRBEnv.set) is that the former modifies the parameter for a single model, while the latter
modifies the parameter for every model that is subsequently built using that environment (and
leaves the parameter unchanged for models that were previously built using that environment).

Arguments:
param: The name of the parameter being modified.
newval: The desired new value for the parameter.

void set (GRB.CharAttr attr,
GRBVar[] vars,
char[] newvals)

Set a char-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: The variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.CharAttr attr,
GRBVar[] vars,
char[] newvals,
int start,
int len)

Set a char-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being modified.
vars: A one-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.
start: The index of the first variable of interest in the list.
len: The number of variables.

void set (GRB.CharAttr attr,
GRBVar[][] vars,
char[][] newvals)

315

Set a char-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A two-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.CharAttr attr,
GRBVar[][][] vars,
char[][][] newvals)

Set a char-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A three-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.CharAttr attr,
GRBConstr[] constrs,
char[] newvals)

Set a char-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: The constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.CharAttr attr,
GRBConstr[] constrs,
char[] newvals,
int start,
int len)

Set a char-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A one-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

void set (GRB.CharAttr attr,
GRBConstr[][] constrs,
char[][] newvals)

Set a char-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being modified.

316

constrs: A two-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.CharAttr attr,
GRBConstr[][][] constrs,
char[][][] newvals)

Set a char-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A three-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.CharAttr attr,
GRBQConstr[] qconstrs,
char[] newvals)

Set a char-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: The quadratic constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.CharAttr attr,
GRBQConstr[] qconstrs,
char[] newvals,
int start,
int len)

Set a char-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being modified.

newvals: The desired new values for the attribute for each input quadratic constraint.
start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

void set (GRB.CharAttr attr,
GRBQConstr[][] qconstrs,
char[][] newvals)

Set a char-valued quadratic constraint attribute for a two-dimensional array of quadratic con-
straints.

Arguments:
attr: The attribute being modified.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being modified.

317

newvals: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.CharAttr attr,
GRBQConstr[][][] qconstrs,
char[][][] newvals)

Set a char-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being modified.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being modified.

newvals: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.DoubleAttr attr,
double newval)

Set the value of a double-valued model attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value for the attribute.

void set (GRB.DoubleAttr attr,
GRBVar[] vars,
double[] newvals)

Set a double-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: The variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.DoubleAttr attr,
GRBVar[] vars,
double[] newvals,
int start,
int len)

Set a double-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being modified.
vars: A one-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.
start: The index of the first variable of interest in the list.
len: The number of variables.

318

void set (GRB.DoubleAttr attr,
GRBVar[][] vars,
double[][] newvals)

Set a double-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A two-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.DoubleAttr attr,
GRBVar[][][] vars,
double[][][] newvals)

Set a double-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A three-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.DoubleAttr attr,
GRBConstr[] constrs,
double[] newvals)

Set a double-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: The constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.DoubleAttr attr,
GRBConstr[] constrs,
double[] newvals,
int start,
int len)

Set a double-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A one-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.
start: The first constraint of interest in the list.
len: The number of constraints.

void set (GRB.DoubleAttr attr,
GRBConstr[][] constrs,
double[][] newvals)

Set a double-valued constraint attribute for a two-dimensional array of constraints.

319

Arguments:
attr: The attribute being modified.
constrs: A two-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.DoubleAttr attr,
GRBConstr[][][] constrs,
double[][][] newvals)

Set a double-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A three-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.DoubleAttr attr,
GRBQConstr[] qconstrs,
double[] newvals)

Set a double-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: The quadratic constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.DoubleAttr attr,
GRBQConstr[] qconstrs,
double[] newvals,
int start,
int len)

Set a double-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being modified.

newvals: The desired new values for the attribute for each input quadratic constraint.
start: The first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

void set (GRB.DoubleAttr attr,
GRBQConstr[][] qconstrs,
double[][] newvals)

Set a double-valued quadratic constraint attribute for a two-dimensional array of quadratic
constraints.

Arguments:

320

attr: The attribute being modified.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being modified.

newvals: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.DoubleAttr attr,
GRBQConstr[][][] qconstrs,
double[][][] newvals)

Set a double-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being modified.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being modified.

newvals: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.IntAttr attr,
int newval)

Set the value of an int-valued model attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value for the attribute.

void set (GRB.IntAttr attr,
GRBVar[] vars,
int[] newvals)

Set an int-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: The variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.IntAttr attr,
GRBVar[] vars,
int[] newvals,
int start,
int len)

Set an int-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being modified.
vars: A one-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.
start: The index of the first variable of interest in the list.

321

len: The number of variables.

void set (GRB.IntAttr attr,
GRBVar[][] vars,
int[][] newvals)

Set an int-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A two-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.IntAttr attr,
GRBVar[][][] vars,
int[][][] newvals)

Set an int-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A three-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.IntAttr attr,
GRBConstr[] constrs,
int[] newvals)

Set an int-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: The constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.IntAttr attr,
GRBConstr[] constrs,
int[] newvals,
int start,
int len)

Set an int-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A one-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

322

void set (GRB.IntAttr attr,
GRBConstr[][] constrs,
int[][] newvals)

Set an int-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A two-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.IntAttr attr,
GRBConstr[][][] constrs,
int[][][] newvals)

Set an int-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A three-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.StringAttr attr,
String newval)

Set the value of a String-valued model attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value for the attribute.

void set (GRB.StringAttr attr,
GRBVar[] vars,
String[] newvals)

Set a String-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: The variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.StringAttr attr,
GRBVar[] vars,
String[] newvals,
int start,
int len)

Set a String-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being modified.
vars: A one-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

323

start: The index of the first variable of interest in the list.
len: The number of variables.

void set (GRB.StringAttr attr,
GRBVar[][] vars,
String[][] newvals)

Set a String-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A two-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.StringAttr attr,
GRBVar[][][] vars,
String[][][] newvals)

Set a String-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A three-dimensional array of variables whose attribute values are being modified.
newvals: The desired new values for the attribute for each input variable.

void set (GRB.StringAttr attr,
GRBConstr[] constrs,
String[] newvals)

Set a String-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: The constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.StringAttr attr,
GRBConstr[] constrs,
String[] newvals,
int start,
int len)

Set a String-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A one-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

324

void set (GRB.StringAttr attr,
GRBConstr[][] constrs,
String[][] newvals)

Set a String-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A two-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.StringAttr attr,
GRBConstr[][][] constrs,
String[][][] newvals)

Set a String-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A three-dimensional array of constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input constraint.

void set (GRB.StringAttr attr,
GRBQConstr[] qconstrs,
String[] newvals)

Set a String-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: The quadratic constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.StringAttr attr,
GRBQConstr[] qconstrs,
String[] newvals,
int start,
int len)

Set a String-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being modified.

newvals: The desired new values for the attribute for each input quadratic constraint.
start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

void set (GRB.StringAttr attr,
GRBQConstr[][] qconstrs,
String[][] newvals)

325

Set a String-valued quadratic constraint attribute for a two-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being modified.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being modified.

newvals: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.StringAttr attr,
GRBQConstr[][][] qconstrs,
String[][][] newvals)

Set a String-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being modified.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being modified.

newvals: The desired new values for the attribute for each input quadratic constraint.

void set (GRB.StringAttr attr,
GRBGenConstr[] genconstrs,
String[] newvals)

Set a String-valued general constraint attribute for an array of general constraints.
Arguments:

attr: The attribute being modified.
genconstrs: The general constraints whose attribute values are being modified.
newvals: The desired new values for the attribute for each input general constraint.

void set (GRB.StringAttr attr,
GRBGenConstr[] genconstrs,
String[] newvals,
int start,
int len)

Set a String-valued general constraint attribute for a sub-array of general constraints.
Arguments:

attr: The attribute being modified.
genconstrs: A one-dimensional array of general constraints whose attribute values are
being modified.

newvals: The desired new values for the attribute for each input general constraint.
start: The index of the first general constraint of interest in the list.
len: The number of general constraints.

void set (GRB.StringAttr attr,
GRBGenConstr[][] genconstrs,
String[][] newvals)

326

Set a String-valued general constraint attribute for a two-dimensional array of general con-
straints.

Arguments:
attr: The attribute being modified.
genconstrs: A two-dimensional array of general constraints whose attribute values are
being modified.

newvals: The desired new values for the attribute for each input general constraint.

void set (GRB.StringAttr attr,
GRBGenConstr[][][] genconstrs,
String[][][] newvals)

Set a String-valued general constraint attribute for a three-dimensional array of general con-
straints.

Arguments:
attr: The attribute being modified.
genconstrs: A three-dimensional array of general constraints whose attribute values are
being modified.

newvals: The desired new values for the attribute for each input general constraint.

GRBModel.setObjective()

Set the model objective equal to a linear or quadratic expression (for multi-objective optimization,
see setObjectiveN).

Note that you can also modify the linear portion of a model objective using the Obj variable
attribute. If you wish to mix and match these two approaches, please note that this method replaces
the entire existing objective, while the Obj attribute can be used to modify individual linear terms.

void setObjective (GRBExpr expr,
int sense)

Set the model objective, and the objective sense (GRB.MINIMIZE for minimization, GRB.MAXIMIZE
for maximization).

Arguments:
expr: New model objective.
sense: New optimization sense (GRB.MINIMIZE for minimization, GRB.MAXIMIZE for maxi-
mization).

void setObjective (GRBExpr expr)

Set the model objective. The sense of the objective is determined by the value of the ModelSense
attribute.

Arguments:
expr: New model objective.

327

GRBModel.setObjectiveN()

void setObjectiveN (GRBLinExpr expr,
int index,
int priority,
double weight,
double abstol,
double reltol,
String name)

Set an alternative optimization objective equal to a linear expression.
Please refer to the discussion of Multiple Objectives for more information on the use of alter-

native objectives.
Note that you can also modify an alternative objective using the ObjN variable attribute. If

you wish to mix and match these two approaches, please note that this method replaces the entire
existing objective, while the ObjN attribute can be used to modify individual terms.

Arguments:
expr: New alternative objective.
index: Index for new objective. If you use an index of 0, this routine will change the primary
optimization objective.

priority: Priority for the alternative objective. This initializes the ObjNPriority attribute
for this objective.

weight: Weight for the alternative objective. This initializes the ObjNWeight attribute for
this objective.

abstol: Absolute tolerance for the alternative objective. This initializes the ObjNAbsTol
attribute for this objective.

reltol: Relative tolerance for the alternative objective. This initializes the ObjNRelTol
attribute for this objective.

name: Name of the alternative objective. This initializes the ObjNName attribute for this
objective.

GRBModel.setPWLObj()
Set a piecewise-linear objective function for a variable.

The arguments to this method specify a list of points that define a piecewise-linear objective
function for a single variable. Specifically, the x and y arguments give coordinates for the vertices
of the function.

For additional details on piecewise-linear objective functions, refer to this discussion.

void setPWLObj (GRBVar var,
double[] x,
double[] y)

Set the piecewise-linear objective function for a variable.
Arguments:

var: The variable whose objective function is being set.

328

x: The x values for the points that define the piecewise-linear function. Must be in non-
decreasing order.

y: The y values for the points that define the piecewise-linear function.

GRBModel.singleScenarioModel()

Capture a single scenario from a multi-scenario model. Use the ScenarioNumber parameter to
indicate which scenario to capture.

The model on which this method is invoked must be a multi-scenario model, and the result will
be a single-scenario model.

GRBModel singleScenarioModel ()
Return value:

Model for a single scenario.

GRBModel.sync()

Wait for a previous asynchronous optimization call to complete.
Calling optimizeasync returns control to the calling routine immediately. The caller can perform

other computations while optimization proceeds, and can check on the progress of the optimization
by querying various model attributes. The sync call forces the calling program to wait until the
asynchronous optimization call completes. You must call sync before the corresponding model
object is deleted.

The sync call throws an exception if the optimization itself ran into any problems. In other
words, exceptions thrown by this method are those that optimize itself would have thrown, had
the original method not been asynchronous.

Note that you need to call sync even if you know that the asynchronous optimization has
already completed.

void sync ()

GRBModel.terminate()

Generate a request to terminate the current optimization. This method can be called at any time
during an optimization (from a callback, from another thread, from an interrupt handler, etc.).
Note that, in general, the request won’t be acted upon immediately.

When the optimization stops, the Status attribute will be equal to GRB_INTERRUPTED.

void terminate ()

329

GRBModel.tune()
Perform an automated search for parameter settings that improve performance. Upon completion,
this method stores the best parameter sets it found. The number of stored parameter sets can be
determined by querying the value of the TuneResultCount attribute. The actual settings can be
retrieved using getTuneResult.

Please refer to the Parameter Tuning section in the Reference Manual for details on the tuning
tool.

void tune ()

GRBModel.update()
Process any pending model modifications.

void update ()

GRBModel.write()
This method is the general entry point for writing optimization data to a file. It can be used to
write optimization models, solutions vectors, basis vectors, start vectors, or parameter settings.
The type of data written is determined by the file suffix. File formats are described in the File
Format section.

Note that writing a model to a file will process all pending model modifications. However,
writing other model information (solutions, bases, etc.) will not.

Note also that when you write a Gurobi parameter file (PRM), both integer or double parameters
not at their default value will be saved, but no string parameter will be saved into the file.

void write (String filename)

Arguments:
filename: The name of the file to be written. The file type is encoded in the file name
suffix. Valid suffixes are .mps, .rew, .lp, or .rlp for writing the model itself, .ilp
for writing just the IIS associated with an infeasible model (see GRBModel.computeIIS
for further information), .sol for writing the current solution, .mst for writing a start
vector, .hnt for writing a hint file, .bas for writing an LP basis, .prm for writing modified
parameter settings, .attr for writing model attributes, or .json for writing solution
information in JSON format. If your system has compression utilities installed (e.g., 7z
or zip for Windows, and gzip, bzip2, or unzip for Linux or Mac OS), then the files can
be compressed, so additional suffixes of .gz, .bz2, or .7z are accepted.

330

4.3 GRBVar
Gurobi variable object. Variables are always associated with a particular model. You create a
variable object by adding a variable to a model (using GRBModel.addVar), rather than by using a
GRBVar constructor.

The methods on variable objects are used to get and set variable attributes. For example,
solution information can be queried by calling get(GRB.DoubleAttr.X). Note, however, that it is
generally more efficient to query attributes for a set of variables at once. This is done using the
attribute query method on the GRBModel object (GRBModel.get).

GRBVar.get()
Query the value of a variable attribute.

char get (GRB.CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

double get (GRB.DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int get (GRB.IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

String get (GRB.StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

331

GRBVar.index()

int index ()
This method returns the current index, or order, of the variable in the underlying constraint

matrix.
Return value:

-2: removed, -1: not in model, otherwise: index of the variable in the model
Note that the index of a variable may change after subsequent model modifications.

GRBVar.sameAs()

boolean sameAs (GRBVar otherVar)

Check whether two variable objects refer to the same variable.
Arguments:

otherVar: The other variable.
Return value:

Boolean result indicates whether the two variable objects refer to the same model variable.

GRBVar.set()
Set the value of a variable attribute.

void set (GRB.CharAttr attr,
char newval)

Set the value of a char-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

void set (GRB.DoubleAttr attr,
double newval)

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

void set (GRB.IntAttr attr,
int newval)

Set the value of an int-valued attribute.
Arguments:

attr: The attribute being modified.

332

newval: The desired new value of the attribute.

void set (GRB.StringAttr attr,
String newval)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

333

4.4 GRBConstr
Gurobi constraint object. Constraints are always associated with a particular model. You create a
constraint object by adding a constraint to a model (using GRBModel.addConstr), rather than by
using a GRBConstr constructor.

The methods on constraint objects are used to get and set constraint attributes. For example,
constraint right-hand sides can be queried by calling get(GRB.DoubleAttr.RHS). Note, however,
that it is generally more efficient to query attributes for a set of constraints at once. This is done
using the attribute query method on the GRBModel object (GRBModel.get).

GRBConstr.get()
Query the value of a constraint attribute.

char get (GRB.CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

double get (GRB.DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int get (GRB.IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

String get (GRB.StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

334

GRBConstr.index()

int index ()
This method returns the current index, or order, of the constraint in the underlying constraint

matrix.
Note that the index of a constraint may change after subsequent model modifications.
Return value:

-2: removed, -1: not in model, otherwise: index of the constraint in the model

GRBConstr.sameAs()

boolean sameAs (GRBConstr otherConstr)

Check whether two constraint objects refer to the same constraint.
Arguments:

otherConstr: The other constraint.
Return value:

Boolean result indicates whether the two constraint objects refer to the same model con-
straint.

GRBConstr.set()
Set the value of a constraint attribute.

void set (GRB.CharAttr attr,
char newval)

Set the value of a char-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

void set (GRB.DoubleAttr attr,
double newval)

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

void set (GRB.IntAttr attr,
int newval)

Set the value of an int-valued attribute.
Arguments:

335

attr: The attribute being modified.
newval: The desired new value of the attribute.

void set (GRB.StringAttr attr,
String newval)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

336

4.5 GRBQConstr
Gurobi quadratic constraint object. Quadratic constraints are always associated with a particular
model. You create a quadratic constraint object by adding a quadratic constraint to a model (using
GRBModel.addQConstr), rather than by using a GRBQConstr constructor.

The methods on quadratic constraint objects are used to get and set constraint attributes. For
example, quadratic constraint right-hand sides can be queried by calling get(GRB.DoubleAttr.QCRHS).
Note, however, that it is generally more efficient to query attributes for a set of constraints at once.
This is done using the attribute query method on the GRBModel object (GRBModel.get).

GRBQConstr.get()
Query the value of a quadratic constraint attribute.

char get (GRB.CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

double get (GRB.DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int get (GRB.IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

String get (GRB.StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

337

GRBQConstr.set()
Set the value of a quadratic constraint attribute.

void set (GRB.CharAttr attr,
char newval)

Set the value of a char-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

void set (GRB.DoubleAttr attr,
double newval)

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

void set (GRB.StringAttr attr,
String newval)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

338

4.6 GRBSOS
Gurobi SOS constraint object. SOS constraints are always associated with a particular model.
You create an SOS object by adding an SOS constraint to a model (using GRBModel.addSOS),
rather than by using a GRBSOS constructor. Similarly, SOS constraints are removed using the
GRBModel.remove method.

An SOS constraint can be of type 1 or 2 (GRB.SOS_TYPE1 or GRB.SOS_TYPE2). A type 1 SOS
constraint is a set of variables where at most one variable in the set may take a value other than
zero. A type 2 SOS constraint is an ordered set of variables where at most two variables in the set
may take non-zero values. If two take non-zero values, they must be contiguous in the ordered set.

SOS constraint objects have one attribute, IISSOS, which can be queried with the GRBSOS.get
method.

GRBSOS.get()
Query the value of an SOS attribute.

int get (GRB.IntAttr attr)

Arguments:
attr: The attribute being queried.

Return value:
The current value of the requested attribute.

339

4.7 GRBGenConstr
Gurobi general constraint object. General constraints are always associated with a particular model.
You create a general constraint object by adding a general constraint to a model (using one of the
GRBModel.addGenConstrXxx methods), rather than by using a GRBGenConstr constructor.

The methods on general constraint objects are used to get and set constraint attributes. For
example, general constraint types can be queried by calling get(GRB.IntAttr.GenConstrType).
Note, however, that it is generally more efficient to query attributes for a set of constraints at once.
This is done using the attribute query method on the GRBModel object (GRBModel.get).

GRBGenConstr.get()
Query the value of a general constraint attribute.

double get (GRB.DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int get (GRB.IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

String get (GRB.StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBGenConstr.set()
Set the value of a general constraint attribute.

void set (GRB.DoubleAttr attr,
double newval)

340

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

void set (GRB.IntAttr attr,
int newval)

Set the value of an int-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

void set (GRB.StringAttr attr,
String newval)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newval: The desired new value of the attribute.

341

4.8 GRBExpr
Abstract base class for the GRBLinExpr and GRBQuadExpr classes. Expressions are used to build
objectives and constraints. They are temporary objects that typically have short lifespans.

GRBExpr.getValue()
Compute the value of an expression for the current solution.

double getValue ()
Return value:

Value of the expression for the current solution.

342

4.9 GRBLinExpr
Gurobi linear expression object. A linear expression consists of a constant term, plus a list of
coefficient-variable pairs that capture the linear terms. Linear expressions are used to build con-
straints. They are temporary objects that typically have short lifespans.

The GRBLinExpr class is a sub-class of the abstract base class GRBExpr.
You generally build linear expressions by starting with an empty expression (using the GRB-

LinExpr constructor), and then adding terms. Terms can be added individually, using addTerm,
or in groups, using addTerms, or multAdd. Terms can also be removed from an expression, using
remove.

To add a linear constraint to your model, you generally build one or two linear expression
objects (expr1 and expr2) and then pass them to GRBModel.addConstr. To give a few examples:

model.addConstr(expr1, GRB.LESS_EQUAL, expr2)
model.addConstr(expr1, GRB.EQUAL, 1)

Once you add a constraint to your model, subsequent changes to the expression object you used to
build the constraint will not change the constraint (you would use GRBModel.chgCoeff for that).

Individual terms in a linear expression can be queried using the getVar, getCoeff, and getCon-
stant methods. You can query the number of terms in the expression using the size method.

Note that a linear expression may contain multiple terms that involve the same variable. These
duplicate terms are merged when creating a constraint from an expression, but they may be visible
when inspecting individual terms in the expression (e.g., when using getVar).

GRBLinExpr()

Linear expression constructor. Create an empty linear expression, or copy an existing expression.

GRBLinExpr GRBLinExpr ()
Create an empty linear expression.
Return value:

An empty expression object.

GRBLinExpr GRBLinExpr (GRBLinExpr le)

Copy an existing linear expression.
Arguments:

le: Existing expression to copy.
Return value:

A copy of the input expression object.

GRBLinExpr.add()

Add one linear expression into another. Upon completion, the invoking linear expression will be
equal to the sum of itself and the argument expression.

343

void add (GRBLinExpr le)

Arguments:
le: Linear expression to add.

GRBLinExpr.addConstant()
Add a constant into a linear expression.

void addConstant (double c)

Arguments:
c: Constant to add to expression.

GRBLinExpr.addTerm()
Add a single term into a linear expression.

void addTerm (double coeff,
GRBVar var)

Arguments:
coeff: Coefficient for new term.
var: Variable for new term.

GRBLinExpr.addTerms()
Add new terms into a linear expression.

void addTerms (double[] coeffs,
GRBVar[] vars)

Add a list of terms into a linear expression. Note that the lengths of the two argument arrays
must be equal.

Arguments:
coeffs: Coefficients for new terms.
vars: Variables for new terms.

void addTerms (double[] coeffs,
GRBVar[] vars,
int start,
int len)

Add new terms into a linear expression. This signature allows you to use arrays to hold the
coefficients and variables that describe the terms in an array without being forced to add a term
for each entry in the array. The start and len arguments allow you to specify which terms to add.

Arguments:

344

coeffs: Coefficients for new terms.
vars: Variables for new terms.
start: The first term in the list to add.
len: The number of terms to add.

GRBLinExpr.clear()

Set a linear expression to 0.

void clear ()

GRBLinExpr.getConstant()

Retrieve the constant term from a linear expression.

double getConstant ()
Return value:

Constant from expression.

GRBLinExpr.getCoeff()

Retrieve the coefficient from a single term of the expression.

double getCoeff (int i)

Arguments:
i: Index for coefficient of interest.

Return value:
Coefficient for the term at index i in the expression.

GRBLinExpr.getValue()

Compute the value of a linear expression for the current solution.

double getValue ()
Return value:

Value of the expression for the current solution.

345

GRBLinExpr.getVar()

Retrieve the variable object from a single term of the expression.

GRBVar getVar (int i)

Arguments:
i: Index for term of interest.

Return value:
Variable for the term at index i in the expression.

GRBLinExpr.multAdd()

Add a constant multiple of one linear expression into another. Upon completion, the invoking linear
expression is equal the sum of itself and the constant times the argument expression.

void multAdd (double m,
GRBLinExpr le)

Arguments:
m: Constant multiplier for added expression.
le: Linear expression to add.

GRBLinExpr.remove()

Remove a term from a linear expression.

void remove (int i)

Remove the term stored at index i of the expression.
Arguments:

i: The index of the term to be removed.

boolean remove (GRBVar var)

Remove all terms associated with variable var from the expression.
Arguments:

var: The variable whose term should be removed.
Return value:

Returns true if the variable appeared in the linear expression (and was removed).

346

GRBLinExpr.size()
Retrieve the number of terms in the linear expression (not including the constant).

int size ()
Return value:

Number of terms in the expression.

347

4.10 GRBQuadExpr
Gurobi quadratic expression object. A quadratic expression consists of a linear expression, plus a
list of coefficient-variable-variable triples that capture the quadratic terms. Quadratic expressions
are used to build quadratic objective functions and quadratic constraints. They are temporary
objects that typically have short lifespans.

The GRBQuadExpr class is a sub-class of the abstract base class GRBExpr.
You generally build quadratic expressions by starting with an empty expression (using the

GRBQuadExpr constructor), and then adding terms. Terms can be added individually, using
addTerm, or in groups, using addTerms, or multAdd. Quadratic terms can be removed from a
quadratic expression using remove.

To add a quadratic constraint to your model, you generally build one or two quadratic expression
objects (qexpr1 and qexpr2) and then use an overloaded comparison operator to build an argument
for GRBModel.addQConstr. To give a few examples:

model.addQConstr(qexpr1, GRB.LESS_EQUAL, qexpr2)
model.addQConstr(qexpr1, GRB.EQUAL, 1)

Once you add a constraint to your model, subsequent changes to the expression object you used to
build the constraint will have no effect on that constraint.

Individual quadratic terms in a quadratic expression can be queried using the getVar1, getVar2,
and getCoeff methods. You can query the number of quadratic terms in the expression using the
size method. To query the constant and linear terms associated with a quadratic expression,
first obtain the linear portion of the quadratic expression using getLinExpr, and then use the
getConstant, getCoeff, and getVar methods on the resulting GRBLinExpr object.

Note that a quadratic expression may contain multiple terms that involve the same variable
pair. These duplicate terms are merged when creating the model objective from an expression, but
they may be visible when inspecting individual quadratic terms in the expression (e.g., when using
getVar1 and getVar2).

GRBQuadExpr()

Quadratic expression constructor. Create an empty quadratic expression, or copy an existing
expression.

GRBQuadExpr GRBQuadExpr ()
Create an empty quadratic expression.
Return value:

An empty expression object.

GRBQuadExpr GRBQuadExpr (GRBLinExpr le)

Initialize a quadratic expression from an existing linear expression.
Arguments:

le: Existing linear expression to copy.

348

Return value:
Quadratic expression object whose initial value is taken from the input linear expression.

GRBQuadExpr GRBQuadExpr (GRBQuadExpr qe)

Copy an existing quadratic expression.
Arguments:

qe: Existing expression to copy.
Return value:

A copy of the input expression object.

GRBQuadExpr.add()
Add an expression into a quadratic expression. Upon completion, the invoking quadratic expression
will be equal to the sum of itself and the argument expression.

void add (GRBLinExpr le)

Add a linear expression.
Arguments:

le: Linear expression to add.

void add (GRBQuadExpr qe)

Add a quadratic expression.
Arguments:

qe: Quadratic expression to add.

GRBQuadExpr.addConstant()
Add a constant into a quadratic expression.

void addConstant (double c)

Arguments:
c: Constant to add to expression.

GRBQuadExpr.addTerm()
Add a single term into a quadratic expression.

void addTerm (double coeff,
GRBVar var)

349

Add a single linear term (coeff*var) into a quadratic expression.
Arguments:

coeff: Coefficient for new term.
var: Variable for new term.

void addTerm (double coeff,
GRBVar var1,
GRBVar var2)

Add a single quadratic term (coeff*var1*var2) into a quadratic expression.
Arguments:

coeff: Coefficient for new quadratic term.
var1: First variable for new quadratic term.
var2: Second variable for new quadratic term.

GRBQuadExpr.addTerms()

Add new terms into a quadratic expression.

void addTerms (double[] coeffs,
GRBVar[] vars)

Add a list of linear terms into a quadratic expression. Note that the lengths of the two argument
arrays must be equal.

Arguments:
coeffs: Coefficients for new terms.
vars: Variables for new terms.

void addTerms (double[] coeffs,
GRBVar[] vars,
int start,
int len)

Add new linear terms into a quadratic expression. This signature allows you to use arrays to
hold the coefficients and variables that describe the linear terms in an array without being forced
to add a term for each entry in the array. The start and len arguments allow you to specify which
terms to add.

Arguments:
coeffs: Coefficients for new terms.
vars: Variables for new terms.
start: The first term in the list to add.
len: The number of terms to add.

void addTerms (double[] coeffs,
GRBVar[] vars1,
GRBVar[] vars2)

350

Add a list of quadratic terms into a quadratic expression. Note that the lengths of the three
argument arrays must be equal.

Arguments:
coeffs: Coefficients for new quadratic terms.
vars1: First variables for new quadratic terms.
vars2: Second variables for new quadratic terms.

void addTerms (double[] coeffs,
GRBVar[] vars1,
GRBVar[] vars2,
int start,
int len)

Add new quadratic terms into a quadratic expression. This signature allows you to use arrays
to hold the coefficients and variables that describe the terms in an array without being forced to
add a term for each entry in the array. The start and len arguments allow you to specify which
terms to add.

Arguments:
coeffs: Coefficients for new quadratic terms.
vars1: First variables for new quadratic terms.
vars2: Second variables for new quadratic terms.
start: The first term in the list to add.
len: The number of terms to add.

GRBQuadExpr.clear()

Set a quadratic expression to 0.

void clear ()

GRBQuadExpr.getCoeff()

Retrieve the coefficient from a single quadratic term of the quadratic expression.

double getCoeff (int i)

Arguments:
i: Index for coefficient of interest.

Return value:
Coefficient for the quadratic term at index i in the expression.

351

GRBQuadExpr.getLinExpr()

A quadratic expression is represented as a linear expression, plus a list of quadratic terms. This
method retrieves the linear expression associated with the quadratic expression.

GRBLinExpr getLinExpr ()
Return value:

Linear expression associated with the quadratic expression.

GRBQuadExpr.getValue()

Compute the value of a quadratic expression for the current solution.

double getValue ()
Return value:

Value of the expression for the current solution.

GRBQuadExpr.getVar1()

Retrieve the first variable object associated with a single quadratic term from the expression.

GRBVar getVar1 (int i)

Arguments:
i: Index for term of interest.

Return value:
First variable for the quadratic term at index i in the quadratic expression.

GRBQuadExpr.getVar2()

Retrieve the second variable object associated with a single quadratic term from the expression.

GRBVar getVar2 (int i)

Arguments:
i: Index for term of interest.

Return value:
Second variable for the quadratic term at index i in the quadratic expression.

352

GRBQuadExpr.multAdd()
Add a constant multiple of one quadratic expression into another. Upon completion, the invoking
quadratic expression is equal the sum of itself and the constant times the argument expression.

void multAdd (double m,
GRBLinExpr le)

Add a linear expression into a quadratic expression.
Arguments:

m: Constant multiplier for added expression.
le: Linear expression to add.

void multAdd (double m,
GRBQuadExpr qe)

Add a quadratic expression into a quadratic expression.
Arguments:

m: Constant multiplier for added expression.
qe: Quadratic expression to add.

GRBQuadExpr.remove()
Remove a term from a quadratic expression.

void remove (int i)

Remove the quadratic term stored at index i of the expression.
Arguments:

i: The index of the quadratic term to be removed.

boolean remove (GRBVar var)

Remove all quadratic terms associated with variable var from the expression.
Arguments:

var: The variable whose quadratic term should be removed.
Return value:

Returns true if the variable appeared in the quadratic expression (and was removed).

GRBQuadExpr.size()
Retrieve the number of quadratic terms in the quadratic expression. Use GRBQuadExpr.getLinExpr
to retrieve constant or linear terms from the quadratic expression.

int size ()
Return value:

Number of quadratic terms in the expression.

353

4.11 GRBColumn
Gurobi column object. A column consists of a list of coefficient, constraint pairs. Columns are used
to represent the set of constraints in which a variable participates, and the associated coefficients.
They are temporary objects that typically have short lifespans.

You generally build columns by starting with an empty column (using the GRBColumn con-
structor), and then adding terms. Terms can be added individually, using addTerm, or in groups,
using addTerms. Terms can also be removed from a column, using remove.

Individual terms in a column can be queried using the getConstr, and getCoeff methods. You
can query the number of terms in the column using the size method.

GRBColumn()

Column constructor. Create an empty column, or copy an existing column.

GRBColumn GRBColumn ()
Create an empty column.
Return value:

An empty column object.

GRBColumn GRBColumn (GRBColumn col)

Copy an existing column.
Arguments:

col: Existing column object.
Return value:

A copy of the input column object.

GRBColumn.addTerm()

Add a single term into a column.

void addTerm (double coeff,
GRBConstr constr)

Arguments:
coeff: Coefficient for new term.
constr: Constraint for new term.

GRBColumn.addTerms()

Add new terms into a column.

void addTerms (double[] coeffs,
GRBConstr[] constrs)

354

Add a list of terms into a column. Note that the lengths of the two argument arrays must be
equal.

Arguments:
coeffs: Coefficients for added constraints.
constrs: Constraints to add to column.

void addTerms (double[] coeffs,
GRBConstr[] constrs,
int start,
int len)

Add new terms into a column. This signature allows you to use arrays to hold the coefficients
and constraints that describe the terms in an array without being forced to add an term for each
member in the array. The start and len arguments allow you to specify which terms to add.

Arguments:
coeffs: Coefficients for added constraints.
constrs: Constraints to add to column.
start: The first term in the list to add.
len: The number of terms to add.

GRBColumn.clear()
Remove all terms from a column.

void clear ()

GRBColumn.getCoeff()
Retrieve the coefficient from a single term in the column.

double getCoeff (int i)

Arguments:
i: Index for coefficient of interest.

Return value:
Coefficient for the term at index i in the column.

GRBColumn.getConstr()
Retrieve the constraint object from a single term in the column.

GRBConstr getConstr (int i)

Arguments:
i: Index for term of interest.

Return value:
Constraint for the term at index i in the column.

355

GRBColumn.remove()
Remove a single term from a column.

void remove (int i)

Remove the term stored at index i of the column.
Arguments:

i: The index of the term to be removed.

boolean remove (GRBConstr constr)

Remove the term associated with constraint constr from the column.
Arguments:

constr: The constraint whose term should be removed.
Return value:

Returns true if the constraint appeared in the column (and was removed).

GRBColumn.size()
Retrieve the number of terms in the column.

int size ()
Return value:

Number of terms in the column.

356

4.12 GRBCallback
Gurobi callback class. This is an abstract class. To implement a callback, you should create a
subclass of this class and implement a callback() method. If you pass an object of this subclass
to method GRBModel.setCallback before calling GRBModel.optimize, the callback() method of
the class will be called periodically. Depending on where the callback is called from, you will be
able to obtain various information about the progress of the optimization.

Note that this class contains one protected int member variable: where. You can query this
variable from your callback() method to determine where the callback was called from.

Gurobi callbacks can be used both to monitor the progress of the optimization and to modify
the behavior of the Gurobi optimizer. A simple user callback function might call the GRBCall-
back.getIntInfo or GRBCallback.getDoubleInfo methods to produce a custom display, or perhaps to
terminate optimization early (using GRBCallback.abort). More sophisticated MIP callbacks might
use GRBCallback.getNodeRel or GRBCallback.getSolution to retrieve values from the solution to
the current node, and then use GRBCallback.addCut or GRBCallback.addLazy to add a constraint
to cut off that solution, or GRBCallback.setSolution to import a heuristic solution built from that
solution. For multi-objective problems, you might use GRBCallback.stopOneMultiObj to interrupt
the optimization process of one of the optimization steps in a multi-objective MIP problem without
stopping the hierarchical optimization process.

When solving a model using multiple threads, the user callback is only ever called from a single
thread, so you don’t need to worry about the thread-safety of your callback.

Note that changing parameters from within a callback is not supported, doing so may lead to
undefined behavior.

You can look at the Callback.java example for details of how to use Gurobi callbacks.

GRBCallback()

Callback constructor.

GRBCallback GRBCallback ()
Return value:

A callback object.

GRBCallback.abort()

Abort optimization. When the optimization stops, the Status attribute will be equal to
GRB.Status.INTERRUPTED.

void abort ()

GRBCallback.addCut()

Add a cutting plane to the MIP model from within a callback function. Note that this method can
only be invoked when the where member variable is equal to GRB.CB_MIPNODE (see the Callback
Codes section in the Reference Manual for more information).

357

Cutting planes can be added at any node of the branch-and-cut tree. However, they should be
added sparingly, since they increase the size of the relaxation model that is solved at each node
and can significantly degrade node processing speed.

Cutting planes are typically used to cut off the current relaxation solution. To retrieve the
relaxation solution at the current node, you should first call getNodeRel.

You should consider setting parameter PreCrush to value 1 when adding your own cuts. This
setting shuts off a few presolve reductions that can sometimes prevent your cut from being applied
to the presolved model (which would result in your cut being silently ignored).

Note that cutting planes added through this method must truly be cutting planes -- they can
cut off continuous solutions, but they may not cut off integer solutions that respect the original
constraints of the model. Ignoring this restriction will lead to incorrect solutions.

void addCut (GRBLinExpr lhsExpr,
char sense,
double rhs)

Arguments:
lhsExpr: Left-hand side expression for new cutting plane.
sense: Sense for new cutting plane (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhs: Right-hand side value for new cutting plane.

GRBCallback.addLazy()
Add a lazy constraint to the MIP model from within a callback function. Note that this method can
only be invoked when the where member variable is equal to GRB.CB_MIPNODE or GRB.CB_MIPSOL
(see the Callback Codes section in the Reference Manual for more information).

Lazy constraints are typically used when the full set of constraints for a MIP model is too large
to represent explicitly. By only including the constraints that are actually violated by solutions
found during the branch-and-cut search, it is sometimes possible to find a proven optimal solution
while only adding a fraction of the full set of constraints.

You would typically add a lazy constraint by first querying the current node solution (by calling
getSolution from a GRB.CB_MIPSOL callback, or getNodeRel from a GRB.CB_MIPNODE callback), and
then calling addLazy() to add a constraint that cuts off the solution. Gurobi guarantees that you
will have the opportunity to cut off any solutions that would otherwise be considered feasible.

Your callback should be prepared to cut off solutions that violate any of your lazy constraints,
including those that have already been added. Node solutions will usually respect previously added
lazy constraints, but not always.

Note that you must set the LazyConstraints parameter if you want to use lazy constraints.

void addLazy (GRBLinExpr lhsExpr,
char sense,
double rhs)

Arguments:
lhsExpr: Left-hand side expression for new lazy constraint.
sense: Sense for new lazy constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhs: Right-hand side value for new lazy constraint.

358

GRBCallback.getDoubleInfo()
Request double-valued callback information. The available information depends on the value of the
where member. For information on possible values of where, and the double-valued information
that can be queried for different values of where, please refer to the Callback Codes section of the
Reference Manual.

double getDoubleInfo (int what)

Arguments:
what: Information requested. Please refer to the list of Callback Codes in the Reference
Manual for possible values.

Return value:
Value of requested callback information.

GRBCallback.getIntInfo()
Request int-valued callback information. The available information depends on the value of the
where member. For information on possible values of where, and the int-valued information that
can be queried for different values of where, please refer to the Callback Codes section in the
Reference Manual.

int getIntInfo (int what)

Arguments:
what: Information requested. Please refer to the list of Callback Codes in the Reference
Manual for possible values.

Return value:
Value of requested callback information.

GRBCallback.getNodeRel()
Retrieve node relaxation solution values at the current node. Only available when the where mem-
ber variable is equal to GRB.CB_MIPNODE, and GRB.CB_MIPNODE_STATUS is equal to
GRB.Status.OPTIMAL.

double getNodeRel (GRBVar v)

Arguments:
v: The variable whose value is desired.

Return value:
The value of the specified variable in the node relaxation for the current node.

double[] getNodeRel (GRBVar[] xvars)

359

Arguments:
xvars: The list of variables whose values are desired.

Return value:
The values of the specified variables in the node relaxation for the current node.

double[][] getNodeRel (GRBVar[][] xvars)

Arguments:
xvars: The array of variables whose values are desired.

Return value:
The values of the specified variables in the node relaxation for the current node.

GRBCallback.getSolution()

Retrieve values from the current solution vector. Only available when the where member variable
is equal to GRB.CB_MIPSOL or GRB.CB_MULTIOBJ.

double getSolution (GRBVar v)

Arguments:
v: The variable whose value is desired.

Return value:
The value of the specified variable in the current solution vector.

double[] getSolution (GRBVar[] xvars)

Arguments:
xvars: The list of variables whose values are desired.

Return value:
The values of the specified variables in the current solution.

double[][] getSolution (GRBVar[][] xvars)

Arguments:
xvars: The array of variables whose values are desired.

Return value:
The values of the specified variables in the current solution.

360

GRBCallback.getStringInfo()
Request string-valued callback information. The available information depends on the value of the
where member. For information on possible values of where, and the string-valued information
that can be queried for different values of where, please refer to the Callback Codes section of the
Reference Manual.

String getStringInfo (int what)

Arguments:
what: Information requested. Please refer to the list of Callback Codes in the Reference
Manual for possible values.

Return value:
Value of requested callback information.

GRBCallback.setSolution()
Import solution values for a heuristic solution. Only available when the where member variable is
equal to GRB.CB_MIPNODE.

When you specify a heuristic solution from a callback, variables initially take undefined values.
You should use this method to specify variable values. You can make multiple calls to setSolution
from one callback invocation to specify values for multiple sets of variables. After the callback, if
values have been specified for any variables, the Gurobi optimizer will try to compute a feasible
solution from the specified values, possibly filling in values for variables whose values were left unde-
fined. You can also optionally call useSolution within your callback function to try to immediately
compute a feasible solution from the specified values.

void setSolution (GRBVar v,
double val)

Arguments:
v: The variable whose values is being set.
val: The value of the variable in the new solution.

void setSolution (GRBVar[] xvars,
double[] sol)

Arguments:
xvars: The variables whose values are being set.
sol: The desired values of the specified variables in the new solution.

GRBCallback.stopOneMultiObj()
Interrupt the optimization process of one of the optimization steps in a multi-objective MIP problem
without stopping the hierarchical optimization process. Only available for multi-objective MIP
models and when the where member variable is not equal to GRB.CB_MULTIOBJ (see the Callback
Codes section for more information).

361

You would typically stop a multi-objective optimization step by querying the last finished num-
ber of multi-objectives steps, and using that number to stop the current step and move on to the
next hierarchical objective (if any) as shown in the following example:

Example usage:

import gurobi.*;

public class Callback extends GRBCallback {
private int objcnt;
private long starttime;

protected void callback() {
try {
if (where == GRB.CB_MULTIOBJ) {

/* get current objective number */
objcnt = getIntInfo(GRB.CB_MULTIOBJ_OBJCNT);

/* reset start time to current time */
starttime = System.currentTimeMillis();

} else if (System.currentTimeMillis() - starttime > BIG ||
/* takes too long or good enough */) {

/* stop only this optimization step */
stopOneMultiObj(objcnt);

}
}

}
}

You should refer to the section on Multiple Objectives for information on how to specify multiple
objective functions and control the trade-off between them.

void stopOneMultiObj (int objcnt)

Arguments:
objnum: The number of the multi-objective optimization step to interrupt. For processes
running locally, this argument can have the special value -1, meaning to stop the current
step.

GRBCallback.useSolution()

Once you have imported solution values using setSolution, you can optionally call useSolution to
immediately use these values to try to compute a heuristic solution.

double useSolution ()

362

Return value:
The objective value for the solution obtained from your solution values (or GRB.INFINITY
if no improved solution is found).

363

4.13 GRBException
Gurobi exception object. This is a sub-class of the Java Exception class. A number of useful
methods, including getMessage() and printStackTrace(), are inherited from the parent class.
For a list of parent class methods in Java 1.6, visit this site.

GRBException()
Exception constructor.

GRBException GRBException (int errcode)

Create a Gurobi exception.
Arguments:

errcode: Error code for exception.
Return value:

An exception object.

GRBException GRBException (String errmsg)

Create a Gurobi exception.
Arguments:

errmsg: Error message for exception.
Return value:

An exception object.

GRBException GRBException (String errmsg,
int errcode)

Create a Gurobi exception.
Arguments:

errmsg: Error message for exception.
errcode: Error code for exception.

Return value:
An exception object.

GRBException.getErrorCode()
Retrieve the error code associated with a Gurobi exception.

int getErrorCode ()
Return value:

The error code associated with the exception.

364

https://docs.oracle.com/javase/6/docs/api/java/lang/Exception.html

4.14 GRBBatch
Gurobi batch object. Batch optimization is a feature available with the Gurobi Cluster Manager.
It allows a client program to build an optimization model, submit it to a Compute Server cluster
(through a Cluster Manager), and later check on the status of the model and retrieve its solution.
For more information, please refer to the Batch Optimization section.

Commonly used methods on the batch object include update (refresh attributes from the Cluster
Manager), abort (abort execution of a batch request), retry (retry optimization for an interrupted
or failed batch request), discard (remove the batch request and all related information from the
Cluster Manager), and getJSONSolution (query solution information for the batch request).

These methods are built on top of calls to the Cluster Manager REST API. They are meant to
simplify such calls, but note that you always have the option of calling the REST API directly.

Batch objects have four attributes:
: BatchID: Unique ID for the batch request.

: BatchStatus: Current optimization status for the batch request. Status values are described in
the Batch Status Code section.

: BatchErrorCode: Last error code.

: BatchErrorMessage: Last error message.
You can access their values by using get. Note that all Batch attributes are locally cached, and are
only updated when you create a client-side batch object or when you explicitly update this cache,
which can done by calling update.

While the Java garbage collector will eventually collect an unused GRBBatch object, the vast
majority of the memory associated with a model is stored outside of the Java heap. As a result,
the garbage collector can’t see this memory usage, and thus it can’t take this quantity into account
when deciding whether collection is necessary. We recommend that you call GRBBatch.dispose
when you are done with the batch.

GRBBatch()
Given a BatchID, as returned by optimizeBatch, and a Gurobi environment that can connect to
the appropriate Cluster Manager (i.e., one where parameters CSManager, UserName, and Server-
Password have been set appropriately), this function returns a GRBBatch object. With it, you
can query the current status of the associated batch request and, once the batch request has been
processed, you can query its solution. Please refer to the Batch Optimization section for details
and examples.

GRBBatch GRBBatch (GRBEnv env,
String batchID)

Arguments:
env: The environment in which the new batch object should be created.
batchID: ID of the batch request for which you want to access status and other information.

Return value:
New batch object.

Example usage:

365

// Create Batch - object
GRBBatch batch = new GRBBatch (env , batchid);

GRBBatch.abort()

void abort ()
This method instructs the Cluster Manager to abort the processing of this batch request, chang-

ing its status to ABORTED. Please refer to the Batch Status Codes section for further details.
Example usage:

// Request to abort the batch
batch.abort ();

GRBBatch.discard()

void discard ()
This method instructs the Cluster Manager to remove all information related to the batch

request in question, including the stored solution if available. Further queries for the associated
batch request will fail with error code GRB_ERROR_DATA_NOT_AVAILABLE. Use this function with
care, as the removed information can not be recovered later on.

Example usage:

// Request to erase input and output data related to this batch
batch. discard ();

GRBBatch.dispose()

void dispose ()
Free all resources associated with this Batch object. After this method is called, this Batch

object must no longer be used.
Example usage:

// Dispose resources
batch. dispose ();

366

GRBBatch.getJSONSolution()

String getJSONSolution () Return value:
The requested solution in JSON format.

This function retrieves the solution of a completed batch request from a Cluster Manager. The
solution is returned as a JSON solution string. For this call to succeed, the status of the batch
request must be COMPLETED. Please refer to the Batch Status Codes section for further details.

Example usage:

// print JSON solution into string
System .out. println ("JSON solution :" + batch. getJSONSolution ());

GRBBatch.get()
Query the value of an attribute.

int get (GRB.IntAttr attr)

Query the value of an int-valued batch attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

String get (GRB.StringAttr attr)

Query the value of a string-valued batch attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBBatch.retry()

void retry ()
This method instructs the Cluster Manager to retry optimization of a failed or aborted batch

request, changing its status to SUBMITTED. Please refer to the Batch Status Codes section for further
details.

Example usage:

// Retry the batch job
batch.retry ();

367

GRBBatch.update()

void update ()
All Batch attribute values are cached locally, so queries return the value received during the last

communication with the Cluster Manager. This method refreshes the values of all attributes with
the values currently available in the Cluster Manager (which involves network communication).

Example usage:

// Update local attributes
batch. update ();

GRBBatch.writeJSONSolution()

void writeJSONSolution (String filename)

This method returns the stored solution of a completed batch request from a Cluster Manager.
The solution is returned in a gzip-compressed JSON file. The file name you provide must end with
a .json.gz extension. The JSON format is described in the JSON solution format section. Note
that for this call to succeed, the status of the batch request must be COMPLETED. Please refer to the
Batch Status Codes section for further details.

Arguments:
filename: Name of file where the solution should be stored (in JSON format).

Example usage:

// save solution into a file
batch. writeJSONSolution ("batch -sol.json.gz");

368

4.15 GRB
Class for Java enums and constants. The enums are used to get or set Gurobi attributes or
parameters.

Constants
The following list contains the set of constants needed by the Gurobi Java interface. You would
refer to them using a GRB. prefix (e.g., GRB.Status.OPTIMAL).

// Model -status -codes

public static final int LOADED = 1;
public static final int OPTIMAL = 2;
public static final int INFEASIBLE = 3;
public static final int INF_OR_UNBD = 4;
public static final int UNBOUNDED = 5;
public static final int CUTOFF = 6;
public static final int ITERATION_LIMIT = 7;
public static final int NODE_LIMIT = 8;
public static final int TIME_LIMIT = 9;
public static final int SOLUTION_LIMIT = 10;
public static final int INTERRUPTED = 11;
public static final int NUMERIC = 12;
public static final int SUBOPTIMAL = 13;
public static final int INPROGRESS = 14;
public static final int USER_OBJ_LIMIT = 15;

public class Status {
public static final int LOADED = 1;
public static final int OPTIMAL = 2;
public static final int INFEASIBLE = 3;
public static final int INF_OR_UNBD = 4;
public static final int UNBOUNDED = 5;
public static final int CUTOFF = 6;
public static final int ITERATION_LIMIT = 7;
public static final int NODE_LIMIT = 8;
public static final int TIME_LIMIT = 9;
public static final int SOLUTION_LIMIT = 10;
public static final int INTERRUPTED = 11;
public static final int NUMERIC = 12;
public static final int SUBOPTIMAL = 13;
public static final int INPROGRESS = 14;
public static final int USER_OBJ_LIMIT = 15;

}

// BatchStatus codes

public static final int CREATED = 1;
public static final int SUBMITTED = 2;
public static final int ABORTED = 3;
public static final int FAILED = 4;
public static final int COMPLETED = 5;

public class BatchStatus {
public static final int CREATED = 1;

369

public static final int SUBMITTED = 2;
public static final int ABORTED = 3;
public static final int FAILED = 4;
public static final int COMPLETED = 5;

}
// Version numbers

public static final int VERSION_MAJOR = 9;
public static final int VERSION_MINOR = 1;
public static final int VERSION_TECHNICAL = 2;

// Basis status info

public static final int BASIC = 0;
public static final int NONBASIC_LOWER = -1;
public static final int NONBASIC_UPPER = -2;
public static final int SUPERBASIC = -3;

// Constraint senses

public static final char LESS_EQUAL = ’<’;
public static final char GREATER_EQUAL = ’>’;
public static final char EQUAL = ’=’;

// Variable types

public static final char CONTINUOUS = ’C’;
public static final char BINARY = ’B’;
public static final char INTEGER = ’I’;
public static final char SEMICONT = ’S’;
public static final char SEMIINT = ’N’;

// Objective sense

public static final int MINIMIZE = 1;
public static final int MAXIMIZE = -1;

// SOS types

public static final int SOS_TYPE1 = 1;
public static final int SOS_TYPE2 = 2;

// General constraint types

public static final int GENCONSTR_MAX = 0;
public static final int GENCONSTR_MIN = 1;
public static final int GENCONSTR_ABS = 2;
public static final int GENCONSTR_AND = 3;
public static final int GENCONSTR_OR = 4;
public static final int GENCONSTR_INDICATOR = 5;
public static final int GENCONSTR_PWL = 6;
public static final int GENCONSTR_POLY = 7;
public static final int GENCONSTR_EXP = 8;
public static final int GENCONSTR_EXPA = 9;
public static final int GENCONSTR_LOG = 10;
public static final int GENCONSTR_LOGA = 11;

370

public static final int GENCONSTR_POW = 12;
public static final int GENCONSTR_SIN = 13;
public static final int GENCONSTR_COS = 14;
public static final int GENCONSTR_TAN = 15;

// Numeric constants

public static final double INFINITY = 1e100;
public static final double UNDEFINED = 1e101;

// Other constants

public static final int DEFAULT_CS_PORT = 61000;

// Callback constants

public static final int CB_POLLING = 0;
public static final int CB_PRESOLVE = 1;
public static final int CB_SIMPLEX = 2;
public static final int CB_MIP = 3;
public static final int CB_MIPSOL = 4;
public static final int CB_MIPNODE = 5;
public static final int CB_MESSAGE = 6;
public static final int CB_BARRIER = 7;
public static final int CB_MULTIOBJ = 8;
public static final int CB_PRE_COLDEL = 1000;
public static final int CB_PRE_ROWDEL = 1001;
public static final int CB_PRE_SENCHG = 1002;
public static final int CB_PRE_BNDCHG = 1003;
public static final int CB_PRE_COECHG = 1004;
public static final int CB_SPX_ITRCNT = 2000;
public static final int CB_SPX_OBJVAL = 2001;
public static final int CB_SPX_PRIMINF = 2002;
public static final int CB_SPX_DUALINF = 2003;
public static final int CB_SPX_ISPERT = 2004;
public static final int CB_MIP_OBJBST = 3000;
public static final int CB_MIP_OBJBND = 3001;
public static final int CB_MIP_NODCNT = 3002;
public static final int CB_MIP_SOLCNT = 3003;
public static final int CB_MIP_CUTCNT = 3004;
public static final int CB_MIP_NODLFT = 3005;
public static final int CB_MIP_ITRCNT = 3006;
public static final int CB_MIPSOL_SOL = 4001;
public static final int CB_MIPSOL_OBJ = 4002;
public static final int CB_MIPSOL_OBJBST = 4003;
public static final int CB_MIPSOL_OBJBND = 4004;
public static final int CB_MIPSOL_NODCNT = 4005;
public static final int CB_MIPSOL_SOLCNT = 4006;
public static final int CB_MIPNODE_STATUS = 5001;
public static final int CB_MIPNODE_REL = 5002;
public static final int CB_MIPNODE_OBJBST = 5003;
public static final int CB_MIPNODE_OBJBND = 5004;
public static final int CB_MIPNODE_NODCNT = 5005;
public static final int CB_MIPNODE_SOLCNT = 5006;
public static final int CB_MIPNODE_BRVAR = 5007;
public static final int CB_MSG_STRING = 6001;

371

public static final int CB_RUNTIME = 6002;
public static final int CB_BARRIER_ITRCNT = 7001;
public static final int CB_BARRIER_PRIMOBJ = 7002;
public static final int CB_BARRIER_DUALOBJ = 7003;
public static final int CB_BARRIER_PRIMINF = 7004;
public static final int CB_BARRIER_DUALINF = 7005;
public static final int CB_BARRIER_COMPL = 7006;
public static final int CB_MULTIOBJ_OBJCNT = 8001;
public static final int CB_MULTIOBJ_SOLCNT = 8002;
public static final int CB_MULTIOBJ_SOL = 8003;

public class Callback {
public static final int POLLING = 0;
public static final int PRESOLVE = 1;
public static final int SIMPLEX = 2;
public static final int MIP = 3;
public static final int MIPSOL = 4;
public static final int MIPNODE = 5;
public static final int MESSAGE = 6;
public static final int BARRIER = 7;
public static final int MULTIOBJ = 8;
public static final int PRE_COLDEL = 1000;
public static final int PRE_ROWDEL = 1001;
public static final int PRE_SENCHG = 1002;
public static final int PRE_BNDCHG = 1003;
public static final int PRE_COECHG = 1004;
public static final int SPX_ITRCNT = 2000;
public static final int SPX_OBJVAL = 2001;
public static final int SPX_PRIMINF = 2002;
public static final int SPX_DUALINF = 2003;
public static final int SPX_ISPERT = 2004;
public static final int MIP_OBJBST = 3000;
public static final int MIP_OBJBND = 3001;
public static final int MIP_NODCNT = 3002;
public static final int MIP_SOLCNT = 3003;
public static final int MIP_CUTCNT = 3004;
public static final int MIP_NODLFT = 3005;
public static final int MIP_ITRCNT = 3006;
public static final int MIPSOL_SOL = 4001;
public static final int MIPSOL_OBJ = 4002;
public static final int MIPSOL_OBJBST = 4003;
public static final int MIPSOL_OBJBND = 4004;
public static final int MIPSOL_NODCNT = 4005;
public static final int MIPSOL_SOLCNT = 4006;
public static final int MIPNODE_STATUS = 5001;
public static final int MIPNODE_REL = 5002;
public static final int MIPNODE_OBJBST = 5003;
public static final int MIPNODE_OBJBND = 5004;
public static final int MIPNODE_NODCNT = 5005;
public static final int MIPNODE_SOLCNT = 5006;
public static final int MIPNODE_BRVAR = 5007;
public static final int MSG_STRING = 6001;
public static final int RUNTIME = 6002;
public static final int BARRIER_ITRCNT = 7001;
public static final int BARRIER_PRIMOBJ = 7002;
public static final int BARRIER_DUALOBJ = 7003;

372

public static final int BARRIER_PRIMINF = 7004;
public static final int BARRIER_DUALINF = 7005;
public static final int BARRIER_COMPL = 7006;
public static final int MULTIOBJ_OBJCNT = 8001;
public static final int MULTIOBJ_SOLCNT = 8002;
public static final int MULTIOBJ_SOL = 8003;

}

// Errors

public static final int ERROR_OUT_OF_MEMORY = 10001;
public static final int ERROR_NULL_ARGUMENT = 10002;
public static final int ERROR_INVALID_ARGUMENT = 10003;
public static final int ERROR_UNKNOWN_ATTRIBUTE = 10004;
public static final int ERROR_DATA_NOT_AVAILABLE = 10005;
public static final int ERROR_INDEX_OUT_OF_RANGE = 10006;
public static final int ERROR_UNKNOWN_PARAMETER = 10007;
public static final int ERROR_VALUE_OUT_OF_RANGE = 10008;
public static final int ERROR_NO_LICENSE = 10009;
public static final int ERROR_SIZE_LIMIT_EXCEEDED = 10010;
public static final int ERROR_CALLBACK = 10011;
public static final int ERROR_FILE_READ = 10012;
public static final int ERROR_FILE_WRITE = 10013;
public static final int ERROR_NUMERIC = 10014;
public static final int ERROR_IIS_NOT_INFEASIBLE = 10015;
public static final int ERROR_NOT_FOR_MIP = 10016;
public static final int ERROR_OPTIMIZATION_IN_PROGRESS = 10017;
public static final int ERROR_DUPLICATES = 10018;
public static final int ERROR_NODEFILE = 10019;
public static final int ERROR_Q_NOT_PSD = 10020;
public static final int ERROR_QCP_EQUALITY_CONSTRAINT = 10021;
public static final int ERROR_NETWORK = 10022;
public static final int ERROR_JOB_REJECTED = 10023;
public static final int ERROR_NOT_SUPPORTED = 10024;
public static final int ERROR_EXCEED_2B_NONZEROS = 10025;
public static final int ERROR_INVALID_PIECEWISE_OBJ = 10026;
public static final int ERROR_UPDATEMODE_CHANGE = 10027;
public static final int ERROR_CLOUD = 10028;
public static final int ERROR_MODEL_MODIFICATION = 10029;
public static final int ERROR_CSWORKER = 10030;
public static final int ERROR_TUNE_MODEL_TYPES = 10031;
public static final int ERROR_SECURITY = 10032;
public static final int ERROR_NOT_IN_MODEL = 20001;
public static final int ERROR_FAILED_TO_CREATE_MODEL = 20002;
public static final int ERROR_INTERNAL = 20003;

public class Error {
public static final int OUT_OF_MEMORY = 10001;
public static final int NULL_ARGUMENT = 10002;
public static final int INVALID_ARGUMENT = 10003;
public static final int UNKNOWN_ATTRIBUTE = 10004;
public static final int DATA_NOT_AVAILABLE = 10005;
public static final int INDEX_OUT_OF_RANGE = 10006;
public static final int UNKNOWN_PARAMETER = 10007;
public static final int VALUE_OUT_OF_RANGE = 10008;
public static final int NO_LICENSE = 10009;

373

public static final int SIZE_LIMIT_EXCEEDED = 10010;
public static final int CALLBACK = 10011;
public static final int FILE_READ = 10012;
public static final int FILE_WRITE = 10013;
public static final int NUMERIC = 10014;
public static final int IIS_NOT_INFEASIBLE = 10015;
public static final int NOT_FOR_MIP = 10016;
public static final int OPTIMIZATION_IN_PROGRESS = 10017;
public static final int DUPLICATES = 10018;
public static final int NODEFILE = 10019;
public static final int ERROR_Q_NOT_PSD = 10020;
public static final int QCP_EQUALITY_CONSTRAINT = 10021;
public static final int NETWORK = 10022;
public static final int JOB_REJECTED = 10023;
public static final int NOT_SUPPORTED = 10024;
public static final int EXCEED_2B_NONZEROS = 10025;
public static final int INVALID_PIECEWISE_OBJ = 10026;
public static final int UPDATEMODE_CHANGE = 10027;
public static final int CLOUD = 10028;
public static final int MODEL_MODIFICATION = 10029;
public static final int CSWORKER = 10030;
public static final int TUNE_MODEL_TYPES = 10031;
public static final int ERROR_SECURITY = 10032;
public static final int NOT_IN_MODEL = 20001;
public static final int FAILED_TO_CREATE_MODEL = 20002;
public static final int INTERNAL = 20003;

}

public static final int CUTS_AUTO = -1;
public static final int CUTS_OFF = 0;
public static final int CUTS_CONSERVATIVE = 1;
public static final int CUTS_AGGRESSIVE = 2;
public static final int CUTS_VERYAGGRESSIVE = 3;

public static final int METHOD_AUTO = -1;
public static final int METHOD_PRIMAL = 0;
public static final int METHOD_DUAL = 1;
public static final int METHOD_BARRIER = 2;
public static final int METHOD_CONCURRENT = 3;
public static final int METHOD_DETERMINISTIC_CONCURRENT = 4;

public static final int BARORDER_AUTOMATIC = 0;
public static final int BARORDER_AMD = 1;
public static final int BARORDER_NESTEDDISSECTION = 2;

public static final int FEASRELAX_LINEAR = 0;

GRB.CharAttr

This enum is used to get or set char-valued attributes (through GRBModel.get or GRBModel.set).
Please refer to the Attributes section of the Reference Manual to see a list of all char attributes
and their functions.

374

GRB.DoubleAttr
This enum is used to get or set double-valued attributes (through GRBModel.get or GRBModel.set).
Please refer to the Attributes section of the Reference Manual to see a list of all double attributes
and their functions.

GRB.DoubleParam
This enum is used to get or set double-valued parameters (through GRBModel.get, GRBModel.set,
GRBEnv.get, or GRBEnv.set). Please refer to the Parameters section of the Reference Manual to
see a list of all double parameters and their functions.

GRB.IntAttr
This enum is used to get or set int-valued attributes (through GRBModel.get or GRBModel.set).
Please refer to the Attributes section of the Reference Manual to see a list of all int attributes and
their functions.

GRB.IntParam
This enum is used to get or set int-valued parameters (through GRBModel.get, GRBModel.set,
GRBEnv.get, GRBEnv.set). Please refer to the Parameters section of the Reference Manual to see
a list of all int parameters and their functions.

GRB.StringAttr
This enum is used to get or set string-valued attributes (through GRBModel.get or GRBModel.set).
Please refer to the Attributes section of the Reference Manual to see a list of all string attributes
and their functions.

GRB.StringParam
This enum is used to get or set string-valued parameters (through GRBModel.get, GRBModel.set,
GRBEnv.get, or GRBEnv.set). Please refer to the Parameters section of the Reference Manual to
see a list of all string parameters and their functions.

375

.NET API Overview

This section documents the Gurobi .NET interface. This manual begins with a quick overview
of the classes exposed in the interface and the most important methods on those classes. It then
continues with a comprehensive presentation of all of the available classes and methods.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide
or the Example Tour. These documents provide concrete examples of how to use the classes and
methods described here.
Environments

The first step in using the Gurobi .NET interface is to create an environment object. Environ-
ments are represented using the GRBEnv class. An environment acts as the container for all data
associated with a set of optimization runs. You will generally only need one environment object in
your program.

For more advanced use cases, you can use an empty environment to create an uninitialized
environment and then, programmatically, set all required options for your specific requirements.
For further details see the Environment section.
Models

You can create one or more optimization models within an environment. Each model is repre-
sented as an object of class GRBModel. A model consists of a set of decision variables (objects of
class GRBVar), a linear or quadratic objective function on those variables (specified using GRB-
Model.SetObjective), and a set of constraints on these variables (objects of class GRBConstr,
GRBQConstr, GRBSOS, or GRBGenConstr). Each variable has an associated lower bound, upper
bound, and type (continuous, binary, etc.). Each linear or quadratic constraint has an associated
sense (less-than-or-equal, greater-than-or-equal, or equal), and right-hand side value. Refer to this
section for more information on variables, constraints, and objectives.

Linear constraints are specified by building linear expressions (objects of class GRBLinExpr),
and then specifying relationships between these expressions (for example, requiring that one expres-
sion be equal to another). Quadratic constraints are built in a similar fashion, but using quadratic
expressions (objects of class GRBQuadExpr) instead.

An optimization model may be specified all at once, by loading the model from a file (using the
appropriate GRBModel constructor), or built incrementally, by first constructing an empty object of
class GRBModel and then subsequently calling GRBModel.AddVar or GRBModel.AddVars to add
additional variables, and GRBModel.AddConstr, GRBModel.AddQConstr, GRBModel.AddSOS,
or any of the GRBModel.AddGenConstrXxx methods to add additional constraints. Models are
dynamic entities; you can always add or remove variables or constraints.

We often refer to the class of an optimization model. A model with a linear objective function,
linear constraints, and continuous variables is a Linear Program (LP). If the objective is quadratic,
the model is a Quadratic Program (QP). If any of the constraints are quadratic, the model is
a Quadratically-Constrained Program (QCP). We will sometimes refer to a few special cases of
QCP: QCPs with convex constraints, QCPs with non-convex constraints, bilinear programs, and

376

https://www.gurobi.com/documentation/9.1/quickstart_windows/index.html
https://www.gurobi.com/documentation/9.1/examples/index.html

Second-Order Cone Programs (SOCP). If the model contains any integer variables, semi-continuous
variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the
model is a Mixed Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, in-
cluding Mixed Integer Linear Programs (MILP), Mixed Integer Quadratic Programs (MIQP), Mixed
Integer Quadratically-Constrained Programs (MIQCP), and Mixed Integer Second-Order Cone Pro-
grams (MISOCP). The Gurobi Optimizer handles all of these model classes.
Solving a Model

Once you have built a model, you can call GRBModel.Optimize to compute a solution. By default,
Optimize will use the concurrent optimizer to solve LP models, the barrier algorithm to solve QP
models with convex objectives and QCP models with convex constraints, and the branch-and-cut
algorithm otherwise. The solution is stored in a set of attributes of the model. These attributes
can be queried using a set of attribute query methods on the GRBModel, GRBVar, GRBConstr,
GRBQConstr, GRBSOS, and GRBGenConstr classes.

The Gurobi algorithms keep careful track of the state of the model, so calls to
GRBModel.Optimize will only perform further optimization if relevant data has changed since the
model was last optimized. If you would like to discard previously computed solution information and
restart the optimization from scratch without changing the model, you can call GRBModel.Reset.

After a MIP model has been solved, you can call GRBModel.FixedModel to compute the as-
sociated fixed model. This model is identical to the original, except that the integer variables are
fixed to their values in the MIP solution. If your model contains SOS constraints, some continuous
variables that appear in these constraints may be fixed as well. In some applications, it can be
useful to compute information on this fixed model (e.g., dual variables, sensitivity information,
etc.), although you should be careful in how you interpret this information.
Multiple Solutions, Objectives, and Scenarios

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to
a single model with a single objective function. Gurobi provides the following features that allow
you to relax these assumptions:

• Solution Pool: Allows you to find more solutions.

• Multiple Scenarios: Allows you to find solutions to multiple, related models.

• Multiple Objectives: Allows you to specify multiple objective functions and control the trade-
off between them.

Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause of the
infeasibility, attempt to repair the infeasibility, or both. To obtain information that can be useful
for diagnosing the cause of an infeasibility, call GRBModel.ComputeIIS to compute an Irreducible
Inconsistent Subsystem (IIS). This method can be used for both continuous and MIP models, but
you should be aware that the MIP version can be quite expensive. This method populates a set of
IIS attributes.

To attempt to repair an infeasibility, call GRBModel.FeasRelax to compute a feasibility relax-
ation for the model. This relaxation allows you to find a solution that minimizes the magnitude of
the constraint violation.

377

Querying and Modifying Attributes

Most of the information associated with a Gurobi model is stored in a set of attributes. Some
attributes are associated with the variables of the model, some with the constraints of the model,
and some with the model itself. To give a simple example, solving an optimization model causes
the X variable attribute to be populated. Attributes such as X that are computed by the Gurobi
optimizer cannot be modified directly by the user, while others, such as the variable lower bound
(the LB attribute) can.

Attributes can be accessed in two ways in the .NET interface. The easiest is through .NET
properties. To query or modify the LB attribute on variable v, you would use v.LB or v.LB = 0, re-
spectively. Attributes can also be queried using GRBVar.Get, GRBConstr.Get, GRBQConstr.Get,
GRBSOS.Get, GRBGenConstr.Get, or GRBModel.Get, and modified using GRBVar.Set, GRB-
Constr.Set, GRBQConstr.Set, GRBGenConstr.Set, or GRBModel.Set. Attributes are grouped
into a set of enums by type (GRB.CharAttr, GRB.DoubleAttr, GRB.IntAttr,
GRB.StringAttr). The Get() and Set() methods are overloaded, so the type of the attribute
determines the type of the returned value. Thus, constr.Get(GRB.DoubleAttr.RHS) returns a
double, while constr.Get(GRB.CharAttr.Sense) returns a char.

If you wish to retrieve attribute values for a set of variables or constraints, it is usually more
efficient to use the array methods on the associated GRBModel object. Method GRBModel.Get
includes signatures that allow you to query or modify attribute values for one-, two-, and three-
dimensional arrays of variables or constraints.

The full list of attributes can be found in the Attributes section.

Additional Model Modification Information

Most modifications to an existing model are done through the attribute interface (e.g., changes to
variable bounds, constraint right-hand sides, etc.). The main exceptions are modifications to the
constraint matrix and to the objective function.

The constraint matrix can be modified in a few ways. The first is to call the ChgCoeff method
on a GRBModel object to change individual matrix coefficients. This method can be used to
modify the value of an existing non-zero, to set an existing non-zero to zero, or to create a new
non-zero. The constraint matrix is also modified when you remove a variable or constraint from the
model (through the GRBModel.Remove method). The non-zero values associated with the deleted
constraint or variable are removed along with the constraint or variable itself.

The model objective function can also be modified in a few ways. The easiest is to build an
expression that captures the objective function (a GRBLinExpr or GRBQuadExpr object), and
then pass that expression to method GRBModel.SetObjective. If you wish to modify the objective,
you can simply call setObjective again with a new GRBLinExpr or GRBQuadExpr object.

For linear objective functions, an alternative to SetObjective is to use the Obj variable attribute
to modify individual linear objective coefficients.

If your variables have piecewise-linear objectives, you can specify them using the
GRBModel.SetPWLObj method. Call this method once for each relevant variable. The Gurobi
simplex solver includes algorithmic support for convex piecewise-linear objective functions, so for
continuous models you should see a substantial performance benefit from using this feature. To
clear a previously specified piecewise-linear objective function, simply set the Obj attribute on the
corresponding variable to 0.

378

Lazy Updates

One important item to note about model modification in the Gurobi optimizer is that it is performed
in a lazy fashion, meaning that modifications don’t affect the model immediately. Rather, they
are queued and applied later. If your program simply creates a model and solves it, you will
probably never notice this behavior. However, if you ask for information about the model before
your modifications have been applied, the details of the lazy update approach may be relevant to
you.

As we just noted, model modifications (bound changes, right-hand side changes, objective
changes, etc.) are placed in a queue. These queued modifications can be applied to the model
in three different ways. The first is by an explicit call to GRBModel.Update. The second is by a
call to GRBModel.Optimize. The third is by a call to GRBModel.Write to write out the model. The
first case gives you fine-grained control over when modifications are applied. The second and third
make the assumption that you want all pending modifications to be applied before you optimize
your model or write it to disk.

Why does the Gurobi interface behave in this manner? There are a few reasons. The first is
that this approach makes it much easier to perform multiple modifications to a model, since the
model remains unchanged between modifications. The second is that processing model modifica-
tions can be expensive, particularly in a Compute Server environment, where modifications require
communication between machines. Thus, it is useful to have visibility into exactly when these
modifications are applied. In general, if your program needs to make multiple modifications to
the model, you should aim to make them in phases, where you make a set of modifications, then
update, then make more modifications, then update again, etc. Updating after each individual
modification can be extremely expensive.

If you forget to call update, your program won’t crash. Your query will simply return the value
of the requested data from the point of the last update. If the object you tried to query didn’t
exist then, you’ll get a NOT_IN_MODEL exception instead.

The semantics of lazy updates have changed since earlier Gurobi versions. While the vast
majority of programs are unaffected by this change, you can use the UpdateMode parameter to
revert to the earlier behavior if you run into an issue.

Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of
the optimization process. Factors like feasibility and optimality tolerances, choices of algorithms,
strategies for exploring the MIP search tree, etc., can be controlled by modifying Gurobi parameters
before beginning the optimization. Parameters can be of type int, double, or string.

The simplest way to set parameters is through the Model.Parameters class and its associated
.NET properties. To set the MIPGap parameter to 0.0 for model m, for example, you would do
m.Parameters.MIPGap = 0.

Parameters can also be set on the Gurobi environment object, using GRBEnv.Set. Note that
each model gets its own copy of the environment when it is created, so parameter changes to the
original environment have no effect on existing models.

You can read a set of parameter settings from a file using GRBEnv.ReadParams, or write the
set of changed parameters using GRBEnv.WriteParams.

We also include an automated parameter tuning tool that explores many different sets of pa-
rameter changes in order to find a set that improves performance. You can call GRBModel.Tune to

379

invoke the tuning tool on a model. Refer to the parameter tuning tool section for more information.
The full list of Gurobi parameters can be found in the Parameters section.

Memory Management

Users typically do not need to concern themselves with memory management in .NET, since it
is handled automatically by the garbage collector. The Gurobi .NET interface utilizes the same
garbage collection mechanism as other .NET programs, but there are a few specifics of our memory
management that users should be aware of.

In general, Gurobi objects live in the same .NET heap as other .NET objects. When they are
no longer referenced, they become candidates for garbage collection, and are returned to the pool
of free space at the next invocation of the garbage collector. Two important exceptions are the
GRBEnv and GRBModel objects. A GRBModel object has a small amount of memory associated
with it in the .NET heap, but the majority of the space associated with a model lives in the heap
of the Gurobi native code DLL. The .NET heap manager is unaware of the memory associated
with the model in the native code library, so it does not consider this memory usage when deciding
whether to invoke the garbage collector. When the garbage collector eventually collects the .NET
GRBModel object, the memory associated with the model in the Gurobi native code library will be
freed, but this collection may come later than you might want. Similar considerations apply to the
GRBEnv object.

If you are writing a .NET program that makes use of multiple Gurobi models or environments,
we recommend that you call GRBModel.Dispose when you are done using the associated GRBModel
object, and GRBEnv.Dispose when you are done using the associated GRBEnv object and after you
have called GRBModel.Dispose on all of the models created using that GRBEnv object.
Native Code

As noted earlier, the Gurobi .NET interface is a thin layer that sits on top of our native code DLL.
Thus, an application that uses the Gurobi .NET library will load the Gurobi DLL at runtime. In
order for this happen, you need to make sure that two things are true. First, you need to make
sure that the native code library is available in the PATH environment library. This environment
variable is set up as part of the installation of the Gurobi Optimizer, but it may not be configured
appropriately on a machine where the full Gurobi Optimizer has not been installed. Second, you
need to be sure that the selected .NET Platform Target (as selected in Visual Studio) is compatible
with the Gurobi DLL that is available through your PATH. In particular, you need to use the 64-bit
Gurobi native library when you’ve selected the x64 Platform Target. If you use the default Any CPU
target, then your .NET application will look for the 64-bit Gurobi DLL on a 64-bit machine.
Monitoring Progress - Logging and Callbacks

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will
send output to the screen. A few simple controls are available for modifying the default logging
behavior. If you would like to direct output to a file as well as to the screen, specify the log file
name in the GRBEnv constructor. You can modify the LogFile parameter if you wish to redirect
the log to a different file after creating the environment object. The frequency of logging output can
be controlled with the DisplayInterval parameter, and logging can be turned off entirely with the
OutputFlag parameter. A detailed description of the Gurobi log file can be found in the Logging
section.

More detailed progress monitoring can be done through the GRBCallback class. The GRB-
Model.SetCallback method allows you to receive a periodic callback from the Gurobi optimizer.

380

You do this by sub-classing the GRBCallback abstract class, and writing your own Callback()
method on this class. You can call GRBCallback.GetDoubleInfo, GRBCallback.GetIntInfo, GRB-
Callback.GetStringInfo, or GRBCallback.GetSolution from within the callback to obtain additional
information about the state of the optimization.
Modifying Solver Behavior - Callbacks

Callbacks can also be used to modify the behavior of the Gurobi optimizer. The simplest control
callback is GRBCallback.Abort, which asks the optimizer to terminate at the earliest convenient
point. Method GRBCallback.SetSolution allows you to inject a feasible solution (or partial solution)
during the solution of a MIP model. Methods GRBCallback.AddCut and GRBCallback.AddLazy
allow you to add cutting planes and lazy constraints during a MIP optimization, respectively.
Method GRBCallback.StopOneMultiObj allows you to interrupt the optimization process of one
of the optimization steps in a multi-objective MIP problem without stopping the hierarchical opti-
mization process.
Batch Optimization

Gurobi Compute Server enables programs to offload optimization computations onto dedicated
servers. The Gurobi Cluster Manager adds a number of additional capabilities on top of this.
One important one, batch optimization, allows you to build an optimization model with your client
program, submit it to a Compute Server cluster (through the Cluster Manager), and later check
on the status of the model and retrieve its solution. You can use a Batch object to make it easier
to work with batches. For details on batches, please refer to the Batch Optimization section.
Error Handling

All of the methods in the Gurobi .NET library can throw an exception of type GRBException.
When an exception occurs, additional information on the error can be obtained by retrieving
the error code (using property GRBException.ErrorCode), or by retrieving the exception message
(using property GRBException.Message from the parent class). The list of possible error return
codes can be found in the Error Codes section.

381

5.1 GRBEnv
Gurobi environment object. Gurobi models are always associated with an environment. You must
create an environment before can you create and populate a model. You will generally only need
a single environment object in your program.

Objects of this class have unmanaged resources associated with them. The class implements
the IDisposable interface.

The methods on environment objects are mainly used to manage Gurobi parameters (e.g., Get,
GetParamInfo, Set).

While the .NET garbage collector will eventually collect an unused GRBEnv object, an environ-
ment will hold onto resources (Gurobi licenses, file descriptors, etc.) until that collection occurs.
If your program creates multiple GRBEnv objects, we recommend that you call GRBEnv.Dispose
when you are done using one (or use the .NET using statement).

GRBEnv()

Constructor for GRBEnv object. You have the option of constructing either a local environment,
which solves Gurobi models on the local machine, a client environment for a Gurobi compute server,
which will solve Gurobi models on a server machine, or an Instant Cloud environment, which will
launch a Gurobi Cloud server and solve models on that server. Choose the appropriate signature
for the type of environment you wish to launch.
GRBEnv GRBEnv ()
Create a Gurobi environment (with logging disabled). This method will also populate any

parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified in your gurobi.lic
file. This method will also check the current working directory for a file named gurobi.env, and
it will attempt to read parameter settings from this file if it exists. The file should be in PRM
format (briefly, each line should contain a parameter name, followed by the desired value for that
parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Return value:
An environment object (with no associated log file).

GRBEnv GRBEnv (string logFileName)

Create a Gurobi environment (with logging enabled). This method will also populate any
parameter (ComputeServer, TokenServer, ServerPassword, etc.) specified in your gurobi.lic
file. This method will also check the current working directory for a file named gurobi.env, and
it will attempt to read parameter settings from this file if it exists. The file should be in PRM
format (briefly, each line should contain a parameter name, followed by the desired value for that
parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded

382

program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Arguments:
logFileName: The desired log file name.

Return value:
An environment object.

GRBEnv GRBEnv (bool empty)

Create an empty Gurobi environment. Use Start to start the environment.
If the environment is not empty, This method will also populate any parameter (ComputeServer,

TokenServer, ServerPassword, etc.) specified in your gurobi.lic file. This method will also check
the current working directory for a file named gurobi.env, and it will attempt to read parameter
settings from this file if it exists. The file should be in PRM format (briefly, each line should contain
a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Arguments:
empty: Indicates whether the environment should be empty. You should use empty=True if
you want to set parameters before actually starting the environment. This can be useful
if you want to connect to a Compute Server, a Token Server, the Gurobi Instant Cloud or
a Cluster Manager. See the Environment Section for more details.

Return value:
An environment object.

GRBEnv GRBEnv (string logFileName,
string computeServer,
string router,
string password,
string group,
int CStlsInsecure,
int priority,
double timeout)

Create a client Gurobi environment on a compute server. This method will also check the
current working directory for a file named gurobi.env, and it will attempt to read parameter
settings from this file if it exists. The file should be in PRM format (briefly, each line should
contain a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Arguments:

383

logFileName: The name of the log file for this environment. Pass an empty string for no
log file.

computeServer: A Compute Server. You can refer to the server using its name or its IP
address. If you are using a non-default port, the server name should be followed by the
port number (e.g., server1:61000)

router: The router for a Compute Server cluster. A router can be used to improve the
robustness of a Compute Server deployment. You should refer to the router using either
its name or its IP address. If no router is used (which is the typical case), pass an empty
string.

password: The password for gaining access to the specified Compute Server cluster. Pass
an empty string if no password is required.

group: The name of the Compute Server group.
CStlsInsecure: Indicates whether to use insecure mode in the TLS (Transport Layer Se-
curity). Set this to 0 unless your server administrator tells you otherwise.

priority: The priority of the job. Priorities must be between -100 and 100, with a default
value of 0 (by convention). Higher priority jobs are chosen from the server job queue before
lower priority jobs. Depending on the configuration of the server, a job with priority 100
runs immediately, bypassing the job queue and ignoring the job limit on the server. You
should exercise caution with priority 100 jobs, since they can severely overload a server,
which can cause jobs to fail, and in extreme cases can cause the server to crash. This
behavior is managed by the HARDJOBLIMIT, and is disabled by default. Refer to the
Gurobi Remote Services Reference Manual for more information on starting Compute
Server options.

timeout: Queue timeout (in seconds). If the job doesn’t reach the front of the queue before
the specified timeout, the call will exit with a JOB_REJECTED error. Use -1 to indicate that
the call should never timeout.

Return value:
An environment object.

GRBEnv GRBEnv (string logFileName,
string accessID,
string secretKey,
string pool,
int priority)

Create a Gurobi environment on Gurobi Instant Cloud This method will also check the current
working directory for a file named gurobi.env, and it will attempt to read parameter settings from
this file if it exists. The file should be in PRM format (briefly, each line should contain a parameter
name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Arguments:

384

https://www.gurobi.com/documentation/9.1/remoteservices/remoteservices.html

logfilename: The name of the log file for this environment. May be NULL (or an empty
string), in which case no log file is created.

accessID: The access ID for your Gurobi Instant Cloud license. This can be retrieved from
the Gurobi Instant Cloud website. When used in combination with your secretKey, this
allows you to launch Instant Cloud instances and submit jobs to them.

secretKey: The secret key for your Gurobi Instant Cloud license. This can be retrieved
from the Gurobi Instant Cloud website. When used in combination with your accessID,
this allows you to launch Instant Cloud instances and submit jobs to them. Note that you
should keep your secret key private.

pool: The machine pool. Machine pools allow you to create fixed configurations on the
Instant Cloud website (capturing things like type of machine, geographic region, etc.),
and then launch and share machines from client programs without having to restart the
configuration information each time you launch a machine. May be NULL (or an empty
string), in which case your job will be launched in the default pool associated with your
cloud license.

priority: The priority of the job. Priorities must be between -100 and 100, with a default
value of 0 (by convention). Higher priority jobs are chosen from the server job queue
before lower priority jobs.

Return value:
An environment object.

GRBEnv.Dispose()

Release the resources associated with a GRBEnv object. While the .NET garbage collector will
eventually reclaim these resources, we recommend that you call the Dispose method when you are
done using an environment if your program creates more than one.

The Dispose method on a GRBEnv should be called only after you have called Dispose on all
of the models that were created within that environment. You should not attempt to use a GRBEnv
object after calling Dispose.
void Dispose ()

GRBEnv.ErrorMsg

string ErrorMsg
(Property) The error message for the most recent exception associated with this environment.

GRBEnv.Get()

Query the value of a parameter.
double Get (GRB.DoubleParam param)

Query the value of a double-valued parameter.
Arguments:

param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

385

Return value:
The current value of the requested parameter.

int Get (GRB.IntParam param)

Query the value of an int-valued parameter.
Arguments:

param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

Return value:
The current value of the requested parameter.

string Get (GRB.StringParam param)

Query the value of a string-valued parameter.
Arguments:

param: The parameter being queried. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

Return value:
The current value of the requested parameter.

GRBEnv.GetParamInfo()

Obtain information about a parameter.

void GetParamInfo (GRB.DoubleParam param,
double[] info)

Obtain detailed information about a double parameter.
Arguments:

param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

info: The returned information. The result will contain four entries: the current value of
the parameter, the minimum allowed value, the maximum allowed value, and the default
value.

void GetParamInfo (GRB.IntParam param,
int[] info)

Obtain detailed information about an integer parameter.
Arguments:

param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

386

info: The returned information. The result will contain four entries: the current value of
the parameter, the minimum allowed value, the maximum allowed value, and the default
value.

void GetParamInfo (GRB.StringParam param,
string[] info)

Obtain detailed information about a string parameter.
Arguments:

param: The parameter of interest. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

info: The returned information. The result will contain two entries: the current value of
the parameter and the default value.

GRBEnv.Message()

Write a message to the console and the log file.
void Message (string message)

Arguments:
message: Print a message to the console and to the log file. Note that this call has no effect
unless the OutputFlag parameter is set.

GRBEnv.ReadParams()

Read new parameter settings from a file.
Please consult the parameter section for a complete list of Gurobi parameters, including de-

scriptions of their purposes and their minimum, maximum, and default values.
void ReadParams (string paramfile)

Arguments:
paramfile: Name of the file containing parameter settings. Parameters should be listed
one per line, with the parameter name first and the desired value second. For example:

Gurobi parameter file
Threads 1
MIPGap 0

Blank lines and lines that begin with the hash symbol are ignored.

GRBEnv.Release()

Release the license associated with this environment. You will no longer be able to call Optimize
on models created with this environment after the license has been released.
void Release ()

387

GRBEnv.ResetParams()
Reset all parameters to their default values.

Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.
void ResetParams ()

GRBEnv.Set()
Set the value of a parameter.

Important notes:
Note that a model gets its own copy of the environment when it is created. Changes to the

original environment have no effect on the copy. Use GRBModel.Set to change a parameter on an
existing model.

void Set (GRB.DoubleParam param,
double newvalue)

Set the value of a double-valued parameter.
Arguments:

param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

newvalue: The desired new value of the parameter.

void Set (GRB.IntParam param,
int newvalue)

Set the value of an int-valued parameter.
Arguments:

param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

newvalue: The desired new value of the parameter.

void Set (GRB.StringParam param,
string newvalue)

Set the value of a string-valued parameter.
Arguments:

param: The parameter being modified. Please consult the parameter section for a complete
list of Gurobi parameters, including descriptions of their purposes and their minimum,
maximum, and default values.

newvalue: The desired new value of the parameter.

void Set (string param,
string newvalue)

388

Set the value of any parameter using strings alone.
Arguments:

param: The name of the parameter being modified. Please consult the parameter section
for a complete list of Gurobi parameters, including descriptions of their purposes and their
minimum, maximum, and default values.

newvalue: The desired new value of the parameter.

GRBEnv.Start()
Start an empty environment. If the environment has already been started, this method will do
nothing. If the call fails, the environment will have the same state as it had before the call to this
method.

This method will also populate any parameter (ComputeServer, TokenServer, ServerPassword,
etc.) specified in your gurobi.lic file. This method will also check the current working directory
for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists.
The file should be in PRM format (briefly, each line should contain a parameter name, followed by
the desired value for that parameter). After that, it will apply all parameter changes specified by
the user prior to this call. Note that this might overwrite parameters set in the license file, or in
the gurobi.env file, if present.

After all these changes are performed, the code will actually activate the environment, and
make it ready to work with models.

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.
void Start ()

GRBEnv.WriteParams()
Write all non-default parameter settings to a file.

Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.
void WriteParams (string paramfile)

Arguments:
paramfile: Name of the file to which non-default parameter settings should be written.
The previous contents are overwritten.

389

5.2 GRBModel
Gurobi model object. Commonly used methods include AddVar (adds a new decision variable to
the model), AddConstr (adds a new constraint to the model), Optimize (optimizes the current
model), and Get (retrieves the value of an attribute).

Objects of this class have unmanaged resources associated with them. The class implements
the IDisposable interface.

While the .NET garbage collector will eventually collect an unused GRBModel object, the vast
majority of the memory associated with a model is stored outside of the .NET heap. As a result,
the garbage collector can’t see this memory usage, and thus it can’t take this quantity into account
when deciding whether collection is necessary. We recommend that you call GRBModel.Dispose
when you are done using a model (or use the .NET using statement).

GRBModel()

Constructor for GRBModel. The simplest version creates an empty model. You can then call
AddVar and AddConstr to populate the model with variables and constraints. The more complex
constructors can read a model from a file, or make a copy of an existing model.
GRBModel GRBModel (GRBEnv env)

Model constructor.
Arguments:

env: Environment for new model.
Return value:

New model object. Model initially contains no variables or constraints.

GRBModel GRBModel (GRBEnv env,
string filename)

Read a model from a file. Note that the type of the file is encoded in the file name suffix.
Valid suffixes are .mps, .rew, .lp, .rlp, .ilp, or .opb. The files can be compressed, so additional
suffixes of .zip, .gz, .bz2, or .7z are accepted.

Arguments:
env: Environment for new model.
modelname: Name of the file containing the model.

Return value:
New model object.

GRBModel GRBModel (GRBModel model)

Create a copy of an existing model. Note that due to the lazy update approach in Gurobi, you
have to call Update before copying it.

Arguments:
model: Model to copy.

Return value:
New model object. Model is a clone of the input model.

390

GRBModel.AddConstr()
Add a single linear constraint to a model. Multiple signatures are available.

GRBConstr AddConstr (GRBLinExpr lhsExpr,
char sense,
GRBLinExpr rhsExpr,
string name)

Add a single linear constraint to a model.
Arguments:

lhsExpr: Left-hand side expression for new linear constraint.
sense: Sense for new linear constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhsExpr: Right-hand side expression for new linear constraint.
name: Name for new constraint.

Return value:
New constraint object.

GRBConstr AddConstr (GRBTempConstr tempConstr,
string name)

Add a single linear constraint to a model.
Arguments:

tempConstr: Temporary constraint object, created by an overloaded comparison operator.
See GRBTempConstr for more information.

name: Name for new constraint.
Return value:

New constraint object.

GRBModel.AddConstrs()
Add new linear constraints to a model.

We recommend that you build your model one constraint at a time (using AddConstr), since it
introduces no significant overhead and we find that it produces simpler code. Feel free to use these
methods if you disagree, though.
GRBConstr[] AddConstrs (int count)

Add count new linear constraints to a model. The new constraints are all of the form 0 <= 0.
Arguments:

count: Number of constraints to add.
Return value:

Array of new constraint objects.

GRBConstr[] AddConstrs (GRBLinExpr[] lhsExprs,
char[] senses,
double[] rhsVals,
string[] names)

391

Add new linear constraints to a model. The number of added constraints is determined by the
length of the input arrays (which must be consistent across all arguments).

Arguments:
lhsExprs: Left-hand side expressions for the new linear constraints.
senses: Senses for new linear constraints (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhsVals: Right-hand side values for the new linear constraints.
names: Names for new constraints.

Return value:
Array of new constraint objects.

GRBConstr[] AddConstrs (GRBLinExpr[] lhsExprs,
char[] senses,
GRBLinExpr[] rhsExprs,
int start,
int len,
string[] names)

Add new linear constraints to a model. This signature allows you to use arrays to hold the
various constraint attributes (left-hand side, sense, etc.), without forcing you to add one constraint
for each entry in the array. The start and len arguments allow you to specify which constraints
to add.

Arguments:
lhsExprs: Left-hand side expressions for the new linear constraints.
senses: Senses for new linear constraints (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhs: Right-hand side expressions for the new linear constraints.
start: The first constraint in the list to add.
len: The number of variables to add.
names: Names for new constraints.

Return value:
Array of new constraint objects.

GRBModel.AddGenConstrXxx()

Each of the functions described below adds a new general constraint to a model.
Mathematical programming has traditionally defined a set of fundamental constraint types:

variable bound constraints, linear constraints, quadratic constraints, integrality constraints, and
SOS constraints. These are typically treated directly by the underlying solver (although not always),
and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general
(function) constraints. These are typically not treated directly by the solver. Rather, they are
transformed by presolve into constraints (and variables) chosen from among the fundamental types
listed above. In some cases, the resulting constraint or constraints are mathematically equivalent
to the original; in others, they are approximations. If such constraints appear in your model, but
if you prefer to reformulate them yourself using fundamental constraint types instead, you can

392

certainly do so. However, note that Gurobi can sometimes exploit information contained in the
other constraints in the model to build a more efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:

• AddGenConstrMax: y = max(x1, x2, ..., c)

• AddGenConstrMin: y = min(x1, x2, ..., c)

• AddGenConstrAbs: y = |x|

• AddGenConstrAnd: y = x1 ∧ x2 ∧ x3...

• AddGenConstrOr: y = x1 ∨ x2 ∨ x3...

• AddGenConstrIndicator: y = 1→ a′x ≤ b (an indicator constraint)

• AddGenConstrPWL: y = pwl(x) (a piecewise-linear function, specified using breakpoints)

• AddGenConstrPoly: y = p0x
d + p1x

d−1 + ...+ pd−1x+ pd

• AddGenConstrExp: y = ex

• AddGenConstrExpA: y = ax

• AddGenConstrLog: y = loge(x)

• AddGenConstrLogA: y = loga(x)

• AddGenConstrPow: y = xa

• AddGenConstrSin: y = sin(x)

• AddGenConstrCos: y = cos(x)

• AddGenConstrTan: y = tan(x)

Please refer to this section for additional details on general constraints.

GRBModel.AddGenConstrMax()

Add a new general constraint of type GRB.GENCONSTR_MAX to a model.
A MAX constraint r = max{x1, . . . , xn, c} states that the resultant variable r should be equal

to the maximum of the operand variables x1, . . . , xn and the constant c.

GRBGenConstr AddGenConstrMax (GRBVar resvar,
GRBVar[] vars,
double constant,
string name)

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
constant: The additional constant operand of the new constraint.

393

name: Name for the new general constraint.
Return value:

New general constraint.

GRBModel.AddGenConstrMin()

Add a new general constraint of type GRB.GENCONSTR_MIN to a model.
A MIN constraint r = min{x1, . . . , xn, c} states that the resultant variable r should be equal to

the minimum of the operand variables x1, . . . , xn and the constant c.

GRBGenConstr AddGenConstrMin (GRBVar resvar,
GRBVar[] vars,
double constant,
string name)

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
constant: The additional constant operand of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.AddGenConstrAbs()

Add a new general constraint of type GRB.GENCONSTR_ABS to a model.
An ABS constraint r = abs{x} states that the resultant variable r should be equal to the

absolute value of the argument variable x.

GRBGenConstr AddGenConstrAbs (GRBVar resvar,
GRBVar argvar,
string name)

Arguments:
resvar: The resultant variable of the new constraint.
argvar: The argument variable of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.AddGenConstrAnd()

Add a new general constraint of type GRB.GENCONSTR_AND to a model.
An AND constraint r = and{x1, . . . , xn} states that the binary resultant variable r should be 1

if and only if all of the operand variables x1, . . . , xn are equal to 1. If any of the operand variables
is 0, then the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent
of how they were created.

394

GRBGenConstr AddGenConstrAnd (GRBVar resvar,
GRBVar[] vars,
string name)

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.AddGenConstrOr()

Add a new general constraint of type GRB.GENCONSTR_OR to a model.
An OR constraint r = or{x1, . . . , xn} states that the binary resultant variable r should be 1 if

and only if any of the operand variables x1, . . . , xn is equal to 1. If all operand variables are 0, then
the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent
of how they were created.

GRBGenConstr AddGenConstrOr (GRBVar resvar,
GRBVar[] vars,
string name)

Arguments:
resvar: The resultant variable of the new constraint.
vars: Array of variables that are the operands of the new constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.AddGenConstrIndicator()

Add a new general constraint of type GRB.GENCONSTR_INDICATOR to a model.
An INDICATOR constraint z = f → aTx ≤ b states that if the binary indicator variable z is

equal to f , where f ∈ {0, 1}, then the linear constraint aTx ≤ b should hold. On the other hand,
if z = 1 − f , the linear constraint may be violated. The sense of the linear constraint can also be
specified to be = or ≥.

Note that the indicator variable z of a constraint will be forced to be binary, independent of
how it was created.

Multiple signatures are available.

GRBGenConstr AddGenConstrIndicator (GRBVar binvar,
int binval,
GRBLinExpr expr,
char sense,
double rhs,
string name)

395

Arguments:
binvar: The binary indicator variable.
binval: The value for the binary indicator variable that would force the linear constraint
to be satisfied (0 or 1).

expr: Left-hand side expression for the linear constraint triggered by the indicator.
sense: Sense for the linear constraint. Options are GRB.LESS_EQUAL, GRB.EQUAL, or
GRB.GREATER_EQUAL.

rhs: Right-hand side value for the linear constraint.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBGenConstr AddGenConstrIndicator (GRBVar binvar,
int binval,
GRBTempConstr constr,
string name)

Arguments:
binvar: The binary indicator variable.
binval: The value for the binary indicator variable that would force the linear constraint
to be satisfied (0 or 1).

constr: Temporary constraint object defining the linear constraint that is triggered by the
indicator. The temporary constraint object is created using an overloaded comparison
operator. See GRBTempConstr for more information.

name: Name for the new general constraint.
Return value:

New general constraint.

GRBModel.AddGenConstrPWL()

Add a new general constraint of type GRB.GENCONSTR_PWL to a model.
A piecewise-linear (PWL) constraint states that the relationship y = f(x) must hold between

variables x and y, where f is a piecewise-linear function. The breakpoints for f are provided as
arguments. Refer to the description of piecewise-linear objectives for details of how piecewise-linear
functions are defined.

GRBGenConstr AddGenConstrPWL (GRBVar xvar,
GRBVar yvar,
double[] xpts,
double[] ypts,
string name)

Arguments:
xvar: The x variable.
yvar: The y variable.
xpts: The x values for the points that define the piecewise-linear function. Must be in
non-decreasing order.

396

ypts: The y values for the points that define the piecewise-linear function.
name: Name for the new general constraint.

Return value:
New general constraint.

GRBModel.AddGenConstrPoly()

A polynomial function constraint states that the relationship y = p0x
d + p1x

d−1 + ...+ pd−1x+ pd
should hold between variables x and y.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr AddGenConstrPoly (GRBVar xvar,
GRBVar yvar,
double[] p,
string name,
string options)

Arguments:
xvar: The x variable.
yvar: The y variable.
p: The coefficients for the polynomial function (starting with the coefficient for the highest
power).

name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Return value:
New general constraint.

GRBModel.AddGenConstrExp()

Add a new general constraint of type GRB.GENCONSTR_EXP to a model.
A natural exponential function constraint states that the relationship y = exp(x) should hold

for variables x and y.
A piecewise-linear approximation of the function is added to the model. The details of the

approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr AddGenConstrExp (GRBVar xvar,
GRBVar yvar,
string name,
string options)

397

Arguments:
xvar: The x variable.
yvar: The y variable.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Return value:
New general constraint.

GRBModel.AddGenConstrExpA()

Add a new general constraint of type GRB.GENCONSTR_EXPA to a model.
An exponential function constraint states that the relationship y = ax should hold for variables

x and y, where a > 0 is the (constant) base.
A piecewise-linear approximation of the function is added to the model. The details of the

approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr AddGenConstrExpA (GRBVar xvar,
GRBVar yvar,
double a,
string name,
string options)

Arguments:
xvar: The x variable.
yvar: The y variable.
a: The base of the function, a > 0.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Return value:
New general constraint.

GRBModel.AddGenConstrLog()

Add a new general constraint of type GRB.GENCONSTR_LOG to a model.
A natural logarithmic function constraint states that the relationship y = log(x) should hold

for variables x and y.

398

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr AddGenConstrLog (GRBVar xvar,
GRBVar yvar,
string name,
string options)

Arguments:
xvar: The x variable.
yvar: The y variable.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Return value:
New general constraint.

GRBModel.AddGenConstrLogA()

Add a new general constraint of type GRB.GENCONSTR_LOGA to a model.
A logarithmic function constraint states that the relationship y = loga(x) should hold for

variables x and y, where a > 0 is the (constant) base.
A piecewise-linear approximation of the function is added to the model. The details of the

approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr AddGenConstrLogA (GRBVar xvar,
GRBVar yvar,
double a,
string name,
string options)

Arguments:
xvar: The x variable.
yvar: The y variable.
a: The base of the function, a > 0.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

399

Return value:
New general constraint.

GRBModel.AddGenConstrPow()

Add a new general constraint of type GRB.GENCONSTR_POW to a model.
A power function constraint states that the relationship y = xa should hold for variables x and

y, where a is the (constant) exponent. The lower bound of variable x must be nonnegative, even if
a is an integer.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr AddGenConstrPow (GRBVar xvar,
GRBVar yvar,
double a,
string name,
string options)

Arguments:
xvar: The x variable.
yvar: The y variable.
a: The power of the function, a > 0.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Return value:
New general constraint.

GRBModel.AddGenConstrSin()

Add a new general constraint of type GRB.GENCONSTR_SIN to a model.
A sine function constraint states that the relationship y = sin(x) should hold for variables x

and y.
A piecewise-linear approximation of the function is added to the model. The details of the

approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr AddGenConstrSin (GRBVar xvar,
GRBVar yvar,
string name,
string options)

400

Arguments:
xvar: The x variable.
yvar: The y variable.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Return value:
New general constraint.

GRBModel.AddGenConstrCos()

Add a new general constraint of type GRB.GENCONSTR_COS to a model.
A cosine function constraint states that the relationship y = cos(x) should hold for variables x

and y.
A piecewise-linear approximation of the function is added to the model. The details of the

approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr AddGenConstrCos (GRBVar xvar,
GRBVar yvar,
string name,
string options)

Arguments:
xvar: The x variable.
yvar: The y variable.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Return value:
New general constraint.

GRBModel.AddGenConstrTan()

Add a new general constraint of type GRB.GENCONSTR_TAN to a model.
A tangent function constraint states that the relationship y = tan(x) should hold for variables

x and y.
A piecewise-linear approximation of the function is added to the model. The details of the

approximation are controlled using the following four attributes (or using the parameters with the

401

same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

GRBGenConstr AddGenConstrTan (GRBVar xvar,
GRBVar yvar,
string name,
string options)

Arguments:
xvar: The x variable.
yvar: The y variable.
name: Name for the new general constraint.
options: A string that can be used to set the attributes that control the piecewise-linear
approximation of this function constraint. To assign a value to an attribute, follow the
attribute name with an equal sign and the desired value (with no spaces). Assignments
for different attributes should be separated by spaces (e.g. "FuncPieces=-1 FuncPieceEr-
ror=0.001").

Return value:
New general constraint.

GRBModel.AddQConstr()
Add a quadratic constraint to a model. Multiple signatures are available.

Important note: Gurobi can handle both convex and non-convex quadratic constraints. The
differences between them can be both important and subtle. Refer to this discussion for additional
information.

GRBQConstr AddQConstr (GRBQuadExpr lhsExpr,
char sense,
GRBQuadExpr rhsExpr,
string name)

Add a quadratic constraint to a model.
Arguments:

lhsExpr: Left-hand side expression for new quadratic constraint.
sense: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
rhsExpr: Right-hand side expression for new quadratic constraint.
name: Name for new constraint.

Return value:
New quadratic constraint object.

GRBQConstr AddQConstr (GRBTempConstr tempConstr,
string name)

Add a quadratic constraint to a model.
Arguments:

tempConstr: Temporary constraint object, created by an overloaded comparison operator.
See GRBTempConstr for more information.

402

name: Name for new constraint.
Return value:

New quadratic constraint object.

GRBModel.AddRange()

Add a single range constraint to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution.

Note that range constraints are stored internally as equality constraints. We add an extra
variable to the model to capture the range information. Thus, the Sense attribute on a range
constraint will always be GRB.EQUAL.

GRBConstr AddRange (GRBLinExpr expr,
double lower,
double upper,
string name)

Arguments:
expr: Linear expression for new range constraint.
lower: Lower bound for linear expression.
upper: Upper bound for linear expression.
name: Name for new constraint.

Return value:
New constraint object.

GRBModel.AddRanges()

Add new range constraints to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution.

GRBConstr[] AddRanges (GRBLinExpr[] exprs,
double[] lower,
double[] upper,
string[] names)

Arguments:
exprs: Linear expressions for the new range constraints.
lower: Lower bounds for linear expressions.
upper: Upper bounds for linear expressions.
name: Names for new range constraints.
count: Number of range constraints to add.

Return value:
Array of new constraint objects.

403

GRBModel.AddSOS()
Add an SOS constraint to the model. Please refer to this section for details on SOS constraints.

GRBSOS AddSOS (GRBVar[] vars,
double[] weights,
int type)

Arguments:
vars: Array of variables that participate in the SOS constraint.
weights: Weights for the variables in the SOS constraint.
type: SOS type (can be GRB.SOS_TYPE1 or GRB.SOS_TYPE2).

Return value:
New SOS constraint.

GRBModel.AddVar()
Add a single decision variable to a model.

GRBVar AddVar (double lb,
double ub,
double obj,
char type,
string name)

Add a variable to a model; non-zero entries will be added later.
Arguments:

lb: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.
type: Variable type for new variable (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT).

name: Name for new variable.
Return value:

New variable object.

GRBVar AddVar (double lb,
double ub,
double obj,
char type,
GRBConstr[] constrs,
double[] coeffs,
string name)

Add a variable to a model, and the associated non-zero coefficients.
Arguments:

lb: Lower bound for new variable.
ub: Upper bound for new variable.

404

obj: Objective coefficient for new variable.
type: Variable type for new variable (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT).

constrs: Array of constraints in which the variable participates.
coeffs: Array of coefficients for each constraint in which the variable participates. The
lengths of the constrs and coeffs arrays must be identical.

name: Name for new variable.
Return value:

New variable object.

GRBVar AddVar (double lb,
double ub,
double obj,
char type,
GRBColumn col,
string name)

Add a variable to a model. This signature allows you to specify the set of constraints to which
the new variable belongs using a GRBColumn object.

Arguments:
lb: Lower bound for new variable.
ub: Upper bound for new variable.
obj: Objective coefficient for new variable.
type: Variable type for new variable (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT).

col: GRBColumn object for specifying a set of constraints to which new variable belongs.
name: Name for new variable.

Return value:
New variable object.

GRBModel.AddVars()

Add new decision variables to a model.

GRBVar[] AddVars (int count,
char type)

Add count new decision variables to a model. All associated attributes take their default values,
except the variable type, which is specified as an argument.

Arguments:
count: Number of variables to add.
type: Variable type for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT).

Return value:
Array of new variable objects.

405

GRBVar[] AddVars (double[] lb,
double[] ub,
double[] obj,
char[] type,
string[] names)

Add new decision variables to a model. The number of added variables is determined by the
length of the input arrays (which must be consistent across all arguments).

Arguments:
lb: Lower bounds for new variables. Can be null, in which case the variables get lower
bounds of 0.0.

ub: Upper bounds for new variables. Can be null, in which case the variables get infinite
upper bounds.

obj: Objective coefficients for new variables. Can be null, in which case the variables get
objective coefficients of 0.0.

type: Variable types for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT). Can be null, in which case the variables are assumed
to be continuous.

names: Names for new variables. Can be null, in which case all variables are given default
names.

Return value:
Array of new variable objects.

GRBVar[] AddVars (double[] lb,
double[] ub,
double[] obj,
char[] type,
string[] names,
int start,
int len)

Add new decision variables to a model. This signature allows you to use arrays to hold the
various variable attributes (lower bound, upper bound, etc.), without forcing you to add a variable
for each entry in the array. The start and len arguments allow you to specify which variables to
add.

Arguments:
lb: Lower bounds for new variables. Can be null, in which case the variables get lower
bounds of 0.0.

ub: Upper bounds for new variables. Can be null, in which case the variables get infinite
upper bounds.

obj: Objective coefficients for new variables. Can be null, in which case the variables get
objective coefficients of 0.0.

type: Variable types for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT). Can be null, in which case the variables are assumed
to be continuous.

names: Names for new variables. Can be null, in which case all variables are given default
names.

406

start: The first variable in the list to add.
len: The number of variables to add.

Return value:
Array of new variable objects.

GRBVar[] AddVars (double[] lb,
double[] ub,
double[] obj,
char[] type,
string[] names,
GRBColumn[] col)

Add new decision variables to a model. This signature allows you to specify the list of constraints
to which each new variable belongs using an array of GRBColumn objects.

Arguments:
lb: Lower bounds for new variables. Can be null, in which case the variables get lower
bounds of 0.0.

ub: Upper bounds for new variables. Can be null, in which case the variables get infinite
upper bounds.

obj: Objective coefficients for new variables. Can be null, in which case the variables get
objective coefficients of 0.0.

type: Variable types for new variables (GRB.CONTINUOUS, GRB.BINARY, GRB.INTEGER,
GRB.SEMICONT, or GRB.SEMIINT). Can be null, in which case the variables are assumed
to be continuous.

names: Names for new variables. Can be null, in which case all variables are given default
names.

cols: GRBColumn objects for specifying a set of constraints to which each new column
belongs.

Return value:
Array of new variable objects.

GRBModel.ChgCoeff()
Change one coefficient in the model. The desired change is captured using a GRBVar object, a
GRBConstr object, and a desired coefficient for the specified variable in the specified constraint. If
you make multiple changes to the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you
update the model (using GRBModel.Update), optimize the model (using GRBModel.Optimize), or
write the model to disk (using GRBModel.Write).

void ChgCoeff (GRBConstr constr,
GRBVar var,
double newvalue)

Arguments:
constr: Constraint for coefficient to be changed.
var: Variable for coefficient to be changed.
newvalue: Desired new value for coefficient.

407

GRBModel.ChgCoeffs()

Change a list of coefficients in the model. Each desired change is captured using a GRBVar object,
a GRBConstr object, and a desired coefficient for the specified variable in the specified constraint.
The entries in the input arrays each correspond to a single desired coefficient change. The lengths
of the input arrays must all be the same. If you make multiple changes to the same coefficient, the
last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you
update the model (using GRBModel.Update), optimize the model (using GRBModel.Optimize), or
write the model to disk (using GRBModel.Write).

void ChgCoeffs (GRBConstr[] constrs,
GRBVar[] vars,
double[] vals)

Arguments:
constrs: Constraints for coefficients to be changed.
vars: Variables for coefficients to be changed.
vals: Desired new values for coefficients.

GRBModel.ComputeIIS()

Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints and
variable bounds with the following properties:

• It is still infeasible, and

• If a single constraint or bound is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily
the smallest one; there may exist others with fewer constraints or bounds.

IIS results are returned in a number of attributes: IISConstr, IISLB, IISUB, IISSOS, IISQCon-
str, and IISGenConstr. Each indicates whether the corresponding model element is a member of
the computed IIS.

The IIS log provides information about the progress of the algorithm, including a guess at the
eventual IIS size.

If an IIS computation is interrupted before completion, Gurobi will return the smallest infeasible
subsystem found to that point.

This method populates the IISConstr, IISQConstr, and IISGenConstr constraint attributes, the
IISSOS, SOS attribute, and the IISLB and IISUB variable attributes. You can also obtain informa-
tion about the results of the IIS computation by writing a .ilp format file (see GRBModel.Write).
This file contains only the IIS from the original model.

Use the IISMethod parameter to adjust the behavior of the IIS algorithm.
Note that this method can be used to compute IISs for both continuous and MIP models.

void ComputeIIS ()

408

GRBModel.DiscardConcurrentEnvs()

Discard concurrent environments for a model.
The concurrent environments created by GetConcurrentEnv will be used by every subsequent

call to the concurrent optimizer until the concurrent environments are discarded.
void DiscardConcurrentEnvs ()

GRBModel.DiscardMultiobjEnvs()

Discard all multi-objective environments associated with the model, thus restoring multi objective
optimization to its default behavior.

Please refer to the discussion of Multiple Objectives for information on how to specify multiple
objective functions and control the trade-off between them.

Use GetMultiobjEnv to create a multi-objective environment.
void DiscardMultiobjEnvs ()

GRBModel.Dispose()

Release the resources associated with a GRBModel object. While the .NET garbage collector will
eventually reclaim these resources, we recommend that you call the Dispose method when you are
done using a model.

You should not attempt to use a GRBModel object after calling Dispose on it.
void Dispose ()

GRBModel.FeasRelax()

Modifies the GRBModel object to create a feasibility relaxation. Note that you need to call Optimize
on the result to compute the actual relaxed solution.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the
solution violates the bounds and linear constraints of the original model. This method provides a
number of options for specifying the relaxation.

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the
sum of the weighted magnitudes of the bound and constraint violations. The lbpen, ubpen, and
rhspen arguments specify the cost per unit violation in the lower bounds, upper bounds, and linear
constraints, respectively.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the
weighted sum of the squares of the bound and constraint violations. The lbpen, ubpen, and
rhspen arguments specify the coefficients on the squares of the lower bound, upper bound, and
linear constraint violations, respectively.

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the
weighted count of bound and constraint violations. The lbpen, ubpen, and rhspen arguments
specify the cost of violating a lower bound, upper bound, and linear constraint, respectively.

To give an example, if a constraint with rhspen value p is violated by 2.0, it would con-
tribute 2*p to the feasibility relaxation objective for relaxobjtype=0, it would contribute 2*2*p
for relaxobjtype=1, it would contribute p for relaxobjtype=2.

The minrelax argument is a boolean that controls the type of feasibility relaxation that is
created. If minrelax=false, optimizing the returned model gives a solution that minimizes the

409

cost of the violation. If minrelax=true, optimizing the returned model finds a solution that
minimizes the original objective, but only from among those solutions that minimize the cost of the
violation. Note that FeasRelax must solve an optimization problem to find the minimum possible
relaxation when minrelax=true, which can be quite expensive.

There are two signatures for this method. The more complex one takes a list of variables
and constraints, as well as penalties associated with relaxing the corresponding lower bounds,
upper bounds, and constraints. If a variable or constraint is not included in one of these lists,
the associated bounds or constraints may not be violated. The simpler signature takes a pair of
boolean arguments, vrelax and crelax, that indicate whether variable bounds and/or constraints
can be violated. If vrelax/crelax is true, then every bound/constraint is allowed to be violated,
respectively, and the associated cost is 1.0.

Note that this is a destructive method: it modifies the model on which it is invoked. If you
don’t want to modify your original model, use the GRBModel constructor to create a copy before
invoking this method.

double FeasRelax (int relaxobjtype,
boolean minrelax,
GRBVar[] vars,
double[] lbpen,
double[] ubpen,
GRBConstr[] constrs,
double[] rhspen)

Create a feasibility relaxation model.
Arguments:

relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.
vars: Variables whose bounds are allowed to be violated.
lbpen: Penalty for violating a variable lower bound. One entry for each variable in argument
vars.

ubpen: Penalty for violating a variable upper bound. One entry for each variable in argument
vars.

constrs: Linear constraints that are allowed to be violated.
rhspen: Penalty for violating a linear constraint. One entry for each constraint in argument
constrs.

Arguments:
Return value:

Zero if minrelax is false. If minrelax is true, the return value is the objective value for
the relaxation performed. If the value is less than 0, it indicates that the method failed to
create the feasibility relaxation.

double FeasRelax (int relaxobjtype,
boolean minrelax,
boolean vrelax,
boolean crelax)

410

Simplified method for creating a feasibility relaxation model.
Arguments:

relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.
vrelax: Indicates whether variable bounds can be relaxed (with a cost of 1.0 for any viola-
tions.

crelax: Indicates whether linear constraints can be relaxed (with a cost of 1.0 for any
violations.

Return value:
Zero if minrelax is false. If minrelax is true, the return value is the objective value for
the relaxation performed. If the value is less than 0, it indicates that the method failed to
create the feasibility relaxation.

GRBModel.FixedModel()

Create the fixed model associated with a MIP model. The MIP model must have a solution loaded
(e.g., after a call to the Optimize method). In the fixed model, each integer variable is fixed to the
value that variable takes in the MIP solution. In addition, continuous variables may be fixed to
satisfy SOS or general constraints. The result is a model without any integrality constraints, SOS
constraints, or general constraints.

Note that, while the fixed problem is always a continuous model, it may contain a non-convex
quadratic objective or non-convex quadratic constraints. As a result, it may still be solved using
the MIP algorithm.
GRBModel FixedModel ()
Return value:

Fixed model associated with calling object.

GRBModel.Get()

Query the value(s) of a parameter or attribute. Use this method for parameters, for scalar model
attributes, and for arrays of constraint or variable attributes.
double Get (GRB.DoubleParam param)

Query the value of a double-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.
int Get (GRB.IntParam param)

Query the value of an int-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

411

string Get (GRB.StringParam param)

Query the value of a string-valued parameter.
Arguments:

param: The parameter being queried.
Return value:

The current value of the requested parameter.

char[] Get (GRB.CharAttr attr,
GRBVar[] vars)

Query a char-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: The variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

char[] Get (GRB.CharAttr attr,
GRBVar[] vars,
int start,
int len)

Query a char-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being queried.
vars: A one-dimensional array of variables whose attribute values are being queried.
start: The index of the first variable of interest in the list.
len: The number of variables.

Return value:
The current values of the requested attribute for each input variable.

char[,] Get (GRB.CharAttr attr,
GRBVar[,] vars)

Query a char-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A two-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

char[„] Get (GRB.CharAttr attr,
GRBVar[„] vars)

Query a char-valued variable attribute for a three-dimensional array of variables.
Arguments:

412

attr: The attribute being queried.
vars: A three-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

char[] Get (GRB.CharAttr attr,
GRBConstr[] constrs)

Query a char-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: The constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

char[] Get (GRB.CharAttr attr,
GRBConstr[] constrs,
int start,
int len)

Query a char-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A one-dimensional array of constraints whose attribute values are being queried.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

Return value:
The current values of the requested attribute for each input constraint.

char[,] Get (GRB.CharAttr attr,
GRBConstr[,] constrs)

Query a char-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A two-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

char[„] Get (GRB.CharAttr attr,
GRBConstr[„] constrs)

Query a char-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A three-dimensional array of constraints whose attribute values are being queried.

Return value:

413

The current values of the requested attribute for each input constraint.

char[] Get (GRB.CharAttr attr,
GRBQConstr[] qconstrs)

Query a char-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: The quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

char[] Get (GRB.CharAttr attr,
GRBQConstr[] qconstrs,
int start,
int len)

Query a char-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being queried.

start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

Return value:
The current values of the requested attribute for each input quadratic constraint.

char[,] Get (GRB.CharAttr attr,
GRBQConstr[,] qconstrs)

Query a char-valued quadratic constraint attribute for a two-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being queried.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

char[„] Get (GRB.CharAttr attr,
GRBQConstr[„] qconstrs)

Query a char-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being queried.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being queried.

414

Return value:
The current values of the requested attribute for each input quadratic constraint.

double Get (GRB.DoubleAttr attr)

Query the value of a double-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

double[] Get (GRB.DoubleAttr attr,
GRBVar[] vars)

Query a double-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: The variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

double[] Get (GRB.DoubleAttr attr,
GRBVar[] vars,
int start,
int len)

Query a double-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being queried.
vars: A one-dimensional array of variables whose attribute values are being queried.
start: The index of the first variable of interest in the list.
len: The number of variables.

Return value:
The current values of the requested attribute for each input variable.

double[,] Get (GRB.DoubleAttr attr,
GRBVar[,] vars)

Query a double-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A two-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

double[„] Get (GRB.DoubleAttr attr,
GRBVar[„] vars)

415

Query a double-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A three-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

double[] Get (GRB.DoubleAttr attr,
GRBConstr[] constrs)

Query a double-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: The constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

double[] Get (GRB.DoubleAttr attr,
GRBConstr[] constrs,
int start,
int len)

Query a double-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A one-dimensional array of constraints whose attribute values are being queried.
start: The first constraint of interest in the list.
len: The number of constraints.

Return value:
The current values of the requested attribute for each input constraint.

double[,] Get (GRB.DoubleAttr attr,
GRBConstr[,] constrs)

Query a double-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A two-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

double[„] Get (GRB.DoubleAttr attr,
GRBConstr[„] constrs)

Query a double-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being queried.

416

constrs: A three-dimensional array of constraints whose attribute values are being queried.
Return value:

The current values of the requested attribute for each input constraint.

double[] Get (GRB.DoubleAttr attr,
GRBQConstr[] qconstrs)

Query a double-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: The quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

double[] Get (GRB.DoubleAttr attr,
GRBQConstr[] qconstrs,
int start,
int len)

Query a double-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being queried.

start: The first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

Return value:
The current values of the requested attribute for each input quadratic constraint.

double[,] Get (GRB.DoubleAttr attr,
GRBQConstr[,] qconstrs)

Query a double-valued quadratic constraint attribute for a two-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being queried.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

double[„] Get (GRB.DoubleAttr attr,
GRBQConstr[„] qconstrs)

Query a double-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.

Arguments:

417

attr: The attribute being queried.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

int Get (GRB.IntAttr attr)

Query the value of an int-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

int[] Get (GRB.IntAttr attr,
GRBVar[] vars)

Query an int-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: The variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

int[] Get (GRB.IntAttr attr,
GRBVar[] vars,
int start,
int len)

Query an int-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being queried.
vars: A one-dimensional array of variables whose attribute values are being queried.
start: The index of the first variable of interest in the list.
len: The number of variables.

Return value:
The current values of the requested attribute for each input variable.

int[,] Get (GRB.IntAttr attr,
GRBVar[,] vars)

Query an int-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A two-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

418

int[„] Get (GRB.IntAttr attr,
GRBVar[„] vars)

Query an int-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A three-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

int[] Get (GRB.IntAttr attr,
GRBConstr[] constrs)

Query an int-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: The constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

int[] Get (GRB.IntAttr attr,
GRBConstr[] constrs,
int start,
int len)

Query an int-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A one-dimensional array of constraints whose attribute values are being queried.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

Return value:
The current values of the requested attribute for each input constraint.

int[,] Get (GRB.IntAttr attr,
GRBConstr[,] constrs)

Query an int-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A two-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

int[„] Get (GRB.IntAttr attr,
GRBConstr[„] constrs)

Query an int-valued constraint attribute for a three-dimensional array of constraints.

419

Arguments:
attr: The attribute being queried.
constrs: A three-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

string Get (GRB.StringAttr attr)

Query the value of a string-valued model attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

string[] Get (GRB.StringAttr attr,
GRBVar[] vars)

Query a string-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being queried.
vars: The variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

string[] Get (GRB.StringAttr attr,
GRBVar[] vars,
int start,
int len)

Query a string-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being queried.
vars: A one-dimensional array of variables whose attribute values are being queried.
start: The index of the first variable of interest in the list.
len: The number of variables.

Return value:
The current values of the requested attribute for each input variable.

string[,] Get (GRB.StringAttr attr,
GRBVar[,] vars)

Query a string-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A two-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

420

string[„] Get (GRB.StringAttr attr,
GRBVar[„] vars)

Query a string-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being queried.
vars: A three-dimensional array of variables whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input variable.

string[] Get (GRB.StringAttr attr,
GRBConstr[] constrs)

Query a string-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being queried.
constrs: The constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

string[] Get (GRB.StringAttr attr,
GRBConstr[] constrs,
int start,
int len)

Query a string-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A one-dimensional array of constraints whose attribute values are being queried.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

Return value:
The current values of the requested attribute for each input constraint.

string[,] Get (GRB.StringAttr attr,
GRBConstr[,] constrs)

Query a string-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being queried.
constrs: A two-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

string[„] Get (GRB.StringAttr attr,
GRBConstr[„] constrs)

Query a string-valued constraint attribute for a three-dimensional array of constraints.

421

Arguments:
attr: The attribute being queried.
constrs: A three-dimensional array of constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input constraint.

string[] Get (GRB.StringAttr attr,
GRBQConstr[] qconstrs)

Query a string-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: The quadratic constraints whose attribute values are being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

string[] Get (GRB.StringAttr attr,
GRBQConstr[] qconstrs,
int start,
int len)

Query a string-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being queried.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being queried.

start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

Return value:
The current values of the requested attribute for each input quadratic constraint.

string[,] Get (GRB.StringAttr attr,
GRBQConstr[,] qconstrs)

Query a string-valued quadratic constraint attribute for a two-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being queried.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

string[„] Get (GRB.StringAttr attr,
GRBQConstr[„] qconstrs)

Query a string-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.

422

Arguments:
attr: The attribute being queried.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being queried.

Return value:
The current values of the requested attribute for each input quadratic constraint.

GRBModel.GetCoeff()

Query the coefficient of variable var in linear constraint constr (note that the result can be zero).

double GetCoeff (GRBConstr constr,
GRBVar var)

Arguments:
constr: The requested constraint.
var: The requested variable.

Return value:
The current value of the requested coefficient.

GRBModel.GetCol()

Retrieve the list of constraints in which a variable participates, and the associated coefficients. The
result is returned as a GRBColumn object.
GRBColumn GetCol (GRBVar var)

Arguments:
var: The variable of interest.

Return value:
A GRBColumn object that captures the set of constraints in which the variable participates.

GRBModel.GetConcurrentEnv()

Create/retrieve a concurrent environment for a model.
This method provides fine-grained control over the concurrent optimizer. By creating your

own concurrent environments and setting appropriate parameters on these environments (e.g., the
Method parameter), you can control exactly which strategies the concurrent optimizer employs.
For example, if you create two concurrent environments, and set Method to primal simplex for
one and dual simplex for the other, subsequent concurrent optimizer runs will use the two simplex
algorithms rather than the default choices.

Note that you must create contiguously numbered concurrent environments, starting with
num=0. For example, if you want three concurrent environments, they must be numbered 0, 1,
and 2.

Once you create concurrent environments, they will be used for every subsequent concurrent
optimization on that model. Use DiscardConcurrentEnvs to revert back to default concurrent
optimizer behavior.

423

GRBEnv GetConcurrentEnv (int num)

Arguments:
num: The concurrent environment number.

Return value:
The concurrent environment for the model.

GRBModel.GetConstrByName()

Retrieve a linear constraint from its name. If multiple linear constraints have the same name, this
method chooses one arbitrarily.
GRBConstr GetConstrByName (string name)

Arguments:
name: The name of the desired linear constraint.

Return value:
The requested linear constraint.

GRBModel.GetConstrs()

Retrieve an array of all linear constraints in the model.
GRBConstr[] GetConstrs ()
Return value:

All linear constraints in the model.

GRBModel.GetGenConstrXxx()

The following methods allow you to retrieve general constraints from your model.

GRBModel.GetGenConstrMax

Retrieve the data associated with a general constraint of type MAX. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also AddGenConstrMax for a description of the semantics of this general constraint type.

void GetGenConstrMax (GRBGenConstr genc,
out GRBVar resvar,
out GRBVar[] vars,
out double constant)

Arguments:
genc: The general constraint object.
resvar: Stores the resultant variable of the constraint.
vars: Stores the array of operand variables of the constraint.
constant: Stores the additional constant operand of the constraint.

424

GRBModel.GetGenConstrMin

Retrieve the data associated with a general constraint of type MIN. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also AddGenConstrMin for a description of the semantics of this general constraint type.

void GetGenConstrMin (GRBGenConstr genc,
out GRBVar resvar,
out GRBVar[] vars,
out double constant)

Arguments:
genc: The general constraint object.
resvar: Stores the resultant variable of the constraint.
vars: Stores the array of operand variables of the constraint.
constant: Stores the additional constant operand of the constraint.

GRBModel.GetGenConstrAbs

Retrieve the data associated with a general constraint of type ABS. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also AddGenConstrAbs for a description of the semantics of this general constraint type.

void GetGenConstrAbs (GRBGenConstr genc,
out GRBVar resvar,
out GRBVar argvar)

Arguments:
genc: The general constraint object.
resvar: Stores the resultant variable of the constraint.
argvar: Stores the argument variable of the constraint.

GRBModel.GetGenConstrAnd

Retrieve the data associated with a general constraint of type AND. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also AddGenConstrAnd for a description of the semantics of this general constraint type.

void GetGenConstrAnd (GRBGenConstr genc,
out GRBVar resvar,
out GRBVar[] vars)

Arguments:
genc: The general constraint object.
resvar: Stores the resultant variable of the constraint.
vars: Stores the array of operand variables of the constraint.

425

GRBModel.GetGenConstrOr

Retrieve the data associated with a general constraint of type OR. Calling this method for a general
constraint of a different type leads to an exception. You can query the GenConstrType attribute
to determine the type of the general constraint.

See also AddGenConstrOr for a description of the semantics of this general constraint type.

void GetGenConstrOr (GRBGenConstr genc,
out GRBVar resvar,
out GRBVar[] vars)

Arguments:
genc: The general constraint object.
resvar: Stores the resultant variable of the constraint.
vars: Stores the array of operand variables of the constraint.

GRBModel.GetGenConstrIndicator

Retrieve the data associated with a general constraint of type INDICATOR. Calling this method
for a general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also AddGenConstrIndicator for a description of the semantics of this general constraint
type.

void GetGenConstrIndicator (GRBGenConstr genc,
out GRBVar binvar,
out int binval,
out GRBLinExpr expr,
out char sense,
out double rhs)

Arguments:
genc: The general constraint object.
binvar: Stores the binary indicator variable of the constraint.
binval: Stores the value that the indicator variable has to take in order to trigger the linear
constraint.

expr: Stores the left-hand side expression of the linear constraint that is triggered by the
indicator.

sense: Stores the sense for the linear constraint. Options are GRB_LESS_EQUAL, GRB_EQUAL,
or GRB_GREATER_EQUAL.

rhs: Stores the right-hand side value for the linear constraint.

GRBModel.GetGenConstrPWL

Retrieve the data associated with a general constraint of type PWL. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

426

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a null value for the xpts and ypts arguments. The routine returns the length for
the xpts and ypts arrays in npts. That allows you to make certain that the xpts and ypts arrays
are of sufficient size to hold the result of the second call.

See also AddGenConstrPWL for a description of the semantics of this general constraint type.

void GetGenConstrPWL (GRBGenConstr genc,
out GRBVar xvar,
out GRBVar yvar,
out int npts,
double[] xpts,
double[] ypts)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.
npts: Store the number of points that define the piecewise-linear function.
xpts: The x values for the points that define the piecewise-linear function.
ypts: The y values for the points that define the piecewise-linear function.

GRBModel.GetGenConstrPoly

Retrieve the data associated with a general constraint of type POLY. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

Typical usage is to call this routine twice. In the first call, you specify the requested general
constraint, with a null value for the p argument. The routine returns the length of the p array in
plen. That allows you to make certain that the p array is of sufficient size to hold the result of the
second call.

See also AddGenConstrPoly for a description of the semantics of this general constraint type.

void GetGenConstrPoly (GRBGenConstr genc,
out GRBVar xvar,
out GRBVar yvar,
out int plen,
double[] p)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.
plen: Store the array length for p. If xd is the highest power term, then d + 1 will be
returned.

p: The coefficients for polynomial function.

427

GRBModel.GetGenConstrExp

Retrieve the data associated with a general constraint of type EXP. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also AddGenConstrExp for a description of the semantics of this general constraint type.

void GetGenConstrExp (GRBGenConstr genc,
out GRBVar xvar,
out GRBVar yvar)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.

GRBModel.GetGenConstrExpA

Retrieve the data associated with a general constraint of type EXPA. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also AddGenConstrExpA for a description of the semantics of this general constraint type.

void GetGenConstrExpA (GRBGenConstr genc,
out GRBVar xvar,
out GRBVar yvar,
out double a)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.
a: Store the base of the function.

GRBModel.GetGenConstrLog

Retrieve the data associated with a general constraint of type LOG. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also AddGenConstrLog for a description of the semantics of this general constraint type.

void GetGenConstrLog (GRBGenConstr genc,
out GRBVar xvar,
out GRBVar yvar)

Arguments:

428

genc: The general constraint object.
Any of the following arguments can be null.

xvar: Store the x variable.
yvar: Store the y variable.

GRBModel.GetGenConstrLogA

Retrieve the data associated with a general constraint of type LOGA. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also AddGenConstrLogA for a description of the semantics of this general constraint type.

void GetGenConstrLogA (GRBGenConstr genc,
out GRBVar xvar,
out GRBVar yvar,
out double a)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.
a: Store the base of the function.

GRBModel.GetGenConstrPow

Retrieve the data associated with a general constraint of type POW. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also AddGenConstrPow for a description of the semantics of this general constraint type.

void GetGenConstrPow (GRBGenConstr genc,
out GRBVar xvar,
out GRBVar yvar,
out double a)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.
a: Store the power of the function.

429

GRBModel.GetGenConstrSin

Retrieve the data associated with a general constraint of type SIN. Calling this method for a general
constraint of a different type leads to an exception. You can query the GenConstrType attribute
to determine the type of the general constraint.

See also AddGenConstrSin for a description of the semantics of this general constraint type.

void GetGenConstrSin (GRBGenConstr genc,
out GRBVar xvar,
out GRBVar yvar)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.

GRBModel.GetGenConstrCos

Retrieve the data associated with a general constraint of type COS. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also AddGenConstrCos for a description of the semantics of this general constraint type.

void GetGenConstrCos (GRBGenConstr genc,
out GRBVar xvar,
out GRBVar yvar)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.

GRBModel.GetGenConstrTan

Retrieve the data associated with a general constraint of type TAN. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also AddGenConstrTan for a description of the semantics of this general constraint type.

void GetGenConstrTan (GRBGenConstr genc,
out GRBVar xvar,
out GRBVar yvar)

Arguments:
genc: The general constraint object.

Any of the following arguments can be null.
xvar: Store the x variable.
yvar: Store the y variable.

430

GRBModel.GetGenConstrs()

Retrieve an array of all general constraints in the model.
GRBGenConstr[] GetGenConstrs ()
Return value:

All general constraints in the model.

GRBModel.GetJSONSolution()

After a call to Optimize, this method returns the resulting solution and related model attributes
as a JSON string. Please refer to the JSON solution format section for details.
string GetJSONSolution ()
Return value:

A JSON string.

GRBModel.GetMultiobjEnv()

Create/retrieve a multi-objective environment for the objective with the given index. This envi-
ronment enables fine-grained control over the multi-objective optimization process. Specifically, by
changing parameters on this environment, you modify the behavior of the optimization that occurs
during the corresponding pass of the multi-objective optimization.

Each multi-objective environment starts with a copy of the current model environment.
Please refer to the discussion of Multiple Objectives for information on how to specify multiple

objective functions and control the trade-off between them.
Use DiscardMultiobjEnvs to discard multi-objective environments and return to standard be-

havior.
GRBEnv GetMultiobjEnv (int index)

Arguments:
index: The objective index.

Return value:
The multi-objective environment for the model.

GRBModel.GetObjective()

Retrieve the model objective(s).
GRBExpr GetObjective ()
Retrieve the optimization objective.
Note that the constant and linear portions of the objective can also be retrieved using the

ObjCon and Obj attributes.
Return value:

The model objective.
GRBLinExpr GetObjective (int index)

Retrieve an alternative optimization objective. Alternative objectives will always be linear. You
can also use this routine to retrieve the primary objective (using index = 0), but you will get an
exception if the primary objective contains quadratic terms.

431

Please refer to the discussion of Multiple Objectives for more information on the use of alter-
native objectives.

Note that alternative objectives can also be retrieved using the ObjNCon and ObjN attributes.
Arguments:

index: The index for the requested alternative objective.
Return value:

The requested alternative objective.

GRBModel.GetPWLObj()

Retrieve the piecewise-linear objective function for a variable. The return value gives the number
of points that define the function, and the x and y arguments give the coordinates of the points,
respectively. The x and y arguments must be large enough to hold the result. Call this method
with null values for x and y if you just want the number of points.

Refer to this discussion for additional information on what the values in x and y mean.

int GetPWLObj (GRBVar var,
double[] x,
double[] y)

Arguments:
var: The variable whose objective function is being retrieved.
x: The x values for the points that define the piecewise-linear function. These will always
be in non-decreasing order.

y: The y values for the points that define the piecewise-linear function.
Return value:

The number of points that define the piecewise-linear objective function.

GRBModel.GetQConstr()

Retrieve the left-hand side expression from a quadratic constraint. The result is returned as a
GRBQuadExpr object.
GRBQuadExpr GetQConstr (GRBQConstr qconstr)

Arguments:
qconstr: The quadratic constraint of interest.

Return value:
A GRBQuadExpr object that captures the left-hand side of the quadratic constraint.

GRBModel.GetQConstrs()

Retrieve an array of all quadratic constraints in the model.
GRBQConstr[] GetQConstrs ()
Return value:

All quadratic constraints in the model.

432

GRBModel.GetQCRow()

Retrieve the left-hand side expression for a quadratic constraint. The result is returned as a
GRBQuadExpr object.
GRBQuadExpr GetQCRow (GRBQConstr qc)

Arguments:
qc: The quadratic constraint of interest.

Return value:
A GRBQuadExpr object that captures the left-hand side of the quadratic constraint.

GRBModel.GetRow()

Retrieve a list of variables that participate in a constraint, and the associated coefficients. The
result is returned as a GRBLinExpr object.
GRBLinExpr GetRow (GRBConstr constr)

Arguments:
constr: The constraint of interest. A GRBConstr object, typically obtained from AddCon-
str or GetConstrs.

Return value:
A GRBLinExpr object that captures the set of variables that participate in the constraint.

GRBModel.GetSOS()

Retrieve the list of variables that participate in an SOS constraint, and the associated coefficients.
The return value is the length of this list. Note that the argument arrays must be long enough to
accommodate the result. Call the method with null array arguments to determine the appropriate
array lengths.

int GetSOS (GRBSOS sos,
GRBVar[] vars,
double[] weights,
int[] type)

Arguments:
sos: The SOS set of interest.
vars: A list of variables that participate in sos. Can be null.
weights: The SOS weights for each participating variable. Can be null.
type: The type of the SOS set (either GRB.SOS_TYPE1 or GRB.SOS_TYPE2) is returned in
type[0].

Return value:
The number of entries placed in the output arrays. Note that you should consult the return
value to determine the length of the result; the arrays sizes won’t necessarily match the
result size.

433

GRBModel.GetSOSs()

Retrieve an array of all SOS constraints in the model.
GRBSOS[] GetSOSs ()
Return value:

All SOS constraints in the model.

GRBModel.GetTuneResult()

Use this method to retrieve the results of a previous Tune call. Calling this method with argument
n causes tuned parameter set n to be copied into the model. Parameter sets are stored in order of
decreasing quality, with parameter set 0 being the best. The number of available sets is stored in
attribute TuneResultCount.

Once you have retrieved a tuning result, you can call optimize to use these parameter settings
to optimize the model, or write to write the changed parameters to a .prm file.

Please refer to the parameter tuning section for details on the tuning tool.
void GetTuneResult (int n)

n: The index of the tuning result to retrieve. The best result is available as index 0. The
number of stored results is available in attribute TuneResultCount.

GRBModel.GetVarByName()

Retrieve a variable from its name. If multiple variable have the same name, this method chooses
one arbitrarily.
GRBVar GetVarByName (string name)

Arguments:
name: The name of the desired variable.

Return value:
The requested variable.

GRBModel.GetVars()

Retrieve an array of all variables in the model.
GRBVar[] GetVars ()
Return value:

All variables in the model.

GRBModel.Optimize()

Optimize the model. The algorithm used for the optimization depends on the model type (simplex
or barrier for a continuous model; branch-and-cut for a MIP model). Upon successful completion,
this method will populate the solution related attributes of the model. See the Attributes section
for more information on attributes.

Please consult this section for a discussion of some of the practical issues associated with solving
a precisely defined mathematical model using finite-precision floating-point arithmetic.

434

Note that this method will process all pending model modifications.
void Optimize ()

GRBModel.OptimizeAsync()

Optimize a model asynchronously. This routine returns immediately. Your program can perform
other computations while optimization proceeds in the background. To check the state of the
asynchronous optimization, query the Status attribute for the model. A value of IN_PROGRESS
indicates that the optimization has not yet completed. When you are done with your foreground
tasks, you must call Sync to sync your foreground program with the asynchronous optimization
task.

Note that the set of Gurobi calls that you are allowed to make while optimization is running in
the background is severely limited. Specifically, you can only perform attribute queries, and only
for a few attributes (listed below). Any other calls on the running model, or on any other models that
were built within the same Gurobi environment, will fail with error code OPTIMIZATION_IN_PROGRESS.

Note that there are no such restrictions on models built in other environments. Thus, for
example, you could create multiple environments, and then have a single foreground program
launch multiple simultaneous asynchronous optimizations, each in its own environment.

As already noted, you are allowed to query the value of the Status attribute while an asyn-
chronous optimization is in progress. The other attributes that can be queried are: ObjVal, Ob-
jBound, IterCount, NodeCount, and BarIterCount. In each case, the returned value reflects progress
in the optimization to that point. Any attempt to query the value of an attribute not on this list
will return an OPTIMIZATION_IN_PROGRESS error.
void OptimizeAsync ()

GRBModel.OptimizeBatch()

Submit a new batch request to the Cluster Manager. Returns the BatchID (a string), which
uniquely identifies the job in the Cluster Manager and can be used to query the status of this
request (from this program or from any other). Once the request has completed, the BatchID can
also be used to retrieve the associated solution. To submit a batch request, you must tag at least
one element of the model by setting one of the VTag, CTag or QCTag attributes. For more details
on batch optimization, please refer to the Batch Optimization section.

Note that this routine will process all pending model modifications.
string OptimizeBatch ()
Example usage:

// Submit batch request
batchID = model. OptimizeBatch ();

GRBModel.Presolve()

Perform presolve on a model.
GRBModel Presolve ()
Return value:

Presolved version of original model.

435

GRBModel.Read()

This method is the general entry point for importing data from a file into a model. It can be used
to read basis files for continuous models, start vectors for MIP models, or parameter settings. The
type of data read is determined by the file suffix. File formats are described in the File Format
section.

Note that this is not the method to use if you want to read a new model from a file. For that,
use the GRBModel constructor. One variant of the constructor takes the name of the file that
contains the new model as its argument.
void Read (string filename)

Arguments:
filename: Name of the file to read. The suffix on the file must be either .bas (for an LP
basis), .mst or .sol (for a MIP start), .hnt (for MIP hints), .ord (for a priority order),
or .prm (for a parameter file). The suffix may optionally be followed by .zip, .gz, .bz2,
or .7z.

GRBModel.Remove()

Remove a variable, constraint, or SOS from a model.
void Remove (GRBConstr constr)

Remove a constraint from the model. Note that, due to our lazy update approach, the change
won’t actually take effect until you update the model (using GRBModel.Update), optimize the
model (using GRBModel.Optimize), or write the model to disk (using GRBModel.Write).

Arguments:
constr: The constraint to remove.

void Remove (GRBGenConstr genconstr)

Remove a general constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel.Update), optimize
the model (using GRBModel.Optimize), or write the model to disk (using GRBModel.Write).

Arguments:
genconstr: The general constraint to remove.

void Remove (GRBQConstr qconstr)

Remove a quadratic constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel.Update), optimize
the model (using GRBModel.Optimize), or write the model to disk (using GRBModel.Write).

Arguments:
qconstr: The constraint to remove.

void Remove (GRBSOS sos)

Remove an SOS constraint from the model. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using GRBModel.Update), optimize
the model (using GRBModel.Optimize), or write the model to disk (using GRBModel.Write).

436

Arguments:
sos: The SOS constraint to remove.

void Remove (GRBVar var)

Remove a variable from the model. Note that, due to our lazy update approach, the change
won’t actually take effect until you update the model (using GRBModel.Update), optimize the
model (using GRBModel.Optimize), or write the model to disk (using GRBModel.Write).

Arguments:
var: The variable to remove.

GRBModel.Reset()
Reset the model to an unsolved state, discarding any previously computed solution information.
void Reset ()
void Reset (int clearall)

Arguments:
clearall: A value of 1 discards additional information that affects the solution process but
not the actual model (currently MIP starts, variable hints, branching priorities, lazy flags,
and partition information). Pass 0 to just discard the solution.

GRBModel.SetCallback()
Set the callback object for a model. The Callback() method on this object will be called period-
ically from the Gurobi solver. You will have the opportunity to obtain more detailed information
about the state of the optimization from this callback. See the documentation for GRBCallback
for additional information.

Note that a model can only have a single callback method, so this call will replace an existing
callback. To disable a previously set callback, call this method with a null argument.
void SetCallback (GRBCallback cb)

GRBModel.Set()
Set the value(s) of a parameter or attribute. Use this method for parameters, for scalar model
attributes, or for arrays of constraint or variable attributes.

void Set (GRB.DoubleParam param,
double newvalue)

Set the value of a double-valued parameter.
The difference between setting a parameter on a model and setting it on an environment (i.e.,

through GRBEnv.Set) is that the former modifies the parameter for a single model, while the
latter modifies the parameter for every model that is subsequently built using that environment
(and leaves the parameter unchanged for models that were previously built using that environment).

Arguments:
param: The parameter being modified.

437

newvalue: The desired new value for the parameter.

void Set (GRB.IntParam param,
int newvalue)

Set the value of an int-valued parameter.
The difference between setting a parameter on a model and setting it on an environment (i.e.,

through GRBEnv.Set) is that the former modifies the parameter for a single model, while the
latter modifies the parameter for every model that is subsequently built using that environment
(and leaves the parameter unchanged for models that were previously built using that environment).

Arguments:
param: The parameter being modified.
newvalue: The desired new value for the parameter.

void Set (GRB.StringParam param,
string newvalue)

Set the value of a string-valued parameter.
The difference between setting a parameter on a model and setting it on an environment (i.e.,

through GRBEnv.Set) is that the former modifies the parameter for a single model, while the
latter modifies the parameter for every model that is subsequently built using that environment
(and leaves the parameter unchanged for models that were previously built using that environment).

Arguments:
param: The parameter being modified.
newvalue: The desired new value for the parameter.

void Set (GRB.CharAttr attr,
GRBVar[] vars,
char[] newvalues)

Set a char-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: The variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.CharAttr attr,
GRBVar[] vars,
char[] newvalues,
int start,
int len)

Set a char-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being modified.
vars: A one-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

438

start: The index of the first variable of interest in the list.
len: The number of variables.

void Set (GRB.CharAttr attr,
GRBVar[,] vars,
char[,] newvalues)

Set a char-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A two-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.CharAttr attr,
GRBVar[„] vars,
char[„] newvalues)

Set a char-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A three-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.CharAttr attr,
GRBConstr[] constrs,
char[] newvalues)

Set a char-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: The constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.CharAttr attr,
GRBConstr[] constrs,
char[] newvalues,
int start,
int len)

Set a char-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A one-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

439

void Set (GRB.CharAttr attr,
GRBConstr[,] constrs,
char[,] newvalues)

Set a char-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A two-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.CharAttr attr,
GRBConstr[„] constrs,
char[„] newvalues)

Set a char-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A three-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.CharAttr attr,
GRBQConstr[] qconstrs,
char[] newvalues)

Set a char-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: The quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.

void Set (GRB.CharAttr attr,
GRBQConstr[] qconstrs,
char[] newvalues,
int start,
int len)

Set a char-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being modified.

newvalues: The desired new values for the attribute for each input quadratic constraint.
start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

void Set (GRB.CharAttr attr,
GRBQConstr[,] qconstrs,
char[,] newvalues)

440

Set a char-valued quadratic constraint attribute for a two-dimensional array of quadratic con-
straints.

Arguments:
attr: The attribute being modified.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being modified.

newvalues: The desired new values for the attribute for each input quadratic constraint.

void Set (GRB.CharAttr attr,
GRBQConstr[„] qconstrs,
char[„] newvalues)

Set a char-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being modified.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being modified.

newvalues: The desired new values for the attribute for each input quadratic constraint.

void Set (GRB.DoubleAttr attr,
double newvalue)

Set the value of a double-valued model attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value for the attribute.

void Set (GRB.DoubleAttr attr,
GRBVar[] vars,
double[] newvalues)

Set a double-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: The variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.DoubleAttr attr,
GRBVar[] vars,
double[] newvalues,
int start,
int len)

Set a double-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being modified.

441

vars: A one-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
start: The index of the first variable of interest in the list.
len: The number of variables.

void Set (GRB.DoubleAttr attr,
GRBVar[,] vars,
double[,] newvalues)

Set a double-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A two-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.DoubleAttr attr,
GRBVar[„] vars,
double[„] newvalues)

Set a double-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A three-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.DoubleAttr attr,
GRBConstr[] constrs,
double[] newvalues)

Set a double-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: The constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.DoubleAttr attr,
GRBConstr[] constrs,
double[] newvalues,
int start,
int len)

Set a double-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A one-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
start: The first constraint of interest in the list.

442

len: The number of constraints.

void Set (GRB.DoubleAttr attr,
GRBConstr[,] constrs,
double[,] newvalues)

Set a double-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A two-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.DoubleAttr attr,
GRBConstr[„] constrs,
double[„] newvalues)

Set a double-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A three-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.DoubleAttr attr,
GRBQConstr[] qconstrs,
double[] newvalues)

Set a double-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: The quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.

void Set (GRB.DoubleAttr attr,
GRBQConstr[] qconstrs,
double[] newvalues,
int start,
int len)

Set a double-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being modified.

newvalues: The desired new values for the attribute for each input quadratic constraint.
start: The first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

443

void Set (GRB.DoubleAttr attr,
GRBQConstr[,] qconstrs,
double[,] newvalues)

Set a double-valued quadratic constraint attribute for a two-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being modified.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being modified.

newvalues: The desired new values for the attribute for each input quadratic constraint.

void Set (GRB.DoubleAttr attr,
GRBQConstr[„] qconstrs,
double[„] newvalues)

Set a double-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being modified.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being modified.

newvalues: The desired new values for the attribute for each input quadratic constraint.

void Set (GRB.IntAttr attr,
int newvalue)

Set the value of an int-valued model attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value for the attribute.

void Set (GRB.IntAttr attr,
GRBVar[] vars,
int[] newvalues)

Set an int-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: The variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.IntAttr attr,
GRBVar[] vars,
int[] newvalues,
int start,
int len)

Set an int-valued variable attribute for a sub-array of variables.

444

Arguments:
attr: The attribute being modified.
vars: A one-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
start: The index of the first variable of interest in the list.
len: The number of variables.

void Set (GRB.IntAttr attr,
GRBVar[,] vars,
int[,] newvalues)

Set an int-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A two-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.IntAttr attr,
GRBVar[„] vars,
int[„] newvalues)

Set an int-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A three-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.IntAttr attr,
GRBConstr[] constrs,
int[] newvalues)

Set an int-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: The constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.IntAttr attr,
GRBConstr[] constrs,
int[] newvalues,
int start,
int len)

Set an int-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A one-dimensional array of constraints whose attribute values are being modified.

445

newvalues: The desired new values for the attribute for each input constraint.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

void Set (GRB.IntAttr attr,
GRBConstr[,] constrs,
int[,] newvalues)

Set an int-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A two-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.IntAttr attr,
GRBConstr[„] constrs,
int[„] newvalues)

Set an int-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A three-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.StringAttr attr,
string newvalue)

Set the value of a string-valued model attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value for the attribute.

void Set (GRB.StringAttr attr,
GRBVar[] vars,
string[] newvalues)

Set a string-valued variable attribute for an array of variables.
Arguments:

attr: The attribute being modified.
vars: The variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.StringAttr attr,
GRBVar[] vars,
string[] newvalues,
int start,
int len)

446

Set a string-valued variable attribute for a sub-array of variables.
Arguments:

attr: The attribute being modified.
vars: A one-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.
start: The index of the first variable of interest in the list.
len: The number of variables.

void Set (GRB.StringAttr attr,
GRBVar[,] vars,
string[,] newvalues)

Set a string-valued variable attribute for a two-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A two-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.StringAttr attr,
GRBVar[„] vars,
string[„] newvalues)

Set a string-valued variable attribute for a three-dimensional array of variables.
Arguments:

attr: The attribute being modified.
vars: A three-dimensional array of variables whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input variable.

void Set (GRB.StringAttr attr,
GRBConstr[] constrs,
string[] newvalues)

Set a string-valued constraint attribute for an array of constraints.
Arguments:

attr: The attribute being modified.
constrs: The constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.StringAttr attr,
GRBConstr[] constrs,
string[] newvalues,
int start,
int len)

Set a string-valued constraint attribute for a sub-array of constraints.
Arguments:

attr: The attribute being modified.

447

constrs: A one-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.
start: The index of the first constraint of interest in the list.
len: The number of constraints.

void Set (GRB.StringAttr attr,
GRBConstr[,] constrs,
string[,] newvalues)

Set a string-valued constraint attribute for a two-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A two-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.StringAttr attr,
GRBConstr[„] constrs,
string[„] newvalues)

Set a string-valued constraint attribute for a three-dimensional array of constraints.
Arguments:

attr: The attribute being modified.
constrs: A three-dimensional array of constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input constraint.

void Set (GRB.StringAttr attr,
GRBQConstr[] qconstrs,
string[] newvalues)

Set a string-valued quadratic constraint attribute for an array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: The quadratic constraints whose attribute values are being modified.
newvalues: The desired new values for the attribute for each input quadratic constraint.

void Set (GRB.StringAttr attr,
GRBQConstr[] qconstrs,
string[] newvalues,
int start,
int len)

Set a string-valued quadratic constraint attribute for a sub-array of quadratic constraints.
Arguments:

attr: The attribute being modified.
qconstrs: A one-dimensional array of quadratic constraints whose attribute values are
being modified.

newvalues: The desired new values for the attribute for each input quadratic constraint.

448

start: The index of the first quadratic constraint of interest in the list.
len: The number of quadratic constraints.

void Set (GRB.StringAttr attr,
GRBQConstr[,] qconstrs,
string[,] newvalues)

Set a string-valued quadratic constraint attribute for a two-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being modified.
qconstrs: A two-dimensional array of quadratic constraints whose attribute values are
being modified.

newvalues: The desired new values for the attribute for each input quadratic constraint.

void Set (GRB.StringAttr attr,
GRBQConstr[„] qconstrs,
string[„] newvalues)

Set a string-valued quadratic constraint attribute for a three-dimensional array of quadratic
constraints.

Arguments:
attr: The attribute being modified.
qconstrs: A three-dimensional array of quadratic constraints whose attribute values are
being modified.

newvalues: The desired new values for the attribute for each input quadratic constraint.

GRBModel.SetObjective()

Set the model objective equal to a linear or quadratic expression (for multi-objective optimization,
see SetObjectiveN).

Note that you can also modify the linear portion of a model objective using the Obj variable
attribute. If you wish to mix and match these two approaches, please note that this method replaces
the entire existing objective, while the Obj attribute can be used to modify individual linear terms.

void SetObjective (GRBExpr expr,
int sense)

Set the model objective, and the objective sense (GRB.MINIMIZE for minimization, GRB.MAXIMIZE
for maximization).

Arguments:
expr: New model objective.
sense: New optimization sense (GRB.MINIMIZE for minimization, GRB.MAXIMIZE for maxi-
mization).

void SetObjective (GRBExpr expr)

449

Set the model objective. The sense of the objective is determined by the value of the ModelSense
attribute.

Arguments:
expr: New model objective.

GRBModel.SetObjectiveN()

void SetObjectiveN (GRBLinExpr expr,
int index,
int priority,
double weight,
double abstol,
double reltol,
string name)

Set an alternative optimization objective equal to a linear expression.
Please refer to the discussion of Multiple Objectives for more information on the use of alter-

native objectives.
Note that you can also modify an alternative objective using the ObjN variable attribute. If

you wish to mix and match these two approaches, please note that this method replaces the entire
existing objective, while the ObjN attribute can be used to modify individual terms.

Arguments:
expr: New alternative objective.
index: Index for new objective. If you use an index of 0, this routine will change the primary
optimization objective.

priority: Priority for the alternative objective. This initializes the ObjNPriority attribute
for this objective.

weight: Weight for the alternative objective. This initializes the ObjNWeight attribute for
this objective.

abstol: Absolute tolerance for the alternative objective. This initializes the ObjNAbsTol
attribute for this objective.

reltol: Relative tolerance for the alternative objective. This initializes the ObjNRelTol
attribute for this objective.

name: Name of the alternative objective. This initializes the ObjNName attribute for this
objective.

GRBModel.SetPWLObj()

Set a piecewise-linear objective function for a variable.
The arguments to this method specify a list of points that define a piecewise-linear objective

function for a single variable. Specifically, the x and y arguments give coordinates for the vertices
of the function.

For additional details on piecewise-linear objective functions, refer to this discussion.

450

void SetPWLObj (GRBvar var,
double[] x,
double[] y)

Set the piecewise-linear objective function for a variable.
Arguments:

var: The variable whose objective function is being set.
x: The x values for the points that define the piecewise-linear function. Must be in non-
decreasing order.

y: The y values for the points that define the piecewise-linear function.

GRBModel.SingleScenarioModel()

Capture a single scenario from a multi-scenario model. Use the ScenarioNumber parameter to
indicate which scenario to capture.

The model on which this method is invoked must be a multi-scenario model, and the result will
be a single-scenario model.
GRBModel SingleScenarioModel ()
Return value:

Model for a single scenario.

GRBModel.Sync()

Wait for a previous asynchronous optimization call to complete.
Calling OptimizeAsync returns control to the calling routine immediately. The caller can per-

form other computations while optimization proceeds, and can check on the progress of the opti-
mization by querying various model attributes. The sync call forces the calling program to wait
until the asynchronous optimization call completes. You must call sync before the corresponding
model object is deleted.

The sync call throws an exception if the optimization itself ran into any problems. In other
words, exceptions thrown by this method are those that optimize itself would have thrown, had
the original method not been asynchronous.

Note that you need to call sync even if you know that the asynchronous optimization has
already completed.
void Sync ()

GRBModel.Terminate()

Generate a request to terminate the current optimization. This method can be called at any time
during an optimization (from a callback, from another thread, from an interrupt handler, etc.).
Note that, in general, the request won’t be acted upon immediately.

When the optimization stops, the Status attribute will be equal to GRB_INTERRUPTED.
void Terminate ()

GRBModel.Tune()

Perform an automated search for parameter settings that improve performance. Upon completion,
this method stores the best parameter sets it found. The number of stored parameter sets can be

451

determined by querying the value of the TuneResultCount attribute. The actual settings can be
retrieved using GetTuneResult

Please refer to the parameter tuning section for details on the tuning tool.
void Tune ()

GRBModel.Update()
Process any pending model modifications.
void Update ()

GRBModel.Write()
This method is the general entry point for writing optimization data to a file. It can be used to
write optimization models, solutions vectors, basis vectors, start vectors, or parameter settings.
The type of data written is determined by the file suffix. File formats are described in the File
Format section.

Note that writing a model to a file will process all pending model modifications. However,
writing other model information (solutions, bases, etc.) will not.

Note also that when you write a Gurobi parameter file (PRM), both integer or double parameters
not at their default value will be saved, but no string parameter will be saved into the file.
void Write (string filename)

Arguments:
filename: The name of the file to be written. The file type is encoded in the file name
suffix. Valid suffixes are .mps, .rew, .lp, or .rlp for writing the model itself, .ilp
for writing just the IIS associated with an infeasible model (see GRBModel.ComputeIIS
for further information), .sol for writing the current solution, .mst for writing a start
vector, .hnt for writing a hint file, .bas for writing an LP basis, .prm for writing modified
parameter settings, .attr for writing model attributes, or .json for writing solution
information in JSON format. If your system has compression utilities installed (e.g., 7z
or zip for Windows, and gzip, bzip2, or unzip for Linux or Mac OS), then the files can
be compressed, so additional suffixes of .gz, .bz2, or .7z are accepted.

452

5.3 GRBVar
Gurobi variable object. Variables are always associated with a particular model. You create a
variable object by adding a variable to a model (using GRBModel.AddVar), rather than by using
a GRBVar constructor.

The methods on variable objects are used to get and set variable attributes. For example,
solution information can be queried by calling Get(GRB.DoubleAttr.X). Note, however, that it is
generally more efficient to query attributes for a set of variables at once. This is done using the
attribute query method on the GRBModel object (GRBModel.Get).

GRBVar.Get()

Query the value of a variable attribute.
char Get (GRB.CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
double Get (GRB.DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
int Get (GRB.IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
string Get (GRB.StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBVar.Index

int Index

453

This property returns the current index, or order, of the variable in the underlying constraint
matrix.

Return value:
-2: removed, -1: not in model, otherwise: index of the variable in the model

Note that the index of a variable may change after subsequent model modifications.

GRBVar.SameAs()

bool SameAs (GRBVar var2)

Check whether two variable objects refer to the same variable.
Arguments:

var2: The other variable.
Return value:

Boolean result indicates whether the two variable objects refer to the same model variable.

GRBVar.Set()
Set the value of a variable attribute.

void Set (GRB.CharAttr attr,
char newvalue)

Set the value of a char-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void Set (GRB.DoubleAttr attr,
double newvalue)

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void Set (GRB.IntAttr attr,
int newvalue)

Set the value of an int-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void Set (GRB.StringAttr attr,
string newvalue)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

454

5.4 GRBConstr
Gurobi constraint object. Constraints are always associated with a particular model. You create
a constraint object by adding a constraint to a model (using GRBModel.AddConstr), rather than
by using a GRBConstr constructor.

The methods on constraint objects are used to get and set constraint attributes. For example,
constraint right-hand sides can be queried by calling Get(GRB.DoubleAttr.RHS). Note, however,
that it is generally more efficient to query attributes for a set of constraints at once. This is done
using the attribute query method on the GRBModel object (GRBModel.Get).

GRBConstr.Get()

Query the value of a constraint attribute.
char Get (GRB.CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
double Get (GRB.DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
int Get (GRB.IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
string Get (GRB.StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBConstr.Index

int Index

455

This property returns the current index, or order, of the constraint in the underlying constraint
matrix.

Note that the index of a constraint may change after subsequent model modifications.
Return value:

-2: removed, -1: not in model, otherwise: index of the constraint in the model

GRBConstr.SameAs()

bool SameAs (GRBConstr constr2)

Check whether two constraint objects refer to the same constraint.
Arguments:

constr2: The other constraint.
Return value:

Boolean result indicates whether the two constraint objects refer to the same model con-
straint.

GRBConstr.Set()

Set the value of a constraint attribute.

void Set (GRB.CharAttr attr,
char newvalue)

Set the value of a char-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void Set (GRB.DoubleAttr attr,
double newvalue)

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void Set (GRB.IntAttr attr,
int newvalue)

Set the value of an int-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void Set (GRB.StringAttr attr,
string newvalue)

456

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

457

5.5 GRBQConstr
Gurobi quadratic constraint object. Quadratic constraints are always associated with a particular
model. You create a quadratic constraint object by adding a quadratic constraint to a model (using
GRBModel.AddQConstr), rather than by using a GRBQConstr constructor.

The methods on quadratic constraint objects are used to get and set quadratic constraint
attributes. For example, quadratic constraint right-hand sides can be queried by calling
Get(GRB.DoubleAttr.QCRHS). Note, however, that it is generally more efficient to query attributes
for a set of constraints at once. This is done using the attribute query method on the GRBModel
object (GRBModel.Get).

GRBQConstr.Get()

Query the value of a quadratic constraint attribute.
char Get (GRB.CharAttr attr)

Query the value of a char-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
double Get (GRB.DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
int Get (GRB.IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
string Get (GRB.StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBQConstr.Set()

Set the value of a quadratic constraint attribute.

458

void Set (GRB.CharAttr attr,
char newvalue)

Set the value of a char-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void Set (GRB.DoubleAttr attr,
double newvalue)

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void Set (GRB.StringAttr attr,
string newvalue)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

459

5.6 GRBSOS
Gurobi SOS constraint object. SOS constraints are always associated with a particular model.
You create an SOS object by adding an SOS constraint to a model (using GRBModel.AddSOS),
rather than by using a GRBSOS constructor. Similarly, SOS constraints are removed using the
GRBModel.Remove method.

An SOS constraint can be of type 1 or 2 (GRB.SOS_TYPE1 or GRB.SOS_TYPE2). A type 1 SOS
constraint is a set of variables where at most one variable in the set may take a value other than
zero. A type 2 SOS constraint is an ordered set of variables where at most two variables in the set
may take non-zero values. If two take non-zero values, they must be contiguous in the ordered set.

SOS constraint objects have one attribute, IISSOS, which can be queried with the GRBSOS.Get
method.

GRBSOS.Get()
Query the value of an SOS attribute.
int Get (GRB.IntAttr attr)

Arguments:
attr: The attribute being queried.

Return value:
The current value of the requested attribute.

460

5.7 GRBGenConstr
Gurobi general constraint object. General constraints are always associated with a particular model.
You create a general constraint object by adding a general constraint to a model (using one of the
GRBModel.AddGenConstrXxx methods), rather than by using a GRBGenConstr constructor.

General constraint objects have a number of attributes, which can be queried with the GRB-
GenConstr.Get method. The full list can be found in the Attributes section of this document.

GRBGenConstr.Get()
Query the value of a general constraint attribute.
double Get (GRB.DoubleAttr attr)

Query the value of a double-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
int Get (GRB.IntAttr attr)

Query the value of an int-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.
string Get (GRB.StringAttr attr)

Query the value of a string-valued attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBGenConstr.Set()
Set the value of a general constraint attribute.

void Set (GRB.DoubleAttr attr,
string newvalue)

Set the value of a double-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void Set (GRB.IntAttr attr,
string newvalue)

461

Set the value of an int-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

void Set (GRB.StringAttr attr,
string newvalue)

Set the value of a string-valued attribute.
Arguments:

attr: The attribute being modified.
newvalue: The desired new value of the attribute.

462

5.8 GRBExpr
Abstract base class for the GRBLinExpr and GRBQuadExpr classes. Expressions are used to build
objectives and constraints. They are temporary objects that typically have short lifespans.

GRBExpr.Value
(Property) The value of an expression for the current solution.
double Value

463

5.9 GRBLinExpr
Gurobi linear expression object. A linear expression consists of a constant term, plus a list of
coefficient-variable pairs that capture the linear terms. Linear expressions are used to build con-
straints. They are temporary objects that typically have short lifespans.

The GRBLinExpr class is a sub-class of the abstract base class GRBExpr.
In .NET languages that support operator overloading, you generally build linear expressions

using overloaded operators. For example, if x is a GRBVar object, then x + 1 is a GRBLinExpr ob-
ject. Expressions can be built from constants (e.g., expr = 0), variables (e.g., expr = 1 * x + 2 * y,
or from other expressions (e.g., expr2 = 2 * expr1 + x, or expr3 = expr1 + 2 * expr2). You
can also modify existing expressions (e.g., expr += x, or expr2 -= expr1).

The other option for building expressions is to start with an empty expression (using the GRB-
LinExpr constructor), and then add terms. Terms can be added individually (using AddTerm) or
in groups (using AddTerms or MultAdd). Terms can also be removed from an expression, using
Remove.

Given all these options for building expressions, you may wonder which is fastest. For small
expressions, you won’t need to worry about performance differences between them. If you are
building lots of very large expressions (100s of terms), the most efficient approach will be a single
call to AddTerms. Using AddTerm. to add individual terms is slightly less efficient, and using
overloaded arithemetic operators is the least efficient option.

To add a linear constraint to your model, you generally build one or two linear expression
objects (expr1 and expr2) and then use an overloaded comparison operator to build an argument
for GRBModel.AddConstr. To give a few examples:

model.AddConstr(expr1 <= expr2)
model.AddConstr(expr1 == 1)
model.AddConstr(2 ∗ x+ 3 ∗ y <= 4)

Once you add a constraint to your model, subsequent changes to the expression object you used to
build the constraint will not change the constraint (you would use GRBModel.ChgCoeff for that).

Individual terms in a linear expression can be queried using the GetVar and GetCoeff methods.
The constant can be queried using the Constant property. You can query the number of terms in
the expression using the Size property.

Note that a linear expression may contain multiple terms that involve the same variable. These
duplicate terms are merged when creating a constraint from an expression, but they may be visible
when inspecting individual terms in the expression (e.g., when using GetVar).

GRBLinExpr()
Linear expression constructor. Create an empty linear expression, or copy an existing expression.
GRBLinExpr GRBLinExpr ()
Create an empty linear expression.
Return value:

An empty expression object.
GRBLinExpr GRBLinExpr (double a)

Create a constant linear expression.

464

Return value:
A linear expression object.

GRBLinExpr GRBLinExpr (GRBLinExpr orig)

Copy an existing linear expression.
Arguments:

orig: Existing expression to copy.
Return value:

A copy of the input expression object.

GRBLinExpr.Add()
Add one linear expression into another. Upon completion, the invoking linear expression will be
equal to the sum of itself and the argument expression.
void Add (GRBLinExpr le)

Arguments:
le: Linear expression to add.

GRBLinExpr.AddConstant()
Add a constant into a linear expression.
void AddConstant (double c)

Arguments:
c: Constant to add to expression.

GRBLinExpr.AddTerm()
Add a single term into a linear expression.

void AddTerm (double coeff,
GRBVar var)

Arguments:
coeff: Coefficient for new term.
var: Variable for new term.

GRBLinExpr.AddTerms()
Add new terms into a linear expression.

void AddTerms (double[] coeffs,
GRBVar[] vars)

Add a list of terms into a linear expression. Note that the lengths of the two argument arrays
must be equal.

Arguments:

465

coeffs: Coefficients for new terms.
vars: Variables for new terms.

void AddTerms (double[] coeffs,
GRBVar[] vars,
int start,
int len)

Add new terms into a linear expression. This signature allows you to use arrays to hold the
coefficients and variables that describe the terms in an array without being forced to add a term
for each entry in the array. The start and len arguments allow you to specify which terms to add.

Arguments:
coeffs: Coefficients for new terms.
vars: Variables for new terms.
start: The first term in the list to add.
len: The number of terms to add.

GRBLinExpr.Clear()

Set a linear expression to 0.
You should use the overloaded expr = 0 instead. The clear method is mainly included for

consistency with our interfaces to non-overloaded languages.
void Clear ()

GRBLinExpr.Constant

(Property) The constant term from the linear expression.
double Constant

GRBLinExpr.GetCoeff()

Retrieve the coefficient from a single term of the expression.
double GetCoeff (int i)

Return value:
Coefficient for the term at index i in the expression.

GRBLinExpr.GetVar()

Retrieve the variable object from a single term of the expression.
GRBVar GetVar (int i)

Return value:
Variable for the term at index i in the expression.

466

GRBLinExpr.MultAdd()
Add a constant multiple of one linear expression into another. Upon completion, the invoking linear
expression is equal the sum of itself and the constant times the argument expression.

void MultAdd (double m,
GRBLinExpr le)

Arguments:
m: Constant multiplier for added expression.
le: Linear expression to add.

GRBLinExpr.Remove()
Remove a term from a linear expression.
void Remove (int i)

Remove the term stored at index i of the expression.
Arguments:

i: The index of the term to be removed.
boolean Remove (GRBVar var)

Remove all terms associated with variable var from the expression.
Arguments:

var: The variable whose term should be removed.
Return value:

Returns true if the variable appeared in the linear expression (and was removed).

GRBLinExpr.Size
(Property) The number of terms in the linear expression (not including the constant).
int Size

GRBLinExpr.Value
(Property) The value of an expression for the current solution.
double Value

467

5.10 GRBQuadExpr
Gurobi quadratic expression object. A quadratic expression consists of a linear expression, plus a
list of coefficient-variable-variable triples that capture the quadratic terms. Quadratic expressions
are used to build quadratic objective functions and quadratic constraints. They are temporary
objects that typically have short lifespans.

The GRBQuadExpr class is a sub-class of the abstract base class GRBExpr.
In .NET languages that support operator overloading, you generally build quadratic expres-

sions using overloaded operators. For example, if x is a GRBVar object, then x * x is a GRB-
QuadExpr object. Expressions can be built from constants (e.g., expr = 0), variables (e.g.,
expr = 1 * x * x + 2 * x * y), or from other expressions (e.g., expr2 = 2 * expr1 + x, or
expr3 = expr1 + 2 * expr2). You can also modify existing expressions (e.g., expr += x * x, or
expr2 -= expr1).

The other option for building expressions is to start with an empty expression (using the GRB-
QuadExpr constructor), and then add terms. Terms can be added individually (using AddTerm)
or in groups (using AddTerms or MultAdd). Terms can also be removed from an expression (using
Remove).

Note that the cost of building expressions depends heavily on the approach you use. While
you can generally ignore this issue when building small expressions, you should be aware of a few
efficiency issues when building large expressions:

• You should avoid using expr = expr + x*x or expr += x*x in a loop. It will lead to runtimes
that are quadratic in the number of terms in the expression.

• Using AddTerm in a loop is reasonably efficient, but it isn’t the most efficient approach.

• The most efficient way to build a large expression is to make a single call to AddTerms.

To add a quadratic constraint to your model, you generally build one or two quadratic expression
objects (qexpr1 and qexpr2) and then use an overloaded comparison operator to build an argument
for GRBModel.AddQConstr. To give a few examples:

model.AddQConstr(qexpr1 <= qexpr2)
model.AddQConstr(qexpr1 == 1)
model.AddQConstr(2 ∗ x ∗ x+ 3 ∗ y ∗ y <= 4)

Once you add a constraint to your model, subsequent changes to the expression object you used to
build the constraint will have no effect on that constraint.

Individual quadratic terms in a quadratic expression can be queried using the GetVar1 GetVar2,
and GetCoeff methods. You can query the number of quadratic terms in the expression using the
Size property. To query the constant and linear terms associated with a quadratic expression, first
obtain the linear portion of the quadratic expression using LinExpr, and then use the Constant,
GetCoeff, or GetVar on the resulting GRBLinExpr object.

Note that a quadratic expression may contain multiple terms that involve the same variable
pair. These duplicate terms are merged when creating the model objective from an expression, but
they may be visible when inspecting individual quadratic terms in the expression (e.g., when using
GetVar1 and GetVar2).

468

GRBQuadExpr()

Quadratic expression constructor. Create an empty quadratic expression, or copy an existing
expression.
GRBQuadExpr GRBQuadExpr ()
Create an empty quadratic expression.
Return value:

An empty expression object.
GRBQuadExpr GRBQuadExpr (double a)

Create a constant quadratic expression.
Return value:

A quadratic expression object.
GRBQuadExpr GRBQuadExpr (GRBLinExpr orig)

Initialize a quadratic expression from an existing linear expression.
Arguments:

orig: Existing linear expression to copy.
Return value:

Quadratic expression object whose initial value is taken from the input linear expression.
GRBQuadExpr GRBQuadExpr (GRBQuadExpr orig)

Copy an existing quadratic expression.
Arguments:

orig: Existing expression to copy.
Return value:

A copy of the input expression object.

GRBQuadExpr.Add()

Add an expression into a quadratic expression. Upon completion, the invoking quadratic expression
will be equal to the sum of itself and the argument expression.
void Add (GRBLinExpr le)

Add a linear expression.
Arguments:

le: Linear expression to add.
void Add (GRBQuadExpr qe)

Add a quadratic expression.
Arguments:

qe: Quadratic expression to add.

GRBQuadExpr.AddConstant()

Add a constant into a quadratic expression.

469

void AddConstant (double c)

Arguments:
c: Constant to add to expression.

GRBQuadExpr.AddTerm()

Add a single term into a quadratic expression.

void AddTerm (double coeff,
GRBVar var)

Add a single linear term (coeff*var) into a quadratic expression.
Arguments:

coeff: Coefficient for new term.
var: Variable for new term.

void AddTerm (double coeff,
GRBVar var1,
GRBVar var2)

Add a single quadratic term (coeff*var1*var2) into a quadratic expression.
Arguments:

coeff: Coefficient for new quadratic term.
var1: First variable for new quadratic term.
var2: Second variable for new quadratic term.

GRBQuadExpr.AddTerms()

Add new terms into a quadratic expression.

void AddTerms (double[] coeffs,
GRBVar[] vars)

Add a list of linear terms into a quadratic expression. Note that the lengths of the two argument
arrays must be equal.

Arguments:
coeffs: Coefficients for new terms.
vars: Variables for new terms.

void AddTerms (double[] coeffs,
GRBVar[] vars,
int start,
int len)

Add new linear terms into a quadratic expression. This signature allows you to use arrays to
hold the coefficients and variables that describe the linear terms in an array without being forced

470

to add a term for each entry in the array. The start and len arguments allow you to specify which
terms to add.

Arguments:
coeffs: Coefficients for new terms.
vars: Variables for new terms.
start: The first term in the list to add.
len: The number of terms to add.

void AddTerms (double[] coeffs,
GRBVar[] vars1,
GRBVar[] vars2)

Add a list of quadratic terms into a quadratic expression. Note that the lengths of the three
argument arrays must be equal.

Arguments:
coeffs: Coefficients for new quadratic terms.
vars1: First variables for new quadratic terms.
vars2: Second variables for new quadratic terms.

void AddTerms (double[] coeffs,
GRBVar[] vars1,
GRBVar[] vars2,
int start,
int len)

Add new quadratic terms into a quadratic expression. This signature allows you to use arrays
to hold the coefficients and variables that describe the terms in an array without being forced to
add a term for each entry in the array. The start and len arguments allow you to specify which
terms to add.

Arguments:
coeffs: Coefficients for new quadratic terms.
vars1: First variables for new quadratic terms.
vars2: Second variables for new quadratic terms.
start: The first term in the list to add.
len: The number of terms to add.

GRBQuadExpr.Clear()

Set a quadratic expression to 0.
You should use the overloaded expr = 0 instead. The clear method is mainly included for

consistency with our interfaces to non-overloaded languages.
void Clear ()

GRBQuadExpr.GetCoeff()

Retrieve the coefficient from a single quadratic term of the quadratic expression.

471

double GetCoeff (int i)

Return value:
Coefficient for the quadratic term at index i in the expression.

GRBQuadExpr.GetVar1()

Retrieve the first variable object associated with a single quadratic term from the expression.
GRBVar GetVar1 (int i)

Return value:
First variable for the quadratic term at index i in the quadratic expression.

GRBQuadExpr.GetVar2()

Retrieve the second variable object associated with a single quadratic term from the expression.
GRBVar GetVar2 (int i)

Return value:
Second variable for the quadratic term at index i in the quadratic expression.

GRBQuadExpr.LinExpr()

(Property) A quadratic expression is represented as a linear expression, plus a list of quadratic
terms. This method retrieves the linear expression associated with the quadratic expression.
GRBLinExpr getLinExpr

GRBQuadExpr.MultAdd()

Add a constant multiple of one quadratic expression into another. Upon completion, the invoking
quadratic expression is equal the sum of itself and the constant times the argument expression.

void MultAdd (double m,
GRBLinExpr le)

Add a linear expression into a quadratic expression.
Arguments:

m: Constant multiplier for added expression.
le: Linear expression to add.

void MultAdd (double m,
GRBQuadExpr qe)

Add a quadratic expression into a quadratic expression.
Arguments:

m: Constant multiplier for added expression.
qe: Quadratic expression to add.

472

GRBQuadExpr.Remove()
Remove a quadratic term from a quadratic expression.
void Remove (int i)

Remove the quadratic term stored at index i of the expression.
Arguments:

i: The index of the quadratic term to be removed.
boolean Remove (GRBVar var)

Remove all quadratic terms associated with variable var from the expression.
Arguments:

var: The variable whose quadratic term should be removed.
Return value:

Returns true if the variable appeared in the quadratic expression (and was removed).

GRBQuadExpr.Size
(Property) The number of quadratic terms in the quadratic expression. Use GRBQuadExpr.LinExpr
to retrieve constant or linear terms from the quadratic expression.
int size

GRBQuadExpr.Value
(Property) The value of an expression for the current solution.
double Value

473

5.11 GRBTempConstr
Gurobi temporary constraint object. Objects of this class are created as intermediate results when
building constraints using overloaded operators. There are no public methods on this class. Instead,
GRBTempConstr objects are created by operators ==, <=, or >=. You will generally never store
objects of this class in your own variables.

Consider the following examples:

model.AddConstr(x + y <= 1);
model.AddQConstr(x*x + y*y <= 1);

The overloaded <= operator creates an object of type GRBTempConstr, which is then immediately
passed to GRBModel.AddConstr or GRBModel.AddQConstr.

474

5.12 GRBColumn
Gurobi column object. A column consists of a list of coefficient, constraint pairs. Columns are used
to represent the set of constraints in which a variable participates, and the associated coefficients.
They are temporary objects that typically have short lifespans.

You generally build columns by starting with an empty column (using the GRBColumn con-
structor), and then adding terms. Terms can be added individually, using AddTerm, or in groups,
using AddTerms. Terms can also be removed from a column, using Remove.

Individual terms in a column can be queried using the GetConstr, and GetCoeff methods. You
can query the number of terms in the column using the Size property.

GRBColumn()

Column constructor. Create an empty column, or copy an existing column.
GRBColumn GRBColumn ()
Create an empty column.
Return value:

An empty column object.
GRBColumn GRBColumn (GRBColumn orig)

Copy an existing column.
Return value:

A copy of the input column object.

GRBColumn.AddTerm()

Add a single term into a column.

void AddTerm (double coeff,
GRBConstr constr)

Arguments:
coeff: Coefficient for new term.
constr: Constraint for new term.

GRBColumn.AddTerms()

Add new terms into a column.

void AddTerms (double[] coeffs,
GRBConstr[] constrs)

Add a list of terms into a column. Note that the lengths of the two argument arrays must be
equal.

Arguments:
coeffs: Coefficients for added constraints.
constrs: Constraints to add to column.

475

void AddTerms (double[] coeffs,
GRBConstr[] constrs,
int start,
int len)

Add new terms into a column. This signature allows you to use arrays to hold the coefficients
and constraints that describe the terms in an array without being forced to add an term for each
member in the array. The start and len arguments allow you to specify which terms to add.

Arguments:
coeffs: Coefficients for added constraints.
constrs: Constraints to add to column.
start: The first term in the list to add.
len: The number of terms to add.

GRBColumn.Clear()

Remove all terms from a column.
void Clear ()

GRBColumn.GetCoeff()

Retrieve the coefficient from a single term in the column.
double GetCoeff (int i)

Return value:
Coefficient for the term at index i in the column.

GRBColumn.GetConstr()

Retrieve the constraint object from a single term in the column.
GRBConstr GetConstr (int i)

Return value:
Constraint for the term at index i in the column.

GRBColumn.Remove()

Remove a single term from a column.
GRBConstr Remove (int i)

Remove the term stored at index i of the column.
Arguments:

i: The index of the term to be removed.
Return value:

The constraint whose term was removed from the column. Returns null if the specified
index is out of range.

boolean Remove (GRBConstr constr)

476

Remove the term associated with constraint constr from the column.
Arguments:

constr: The constraint whose term should be removed.
Return value:

Returns true if the constraint appeared in the column (and was removed).

GRBColumn.Size
(Property) The number of terms in the column.
int Size

477

5.13 Overloaded Operators
The Gurobi .NET interface overloads several arithmetic and comparison operators. Overloaded
arithmetic operators (+, -, *, /) are used to create linear and quadratic expressions. Overloaded
comparison operators (<=, >=, and ==) are used to build linear and quadratic constraints.

Note that the results of overloaded comparison operators are generally never stored in user
variables. They are immediately passed to GRBModel.AddConstr or GRBModel.AddQConstr.

operator <=
Create an inequality constraint.

GRBTempConstr operator <= (GRBQuadExpr lhsExpr,
GRBQuadExpr rhsExpr)

Arguments:
lhsExpr: Left-hand side of inequality constraint.
rhsExpr: Right-hand side of inequality constraint.

Return value:
A constraint of type GRBTempConstr. The result is typically immediately passed to method
GRBModel.AddConstr.

operator >=
Create an inequality constraint.

GRBTempConstr operator >= (GRBQuadExpr lhsExpr,
GRBQuadExpr rhsExpr)

Arguments:
lhsExpr: Left-hand side of inequality constraint.
rhsExpr: Right-hand side of inequality constraint.

Return value:
A constraint of type GRBTempConstr. The result is typically immediately passed to method
GRBModel.AddConstr.

operator ==
Create an equality constraint.

GRBTempConstr operator == (GRBLinExpr lhsExpr,
GRBLinExpr rhsExpr)

Arguments:
lhsExpr: Left-hand side of equality constraint.
rhsExpr: Right-hand side of equality constraint.

Return value:
A constraint of type GRBTempConstr. The result is typically immediately passed to method
GRBModel.AddConstr.

478

operator +
Create a new expression by adding a pair of Gurobi objects.

GRBLinExpr operator + (GRBLinExpr expr1,
GRBLinExpr expr2)

Arguments:
expr1: First linear expression argument.
expr2: Second linear expression argument.

Return value:
A linear expression that is equal to the sum of the two argument expressions.

GRBLinExpr operator + (GRBLinExpr expr,
GRBVar var)

Arguments:
expr: Linear expression argument.
var: Variable argument.

Return value:
A linear expression that is equal to the sum of the argument linear expression and the
argument variable.

GRBLinExpr operator + (GRBVar var,
GRBLinExpr expr)

Arguments:
var: Variable argument.
expr: Linear expression argument.

Return value:
A linear expression that is equal to the sum of the argument linear expression and the
argument variable.

GRBLinExpr operator + (GRBVar var1,
GRBVar var2)

Arguments:
var1: First variable argument.
var2: Second variable argument.

Return value:
A linear expression that is equal to the sum of the two argument variables.

GRBLinExpr operator + (double a,
GRBVar var)

Arguments:
a: Constant.
var: Variable.

479

Return value:
A linear expression that is equal to the sum of the constant and the variable argument.

GRBLinExpr operator + (GRBVar var,
double a)

Arguments:
var: Variable.
a: Constant.

Return value:
A linear expression that is equal to the sum of the constant and the variable argument.

GRBQuadExpr operator + (GRBQuadExpr expr1,
GRBQuadExpr expr2)

Arguments:
expr1: First quadratic expression argument.
expr2: Second quadratic expression argument.

Return value:
A quadratic expression that is equal to the sum of the two argument quadratic expressions.

GRBQuadExpr operator + (GRBQuadExpr expr,
GRBVar var)

Arguments:
expr: Quadratic expression argument.
var: Variable argument.

Return value:
A quadratic expression that is equal to the sum of the argument quadratic expression and
the argument variable.

GRBQuadExpr operator + (GRBVar var,
GRBQuadExpr expr)

Arguments:
var: Variable argument.
expr: Quadratic expression argument.

Return value:
A quadratic expression that is equal to the sum of the argument quadratic expression and
the argument variable.

operator -
Create a new expression by subtracting one Gurobi object from another.

GRBLinExpr operator - (GRBLinExpr expr1,
GRBLinExpr expr2)

480

Arguments:
expr1: First linear expression argument.
expr2: Second linear expression argument.

Return value:
A linear expression that is equal to the first expression minus the second.

GRBQuadExpr operator - (GRBQuadExpr expr1,
GRBQuadExpr expr2)

Arguments:
expr1: First quadratic expression argument.
expr2: Second quadratic expression argument.

Return value:
A quadratic expression that is equal to the first expression minus the second.

operator *
Create a new expression by multiplying a pair of Gurobi objects.

GRBLinExpr operator * (double multiplier,
GRBLinExpr expr)

Arguments:
multiplier: Multiplier for expression argument.
expr: Expression argument.

Return value:
A linear expression that is equal to the input expression times the input multiplier.

GRBLinExpr operator * (GRBLinExpr expr,
double multiplier)

Arguments:
expr: Linear expression argument.
multiplier: Multiplier for expression argument.

Return value:
A linear expression that is equal to the input expression times the input multiplier.

GRBLinExpr operator * (double multiplier,
GRBVar var)

Arguments:
multiplier: Multiplier for variable argument.
var: Variable argument.

Return value:
A linear expression that is equal to the input variable times the input multiplier.

GRBLinExpr operator * (GRBVar var,
double multiplier)

481

Arguments:
var: Variable argument.
multiplier: Multiplier for variable argument.

Return value:
A linear expression that is equal to the input variable times the input multiplier.

GRBQuadExpr operator * (double multiplier,
GRBQuadExpr expr)

Arguments:
multiplier: Multiplier for expression argument.
expr: Quadratic expression argument.

Return value:
A quadratic expression that is equal to the input expression times the input multiplier.

GRBQuadExpr operator * (GRBQuadExpr expr,
double multiplier)

Arguments:
expr: Quadratic expression argument.
multiplier: Multiplier for expression argument.

Return value:
A quadratic expression that is equal to the input expression times the input multiplier.

GRBQuadExpr operator * (GRBVar var1,
GRBVar var2)

Arguments:
var1: First variable argument.
var2: Second variable argument.

Return value:
A quadratic expression that is equal to the product of the two input variables.

GRBQuadExpr operator * (GRBVar var,
GRBLinExpr expr)

Arguments:
var: Input variable.
expr: Input linear expression.

Return value:
A quadratic expression that is equal to the input linear expression times the input variable.

GRBQuadExpr operator * (GRBLinExpr expr,
GRBVar var)

Arguments:
expr: Input linear expression.
var: Input variable.

482

Return value:
A quadratic expression that is equal to the input linear expression times the input variable.

GRBQuadExpr operator * (GRBLinExpr expr1,
GRBLinExpr expr2)

Arguments:
expr1: First linear expression argument.
expr2: Second linear expression argument.

Return value:
A quadratic expression that is equal to the product of the two input linear expressions.

operator /

Create a new expression by dividing a Gurobi variable by a constant.

GRBLinExpr operator / (GRBVar var,
double divisor)

Arguments:
var: Variable argument.
divisor: Divisor for variable argument.

Return value:
A linear expression that is equal to the input variable divided by the input divisor.

implicit cast

Create an expression from an implicit cast (e.g., expr = 0.0 or expr = x).
GRBLinExpr GRBLinExpr (double value)

Arguments:
value: Desired value for linear expression.

Return value:
A linear expression that is equal to specified constant.

GRBQuadExpr GRBQuadExpr (double value)

Arguments:
value: Desired value for quadratic expression.

Return value:
A quadratic expression that is equal to specified constant.

GRBLinExpr GRBLinExpr (GRBVar var)

Arguments:
value: Desired value for linear expression.

Return value:
A linear expression that is equal to specified variable.

483

GRBQuadExpr GRBQuadExpr (GRBVar var)

Arguments:
value: Desired value for quadratic expression.

Return value:
A quadratic expression that is equal to specified variable.

GRBQuadExpr GRBQuadExpr (GRBLinExpr expr)

Arguments:
expr: Desired value for quadratic expression.

Return value:
A quadratic expression that is equal to specified linear expression.

484

5.14 GRBCallback
Gurobi callback class. This is an abstract class. To implement a callback, you should create a
subclass of this class and implement a callback() method. If you pass an object of this subclass
to method GRBModel.SetCallback before calling GRBModel.Optimize, the callback() method of
the class will be called periodically. Depending on where the callback is called from, you will be
able to obtain various information about the progress of the optimization.

Note that this class contains one protected int member variable: where. You can query this
variable from your callback() method to determine where the callback was called from.

Gurobi callbacks can be used both to monitor the progress of the optimization and to modify
the behavior of the Gurobi optimizer. A simple user callback function might call the GRBCall-
back.GetIntInfo or GRBCallback.GetDoubleInfo methods to produce a custom display, or perhaps
to terminate optimization early (using GRBCallback.Abort). More sophisticated MIP callbacks
might use GRBCallback.GetNodeRel or GRBCallback.GetSolution to retrieve values from the so-
lution to the current node, and then use GRBCallback.AddCut or GRBCallback.AddLazy to add a
constraint to cut off that solution, or GRBCallback.SetSolution to import a heuristic solution built
from that solution. For multi-objective problems, you might use GRBCallback.StopOneMultiObj
to interrupt the optimization process of one of the optimization steps in a multi-objective MIP
problem without stopping the hierarchical optimization process.

When solving a model using multiple threads, the user callback is only ever called from a single
thread, so you don’t need to worry about the thread-safety of your callback.

Note that changing parameters from within a callback is not supported, doing so may lead to
undefined behavior.

You can look at the callback_cs.cs example for details of how to use Gurobi callbacks.

GRBCallback()

Callback constructor.
GRBCallback GRBCallback ()
Return value:

A callback object.

GRBCallback.Abort()

Abort optimization. When the optimization stops, the Status attribute will be equal to
GRB.Status.INTERRUPTED.
void Abort ()

GRBCallback.AddCut()

Add a cutting plane to the MIP model from within a callback function. Note that this method
can only be invoked when the where member variable is equal to GRB.Callback.MIPNODE (see the
Callback Codes section for more information).

Cutting planes can be added at any node of the branch-and-cut tree. However, they should be
added sparingly, since they increase the size of the relaxation model that is solved at each node
and can significantly degrade node processing speed.

485

Cutting planes are typically used to cut off the current relaxation solution. To retrieve the
relaxation solution at the current node, you should first call GetNodeRel.

You should consider setting parameter PreCrush to value 1 when adding your own cuts. This
setting shuts off a few presolve reductions that can sometimes prevent your cut from being applied
to the presolved model (which would result in your cut being silently ignored).

Note that cutting planes added through this method must truly be cutting planes — they can
cut off continuous solutions, but they may not cut off integer solutions that respect the original
constraints of the model. Ignoring this restriction will lead to incorrect solutions.

void AddCut (GRBLinExpr lhsExpr,
char sense,
double rhsVal)

Arguments:
lhsExpr: Left-hand side expression for new cutting plane.
sense: Sense for new cutting plane (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhsVal: Right-hand side value for new cutting plane.

void AddConstr (GRBTempConstr tempConstr)

Arguments:
tempConstr: Temporary constraint object, created by an overloaded comparison operator.

GRBCallback.AddLazy()
Add a lazy constraint to the MIP model from within a callback function. Note that this method can
only be invoked when the where member variable is GRB.Callback.MIPNODE or GRB.Callback.-
MIPSOL (see the Callback Codes section for more information).

Lazy constraints are typically used when the full set of constraints for a MIP model is too large
to represent explicitly. By only including the constraints that are actually violated by solutions
found during the branch-and-cut search, it is sometimes possible to find a proven optimal solution
while only adding a fraction of the full set of constraints.

You would typically add a lazy constraint by first querying the current node solution (by calling
GetSolution from a GRB.Callback.MIPSOL callback, or GetNodeRel from a GRB.Callback.MIPNODE
callback), and then calling AddLazy() to add a constraint that cuts off the solution. Gurobi
guarantees that you will have the opportunity to cut off any solutions that would otherwise be
considered feasible.

Your callback should be prepared to cut off solutions that violate any of your lazy constraints,
including those that have already been added. Node solutions will usually respect previously added
lazy constraints, but not always.

Note that you must set the LazyConstraints parameter if you want to use lazy constraints.

void AddLazy (GRBLinExpr lhsExpr,
char sense,
double rhsVal)

Arguments:
lhsExpr: Left-hand side expression for new lazy constraint.

486

sense: Sense for new lazy constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhsVal: Right-hand side value for new lazy constraint.
void AddConstr (GRBTempConstr tempConstr)

Arguments:
tempConstr: Temporary constraint object, created by an overloaded comparison operator.

GRBCallback.GetDoubleInfo()

Request double-valued callback information. The available information depends on the value of the
where member. For information on possible values of where, and the double-valued information
that can be queried for different values of where, please refer to the Callback section.
double GetDoubleInfo (int what)

Arguments:
what: Information requested (refer the list of Gurobi Callback Codes for possible values).

Return value:
Value of requested callback information.

GRBCallback.GetIntInfo()

Request int-valued callback information. The available information depends on the value of the
where member. For information on possible values of where, and the int-valued information that
can be queried for different values of where, please refer to the Callback section.
int GetIntInfo (int what)

Arguments:
what: Information requested (refer the list of Gurobi Callback Codes for possible values).

Return value:
Value of requested callback information.

GRBCallback.GetNodeRel()

Retrieve values from the node relaxation solution at the current node. Only available when the
where member variable is equal to GRB.Callback.MIPNODE, and GRB.Callback.MIPNODE_STATUS
is equal to GRB.Status.OPTIMAL.
double GetNodeRel (GRBVar v)

Arguments:
v: The variable whose value is desired.

Return value:
The value of the specified variable in the node relaxation for the current node.

double[] GetNodeRel (GRBVar[] xvars)

Arguments:

487

xvars: The list of variables whose values are desired.
Return value:

The values of the specified variables in the node relaxation for the current node.
double[][] GetNodeRel (GRBVar[][] xvars)

Arguments:
xvars: The array of variables whose values are desired.

Return value:
The values of the specified variables in the node relaxation for the current node.

GRBCallback.GetSolution()

Retrieve values from the current solution vector. Only available when the where member variable
is equal to GRB.Callback.MIPSOL or GRB.Callback.MULTIOBJ.
double GetSolution (GRBVar v)

Arguments:
v: The variable whose value is desired.

Return value:
The value of the specified variable in the current solution vector.

double[] GetSolution (GRBVar[] xvars)

Arguments:
xvars: The list of variables whose values are desired.

Return value:
The values of the specified variables in the current solution.

double[][] GetSolution (GRBVar[][] xvars)

Arguments:
xvars: The array of variables whose values are desired.

Return value:
The values of the specified variables in the current solution.

GRBCallback.GetStringInfo()

Request string-valued callback information. The available information depends on the value of the
where member. For information on possible values of where, and the string-valued information
that can be queried for different values of where, please refer to the Callback section.
string GetStringInfo (int what)

Arguments:
what: Information requested (refer the list of Gurobi Callback Codes for possible values).

Return value:
Value of requested callback information.

488

GRBCallback.SetSolution()
Import solution values for a heuristic solution. Only available when the where member variable is
equal to GRB.Callback.MIPNODE.

When you specify a heuristic solution from a callback, variables initially take undefined values.
You should use this method to specify variable values. You can make multiple calls to SetSolution
from one callback invocation to specify values for multiple sets of variables. After the callback, if
values have been specified for any variables, the Gurobi optimizer will try to compute a feasible
solution from the specified values, possibly filling in values for variables whose values were left unde-
fined. You can also optionally call UseSolution within your callback function to try to immediately
compute a feasible solution from the specified values.

void SetSolution (GRBVar v,
double val)

Arguments:
v: The variable whose values is being set.
val: The value of the variable in the new solution.

void SetSolution (GRBVar[] xvars,
double[] sol)

Arguments:
xvars: The variables whose values are being set.
sol: The desired values of the specified variables in the new solution.

GRBCallback.StopOneMultiObj()
Interrupt the optimization process of one of the optimization steps in a multi-objective MIP problem
without stopping the hierarchical optimization process. Only available for multi-objective MIP
models and when the where member variable is not equal to GRB.Callback.MULTIOBJ (see the
Callback Codes section for more information).

You would typically stop a multi-objective optimization step by querying the last finished num-
ber of multi-objectives steps, and using that number to stop the current step and move on to the
next hierarchical objective (if any) as shown in the following example:

Example usage:

using Gurobi;

class callback : GRBCallback
{

private int objcnt;
private long starttime;

protected override void Callback() {
try {
if (where == GRB.Callback.MULTIOBJ) {

489

/* get current objective number */
objcnt = GetIntInfo(GRB.Callback.MULTIOBJ_OBJCNT);

/* reset start time to current time */
starttime = DateTime.Now.Ticks;

} else if (DateTime.Now.Ticks - starttime > BIG ||
/* takes too long or good enough */) {

/* stop only this optimization step */
StopOneMultiObj(objcnt);

}
}

}
}

You should refer to the section on Multiple Objectives for information on how to specify multiple
objective functions and control the trade-off between them.
void StopOneMultiObj (int objcnt)

Arguments:
objnum: The number of the multi-objective optimization step to interrupt. For processes
running locally, this argument can have the special value -1, meaning to stop the current
step.

GRBCallback.UseSolution()
Once you have imported solution values using SetSolution, you can optionally call UseSolution to
immediately use these values to try to compute a heuristic solution.
double UseSolution ()
Return value:

The objective value for the solution obtained from your solution values (or GRB.INFINITY
if no improved solution is found).

490

5.15 GRBException
Gurobi exception object. This is a sub-class of the .NET Exception class. A number of useful
properties, including Message() and StackTrace(), are inherited from the parent class. For a list
of parent class methods, visit this site.

GRBException()
Exception constructor.
GRBException GRBException (int errcode)

Create a Gurobi exception.
Arguments:

errcode: Error code for exception.
Return value:

An exception object.
GRBException GRBException (string errmsg)

Create a Gurobi exception.
Arguments:

errmsg: Error message for exception.
Return value:

An exception object.

GRBException GRBException (string errmsg,
int errcode)

Create a Gurobi exception.
Arguments:

errmsg: Error message for exception.
errcode: Error code for exception.

Return value:
An exception object.

GRBException.ErrorCode
(Property) The error code associated with a Gurobi exception.
int ErrorCode

491

https://msdn.microsoft.com/en-us/library/system.exception(VS.71).aspx

5.16 GRBBatch
Gurobi batch object. Batch optimization is a feature available with the Gurobi Cluster Manager.
It allows a client program to build an optimization model, submit it to a Compute Server cluster
(through a Cluster Manager), and later check on the status of the model and retrieve its solution.
For more information, please refer to the Batch Optimization section.

Commonly used methods on batch objects include Update (refresh attributes from the Cluster
Manager), Abort (abort execution of a batch request), Retry (retry optimization for an interrupted
or failed batch), Discard (remove the batch request and all related information from the Cluster
Manager), and GetJSONSolution (query solution information for the batch request).

These methods are built on top of calls to the Cluster Manager REST API. They are meant to
simplify such calls, but note that you always have the option of calling the REST API directly.

Batch objects have four attributes:

• BatchID: Unique ID for the batch request.

• BatchStatus: Last batch status.

• BatchErrorCode: Last error code.

• BatchErrorMessage: Last error message.

You can access their values , batch.BatchStatus or batch.BatchID, or by using Get. Note that
all Batch attributes are locally cached, and are only updated when you create a client-side batch
object or when you explicitly update this cache, which can done by calling Update.

GRBBatch()

Constructor for GRBBatch.
Given a BatchID, as returned by optimizeBatch, and a Gurobi environment that can connect to

the appropriate Cluster Manager (i.e., one where parameters CSManager, UserName, and Server-
Password have been set appropriately), this function returns a GRBBatch object. With it, you
can query the current status of the associated batch request and, once the batch request has been
processed, you can query its solution. Please refer to the Batch Optimization section for details
and examples.

GRBBatch GRBBatch (GRBEnv& env,
string& batchID)

Arguments:
env: The environment in which the new batch object should be created.
batchID: ID of the batch request for which you want to access status and other information.

Return value:
New batch object.

Example usage:

GRBBatch batch = GRBBatch(env, batchID);

492

GRBBatch.Abort()

This method instructs the Cluster Manager to abort the processing of this batch request, chang-
ing its status to ABORTED. Please refer to the Batch Status Codes section for further details.
void Abort ()
Example usage:

// Abort this batch if it is taking too long
TimeSpan interval = DateTime .Now - start;
if (interval . TotalSeconds > maxwaittime) {

batch.Abort ();
break;

}

GRBBatch.Discard()

This method instructs the Cluster Manager to remove all information related to the batch request
in question, including the stored solution if available. Further queries for the associated batch
request will fail with error code GRB_ERROR_DATA_NOT_AVAILABLE. Use this function with care, as
the removed information can not be recovered later on. void Discard ()

Example usage:

// Remove batch request from manager
batch. Discard ();

GRBBatch.GetJSONSolution()

This method retrieves the solution of a completed batch request from a Cluster Manager. The
solution is returned as a JSON solution string. For this call to succeed, the status of the batch
request must be COMPLETED. Please refer to the Batch Status Codes section for further details.
string GetJSONSolution ()
Return value:

The requested solution in JSON format.
Example usage:

// Get JSON solution as string
Console . WriteLine ("JSON solution :" + batch. GetJSONSolution ());

GRBBatch.Get()

Query the value of an attribute.
int Get (GRB_IntAttr attr)

Query the value of an int-valued batch attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

493

string Get (GRB_StringAttr attr)

Query the value of a string-valued batch attribute.
Arguments:

attr: The attribute being queried.
Return value:

The current value of the requested attribute.

GRBBatch.Retry()
This method instructs the Cluster Manager to retry optimization of a failed or aborted batch
request, changing its status to SUBMITTED. Please refer to the Batch Status Codes section for
further details. void Retry ()

Example usage:

// If the batch failed , we retry it
if (batch. BatchStatus == GRB. BatchStatus . FAILED) {

batch.Retry ();
System . Threading . Thread .Sleep (2000);
batch. Update ();

}

GRBBatch.Update()
All Batch attribute values are cached locally, so queries return the value received during the last
communication with the Cluster Manager. This method refreshes the values of all attributes with
the values currently available in the Cluster Manager (which involves network communication).
void Update ()
Example usage:

// Update the resident attribute cache of the Batch object
// with the latest values from the cluster manager .
batch. Update ();

GRBBatch.WriteJSONSolution()
This method returns the stored solution of a completed batch request from a Cluster Manager. The
solution is returned in a gzip-compressed JSON file. The file name you provide must end with a
.json.gz extension. The JSON format is described in the JSON solution format section. Note that
for this call to succeed, the status of the batch request must be COMPLETED. Please refer to the Batch
Status Codes section for further details. WriteJSONSolution void (string& filename)

Arguments:
filename: Name of file where the solution should be stored (in JSON format).

Example usage:

// Write the full JSON solution string to a file
batch. WriteJSONSolution ("batch -sol.json.gz");

494

5.17 GRB
Class for .NET enums and constants. The enums are used to get or set Gurobi attributes or
parameters.

Constants

The following list contains the set of constants needed by the Gurobi .NET interface. You would
refer to them using a GRB. prefix (e.g., GRB.Status.OPTIMAL).

// Model status codes (after call to optimize())

public class Status
{

public const int LOADED = 1;
public const int OPTIMAL = 2;
public const int INFEASIBLE = 3;
public const int INF_OR_UNBD = 4;
public const int UNBOUNDED = 5;
public const int CUTOFF = 6;
public const int ITERATION_LIMIT = 7;
public const int NODE_LIMIT = 8;
public const int TIME_LIMIT = 9;
public const int SOLUTION_LIMIT = 10;
public const int INTERRUPTED = 11;
public const int NUMERIC = 12;
public const int SUBOPTIMAL = 13;
public const int INPROGRESS = 14;
public const int USER_OBJ_LIMIT = 15;

}

// Batch status codes

public class BatchStatus
{

public const int CREATED = 1;
public const int SUBMITTED = 2;
public const int ABORTED = 3;
public const int FAILED = 4;
public const int COMPLETED = 5;

}
// Basis status info

public const int BASIC = 0;
public const int NONBASIC_LOWER = -1;
public const int NONBASIC_UPPER = -2;
public const int SUPERBASIC = -3;

// Constraint senses

public const char LESS_EQUAL = ’<’;
public const char GREATER_EQUAL = ’>’;
public const char EQUAL = ’=’;

// Variable types

495

public const char CONTINUOUS = ’C’;
public const char BINARY = ’B’;
public const char INTEGER = ’I’;
public const char SEMICONT = ’S’;
public const char SEMIINT = ’N’;

// Objective sense

public const int MINIMIZE = 1;
public const int MAXIMIZE = -1;

// SOS types

public const int SOS_TYPE1 = 1;
public const int SOS_TYPE2 = 2;

// General constraint types

public const int GENCONSTR_MAX = 0;
public const int GENCONSTR_MIN = 1;
public const int GENCONSTR_ABS = 2;
public const int GENCONSTR_AND = 3;
public const int GENCONSTR_OR = 4;
public const int GENCONSTR_INDICATOR = 5;

// Numeric constants

public const double INFINITY = 1e100;
public const double UNDEFINED = 1e101;

// Limits

public const int MAX_STRLEN = 512;

// Callback constants

public class Callback
{

public const int POLLING = 0;
public const int PRESOLVE = 1;
public const int SIMPLEX = 2;
public const int MIP = 3;
public const int MIPSOL = 4;
public const int MIPNODE = 5;
public const int MESSAGE = 6;
public const int BARRIER = 7;
public const int MULTIOBJ = 8;

public const int PRE_COLDEL = 1000;
public const int PRE_ROWDEL = 1001;
public const int PRE_SENCHG = 1002;
public const int PRE_BNDCHG = 1003;
public const int PRE_COECHG = 1004;
public const int SPX_ITRCNT = 2000;
public const int SPX_OBJVAL = 2001;

496

public const int SPX_PRIMINF = 2002;
public const int SPX_DUALINF = 2003;
public const int SPX_ISPERT = 2004;
public const int MIP_OBJBST = 3000;
public const int MIP_OBJBND = 3001;
public const int MIP_NODCNT = 3002;
public const int MIP_SOLCNT = 3003;
public const int MIP_CUTCNT = 3004;
public const int MIP_NODLFT = 3005;
public const int MIP_ITRCNT = 3006;
public const int MIPSOL_SOL = 4001;
public const int MIPSOL_OBJ = 4002;
public const int MIPSOL_OBJBST = 4003;
public const int MIPSOL_OBJBND = 4004;
public const int MIPSOL_NODCNT = 4005;
public const int MIPSOL_SOLCNT = 4006;
public const int MIPNODE_STATUS = 5001;
public const int MIPNODE_REL = 5002;
public const int MIPNODE_OBJBST = 5003;
public const int MIPNODE_OBJBND = 5004;
public const int MIPNODE_NODCNT = 5005;
public const int MIPNODE_SOLCNT = 5006;
public const int BARRIER_ITRCNT = 7001;
public const int BARRIER_PRIMOBJ = 7002;
public const int BARRIER_DUALOBJ = 7003;
public const int BARRIER_PRIMINF = 7004;
public const int BARRIER_DUALINF = 7005;
public const int BARRIER_COMPL = 7006;
public const int MULTIOBJ_OBJCNT = 8001;
public const int MULTIOBJ_SOLCNT = 8002;
public const int MULTIOBJ_SOL = 8003;
public const int MSG_STRING = 6001;
public const int RUNTIME = 6002;

}

// Errors

public class Error
{

public const int OUT_OF_MEMORY = 10001;
public const int NULL_ARGUMENT = 10002;
public const int INVALID_ARGUMENT = 10003;
public const int UNKNOWN_ATTRIBUTE = 10004;
public const int DATA_NOT_AVAILABLE = 10005;
public const int INDEX_OUT_OF_RANGE = 10006;
public const int UNKNOWN_PARAMETER = 10007;
public const int VALUE_OUT_OF_RANGE = 10008;
public const int NO_LICENSE = 10009;
public const int SIZE_LIMIT_EXCEEDED = 10010;
public const int CALLBACK = 10011;
public const int FILE_READ = 10012;
public const int FILE_WRITE = 10013;
public const int NUMERIC = 10014;
public const int IIS_NOT_INFEASIBLE = 10015;
public const int NOT_FOR_MIP = 10016;
public const int OPTIMIZATION_IN_PROGRESS = 10017;

497

public const int DUPLICATES = 10018;
public const int NODEFILE = 10019;
public const int Q_NOT_PSD = 10020;
public const int QCP_EQUALITY_CONSTRAINT = 10021;
public const int NETWORK = 10022;
public const int JOB_REJECTED = 10023;
public const int NOT_SUPPORTED = 10024;
public const int EXCEED_2B_NONZEROS = 10025;
public const int INVALID_PIECEWISE_OBJ = 10026;
public const int UPDATEMODE_CHANGE = 10027;
public const int CLOUD = 10028;
public const int MODEL_MODIFICATION = 10029;
public const int CSWORKER = 10030;
public const int TUNE_MODEL_TYPES = 10031;
public const int NOT_IN_MODEL = 20001;
public const int FAILED_TO_CREATE_MODEL = 20002;
public const int INTERNAL = 20003;

}

public const int METHOD_AUTO = -1;
public const int METHOD_PRIMAL = 0;
public const int METHOD_DUAL = 1;
public const int METHOD_BARRIER = 2;
public const int METHOD_CONCURRENT = 3;
public const int METHOD_DETERMINISTIC_CONCURRENT = 4;

public const int FEASRELAX_LINEAR = 0;
public const int FEASRELAX_QUADRATIC = 1;
public const int FEASRELAX_CARDINALITY = 2;

GRB.CharAttr

This enum is used to get or set char-valued attributes (through GRBModel.Get or GRBModel.Set).
Please refer to the Attributes section to see a list of all char attributes and their functions.

GRB.DoubleAttr

This enum is used to get or set double-valued attributes (through GRBModel.Get or GRBModel.Set).
Please refer to the Attributes section to see a list of all double attributes and their functions.

GRB.DoubleParam

This enum is used to get or set double-valued parameters (through GRBModel.Get, GRBModel.Set,
GRBEnv.Get, or GRBEnv.Set). Please refer to the Parameters section to see a list of all double
parameters and their functions.

GRB.IntAttr

This enum is used to get or set int-valued attributes (through GRBModel.Get or GRBModel.Set).
Please refer to the Attributes section to see a list of all int attributes and their functions.

498

GRB.IntParam
This enum is used to get or set int-valued parameters (through GRBModel.Get, GRBModel.Set,
GRBEnv.Get, or GRBEnv.Set). Please refer to the Parameters section to see a list of all int
parameters and their functions.

GRB.StringAttr
This enum is used to get or set string-valued attributes (through GRBModel.Get or GRBModel.Set).
Please refer to the Attributes section to see a list of all string attributes and their functions.

GRB.StringParam
This enum is used to get or set string-valued parameters (through GRBModel.Get, GRBModel.Set,
GRBEnv.Get, or GRBEnv.Set). Please refer to the Parameters section to see a list of all string
parameters and their functions.

499

Python API Overview

This section documents the Gurobi Python interface. It begins with an overview of the global
functions, which can be called without referencing any Python objects. It then discusses the
different types of objects that are available in the interface, and the most important methods on
those objects. Finally, it gives a comprehensive presentation of all of the available classes and
methods.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide
or the Example Tour. These documents provide concrete examples of how to use the classes and
methods described here.

Important note for AIX users: due to limited Python support on AIX, our AIX port does
not include the Python interface.
Global Functions

The Gurobi shell contains a set of Global Functions that can be called without referring to any
Gurobi objects. The most important of these functions is probably the read function, which allows
you to read a model from a file. Other useful global functions are system, which allows you to issue
shell commands from within the Gurobi shell, models, which gives you a list of the currently loaded
models, and disposeDefaultEnv, which disposes of the default environment. Other global functions
allow you to read, modify, or write Gurobi parameters (readParams, setParam, and writeParams).
Models

Most actions in the Gurobi Python interface are performed by calling methods on Gurobi objects.
The most commonly used object is the Model. A model consists of a set of decision variables
(objects of class Var or MVar), a linear or quadratic objective function on these variables (specified
using Model.setObjective), and a set of constraints on these variables (objects of class Constr,
MConstr, QConstr, SOS, or GenConstr). Each variable has an associated lower bound, upper
bound, and type (continuous, binary, etc.). Each linear or quadratic constraint has an associated
sense (less-than-or-equal, greater-than-or-equal, or equal), and right-hand side value. Refer to this
section for more information on variables, constraints, and objectives.

An optimization model may be specified all at once, by loading the model from a file (using
the previously mentioned read function), or it may be built incrementally, by first constructing
an empty object of class Model and then subsequently calling Model.addVar, Model.addVars, or
Model.addMVar to add additional variables, and Model.addConstr, Model.addConstrs, Model.addLConstr,
Model.addQConstr, Model.addSOS, or any of the Model.addGenConstrXxx methods to add addi-
tional constraints.

Linear constraints are specified by building linear expressions (objects of class LinExpr or MLin-
Expr), and then specifying relationships between these expressions (for example, requiring that one
expression be equal to another). Quadratic constraints are built in a similar fashion, but using
quadratic expressions (objects of class QuadExpr or MQuadExpr) instead. General constraints
are built using a set of dedicated methods, or a set of general constraint helper functions plus
overloaded operators.

500

https://www.gurobi.com/documentation/9.1/quickstart_windows/index.html
https://www.gurobi.com/documentation/9.1/examples/index.html

Models are dynamic entities; you can always add or remove variables or constraints.
We often refer to the class of an optimization model. A model with a linear objective function,

linear constraints, and continuous variables is a Linear Program (LP). If the objective is quadratic,
the model is a Quadratic Program (QP). If any of the constraints are quadratic, the model is
a Quadratically-Constrained Program (QCP). We will sometimes refer to a few special cases of
QCP: QCPs with convex constraints, QCPs with non-convex constraints, bilinear programs, and
Second-Order Cone Programs (SOCP). If the model contains any integer variables, semi-continuous
variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the
model is a Mixed Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, in-
cluding Mixed Integer Linear Programs (MILP), Mixed Integer Quadratic Programs (MIQP), Mixed
Integer Quadratically-Constrained Programs (MIQCP), and Mixed Integer Second-Order Cone Pro-
grams (MISOCP). The Gurobi Optimizer handles all of these model classes.
Environments

Environments play a much smaller role in the Gurobi Python interface than they do in our other
language APIs, mainly because the Python interface has a default environment. Unless you explic-
itly pass your own environment to routines that require an environment, the default environment
will be used.

The main situation where you may want to create your own environment is when you want
precise control over when the resources associated with an environment (specifically, a licensing
token or a Compute Server) are released. If you use your own environment to create models
(using read or the Model constructor), then the resources associated with the environment will be
released as soon your program no longer references your environment or any models created with
that environment.

Note that you can manually remove the reference to the default environment, thus making
it available for garbage collection, by calling disposeDefaultEnv. After calling this, and after all
models built within the default environment are garbage collected, the default environment will be
garbage collected as well. A new default environment will be created automatically if you call a
routine that needs one.

For more advanced use cases, you can use an empty environment to create an uninitialized
environment and then, programmatically, set all required options for your specific requirements.
For further details see the Environment section.
Solving a Model

Once you have built a model, you can call Model.optimize to compute a solution. By default,
optimize will use the concurrent optimizer to solve LP models, the barrier algorithm to solve QP
models with convex objectives and QCP models with convex constraints, and the branch-and-cut
algorithm otherwise. The solution is stored in a set of attributes of the model, which can be
subsequently queried (we will return to this topic shortly).

The Gurobi algorithms keep careful track of the state of the model, so calls to Model.optimize
will only perform further optimization if relevant data has changed since the model was last op-
timized. If you would like to discard previously computed solution information and restart the
optimization from scratch without changing the model, you can call Model.reset.

After a MIP model has been solved, you can call Model.fixed to compute the associated fixed
model. This model is identical to the original, except that the integer variables are fixed to their
values in the MIP solution. If your model contains SOS constraints, some continuous variables that

501

appear in these constraints may be fixed as well. In some applications, it can be useful to compute
information on this fixed model (e.g., dual variables, sensitivity information, etc.), although you
should be careful in how you interpret this information.

Multiple Solutions, Objectives, and Scenarios

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to
a single model with a single objective function. Gurobi provides the following features that allow
you to relax these assumptions:

• Solution Pool: Allows you to find more solutions.

• Multiple Scenarios: Allows you to find solutions to multiple, related models.

• Multiple Objectives: Allows you to specify multiple objective functions and control the trade-
off between them.

Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause
of the infeasibility, attempt to repair the infeasibility, or both. To obtain information that can be
useful for diagnosing the cause of an infeasibility, call Model.computeIIS to compute an Irreducible
Inconsistent Subsystem (IIS). This method can be used for both continuous and MIP models, but
you should be aware that the MIP version can be quite expensive. This method populates a set of
IIS attributes.

To attempt to repair an infeasibility, call Model.feasRelaxS or Model.feasRelax to compute a
feasibility relaxation for the model. This relaxation allows you to find a solution that minimizes
the magnitude of the constraint violation.

Querying and Modifying Attributes

Most of the information associated with a Gurobi model is stored in a set of attributes. Some
attributes are associated with the variables of the model, some with the constraints of the model,
and some with the model itself. To give a simple example, solving an optimization model causes
the x variable attribute to be populated. Attributes such as x that are computed by the Gurobi
optimizer cannot be modified directly by the user, while others, such as the variable lower bound
(the lb attribute) can.

Attributes can be accessed in two ways in the Python interface. The first is to use the getAttr()
and setAttr() methods, which are available on variables (Var.getAttr/ Var.setAttr), matrix vari-
ables (MVar.getAttr/ MVar.setAttr), linear constraints (Constr.getAttr/ Constr.setAttr), matrix
constraints (MConstr.getAttr/ MConstr.setAttr), quadratic constraints (QConstr.getAttr/
QConstr.setAttr), SOSs (SOS.getAttr), general constraints (GenConstr.getAttr/
GenConstr.setAttr), and models (Model.getAttr/ Model.setAttr). These are called with the at-
tribute name as the first argument (e.g., var.getAttr("x") or constr.setAttr("rhs", 0.0)).
The full list of available attributes can be found in the Attributes section of this manual.

Attributes can also be accessed more directly: you can follow an object name by a period,
followed by the name of an attribute of that object. Note that upper/lower case is ignored when
referring to attributes. Thus, b = constr.rhs is equivalent to b = constr.getAttr("rhs"), and
constr.rhs = 0.0 is equivalent to constr.setAttr("rhs", 0.0).

502

Additional Model Modification Information

Most modifications to an existing model are done through the attribute interface (e.g., changes to
variable bounds, constraint right-hand sides, etc.). The main exceptions are modifications to the
constraint matrix and to the objective function.

The constraint matrix can be modified in a few ways. The first is to call the Model.chgCoeff
method. This method can be used to modify the value of an existing non-zero, to set an existing
non-zero to zero, or to create a new non-zero. The constraint matrix is also modified when you
remove a variable or constraint from the model (through the Model.remove method). The non-zero
values associated with the deleted constraint or variable are removed along with the constraint or
variable itself.

The model objective function can also be modified in a few ways. The easiest is to build an
expression that captures the objective function (a LinExpr, MLinExpr, QuadExpr, or MQuadExpr
object), and then pass that expression to method Model.setObjective. If you wish to modify the
objective, you can simply call setObjective again with a new LinExpr or QuadExpr object.

For linear objective functions, an alternative to setObjective is to use the Obj variable attribute
to modify individual linear objective coefficients.

If your variables have piecewise-linear objectives, you can specify them using the
Model.setPWLObj method. Call this method once for each relevant variable. The Gurobi simplex
solver includes algorithmic support for convex piecewise-linear objective functions, so for continuous
models you should see a substantial performance benefit from using this feature. To clear a previ-
ously specified piecewise-linear objective function, simply set the Obj attribute on the corresponding
variable to 0.

Lazy Updates

One important item to note about model modification in the Gurobi optimizer is that it is performed
in a lazy fashion, meaning that modifications don’t affect the model immediately. Rather, they
are queued and applied later. If your program simply creates a model and solves it, you will
probably never notice this behavior. However, if you ask for information about the model before
your modifications have been applied, the details of the lazy update approach may be relevant to
you.

As we just noted, model modifications (bound changes, right-hand side changes, objective
changes, etc.) are placed in a queue. These queued modifications can be applied to the model
in three different ways. The first is by an explicit call to Model.update. The second is by a call
to Model.optimize. The third is by a call to Model.write to write out the model. The first case
gives you fine-grained control over when modifications are applied. The second and third make the
assumption that you want all pending modifications to be applied before you optimize your model
or write it to disk.

Why does the Gurobi interface behave in this manner? There are a few reasons. The first is
that this approach makes it much easier to perform multiple modifications to a model, since the
model remains unchanged between modifications. The second is that processing model modifica-
tions can be expensive, particularly in a Compute Server environment, where modifications require
communication between machines. Thus, it is useful to have visibility into exactly when these
modifications are applied. In general, if your program needs to make multiple modifications to
the model, you should aim to make them in phases, where you make a set of modifications, then
update, then make more modifications, then update again, etc. Updating after each individual

503

modification can be extremely expensive.
If you forget to call update, your program won’t crash. Your query will simply return the value

of the requested data from the point of the last update. If the object you tried to query didn’t
exist then, you’ll get a NOT_IN_MODEL exception instead.

The semantics of lazy updates have changed since earlier Gurobi versions. While the vast
majority of programs are unaffected by this change, you can use the UpdateMode parameter to
revert to the earlier behavior if you run into an issue.

Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of
the optimization process. Factors like feasibility and optimality tolerances, choices of algorithms,
strategies for exploring the MIP search tree, etc., can be controlled by modifying Gurobi parameters
before beginning the optimization. Parameters are set using method Model.setParam. Current
values may also be retrieved with Model.getParamInfo. You can also access parameters more
directly through the Model.Params class. To set the MIPGap parameter to 0.0 for model m, for
example, you can do either m.setParam(’MIPGap’, 0) or m.Params.MIPGap = 0.

You can read a set of parameter settings from a file using Model.read, or write the set of changed
parameters using Model.write.

We also include an automated parameter tuning tool that explores many different sets of param-
eter changes in order to find a set that improves performance. You can call Model.tune to invoke
the tuning tool on a model. Refer to the parameter tuning tool section for more information.

One thing we should note is that changing a parameter for one model has no effect on the
parameter value for other models. Use the global setParam method to set a parameter for all
loaded models.

The full list of Gurobi parameters can be found in the Parameters section.

Monitoring Progress - Logging and Callbacks

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will
send output to the screen. A few simple controls are available for modifying the default logging
behavior. You can set the LogFile parameter if you wish to also direct the Gurobi log to a file. The
frequency of logging output can be controlled with the DisplayInterval parameter, and logging can
be turned off entirely with the OutputFlag parameter.

Log output is also sent to a Python logger named gurobipy, at level INFO. You can use the
Python logging module to connect to this log.

More detailed progress monitoring can be done through a callback function. If you pass a
function taking two arguments, model and where, to Model.optimize, your function will be called
periodically from within the optimization. Your callback can then call Model.cbGet to retrieve
additional information on the state of the optimization. You can refer to the Callback class for
additional information.

Modifying Solver Behavior - Callbacks

Callbacks can also be used to modify the behavior of the Gurobi optimizer. The simplest control
callback is Model.terminate, which asks the optimizer to terminate at the earliest convenient point.
Method Model.cbSetSolution allows you to inject a feasible solution (or partial solution) during the
solution of a MIP model. Methods Model.cbCut and Model.cbLazy allow you to add cutting planes
and lazy constraints during a MIP optimization, respectively. Method Model.cbStopOneMultiObj

504

allows you to interrupt the optimization process of one of the optimization steps in a multi-objective
MIP problem without stopping the hierarchical optimization process.
Batch Optimization

Gurobi Compute Server enables programs to offload optimization computations onto dedicated
servers. The Gurobi Cluster Manager adds a number of additional capabilities on top of this.
One important one, batch optimization, allows you to build an optimization model with your client
program, submit it to a Compute Server cluster (through the Cluster Manager), and later check
on the status of the model and retrieve its solution. You can use a Batch object to make it easier
to work with batches. For details on batches, please refer to the Batch Optimization section.
Error Handling

All of the methods in the Gurobi Python library can throw an exception of type GurobiError.
When an exception occurs, additional information on the error can be obtained by retrieving the
errno or message members of the GurobiError object. A list of possible values for the errno field
can be found in the Error Code section.

505

6.1 Global Functions
Gurobi global functions. These functions can be accessed from the main Gurobi shell prompt. In
contrast to all other methods in the Gurobi Python interface, these functions do not require a
Gurobi object to invoke them.

models()

models ()

Print a list of loaded models.
Note that this function will only list models stored in global variables. Models stored in Python

data structures (lists, dictionaries, etc.), or inside user classes aren’t listed.
Example usage:

a = Model("a")
b = Model("b")
models()

disposeDefaultEnv()

disposeDefaultEnv ()

Dispose of the default environment.
Calling this function releases the default environment created by the Gurobi Python module.

This function is particularly useful in a long-running Python session (e.g., within a Jupyter note-
book), where the Gurobi environment would otherwise continue to exist for the full duration of the
session.

Note that models built with the default environment must be garbage collected before the
default environment can be freed. You can force a model m to be garbage collected with the
statement del m. If no references to the default environment remain, disposeDefaultEnv prints
the message

Freed default Gurobi environment

to confirm it was able to dispose of the default environment.
Example usage:

disposeDefaultEnv()

multidict()

multidict (data)

This function splits a single dictionary into multiple dictionaries. The input dictionary should
map each key to a list of n values. The function returns a list of the shared keys as its first result,
followed by the n individual Gurobi tuple dictionaries (stored as tupledict objects).

Arguments:

506

data: A Python dictionary. Each key should map to a list of values.
Return value:

A list, where the first member contains the shared key values, and the following members
contain the dictionaries that result from splitting the value lists from the input dictionary.

Example usage:

keys, dict1, dict2 = multidict({
’key1’: [1, 2],
’key2’: [1, 3],
’key3’: [1, 4] })

paramHelp()

paramHelp (paramname)

Obtain help about a Gurobi parameter.
Arguments:

paramname: String containing the name of parameter that you would like help with. The
name can include ’*’ and ’?’ wildcards. If more than one parameter matches, the matching
names are listed. Note that case is ignored.

Example usage:

paramHelp("Cuts")
paramHelp("Heu*")
paramHelp("*cuts")

quicksum()

quicksum (data)

A version of the Python sum function that is much more efficient for building large Gurobi
expressions (LinExpr or QuadExpr objects). The function takes a list of terms as its argument.

Note that while quicksum is much faster than sum, it isn’t the fastest approach for building
a large expression. Use addTerms or the LinExpr() constructor if you want the quickest possible
expression construction.

Arguments:
data: List of terms to add. The terms can be constants, Var objects, LinExpr objects, or
QuadExpr objects.

Return value:
An expression that represents the sum of the terms in the input list.

Example usage:

expr = quicksum([2*x, 3*y+1, 4*z*z])
expr = quicksum(model.getVars())

507

read()

read (filename, env=defaultEnv)

Read a model from a file.
Arguments:

filename: Name of file containing model. Note that the type of the file is encoded in the
file name suffix. Valid suffixes are .mps, .rew, .lp, .rlp, .ilp, or .opb. The files can be
compressed, so additional suffixes of .gz, .bz2, .zip, or .7z are accepted. The file name
may contain * or ? wildcards. No file is read when no wildcard match is found. If more
than one match is found, this routine will attempt to read the first matching file.

env: Environment in which to create the model. Creating your environment (using the Env
constructor) gives you more control over Gurobi licensing, but it can make your program
more complex. Use the default environment unless you know that you need to control
your own environments.

Return value:
Model object containing the model that was read from the input file.

Example usage:

m = read("afiro.mps")
m.optimize()

readParams()

readParams (filename)

Read a set of parameter settings from a file. The file name must end in .prm, and the file must
be in PRM format.

Arguments:
filename: Name of file containing parameter settings.

Example usage:

readParams("params.prm")

resetParams()

resetParams ()

Reset the values of all parameters to their default values. Note that existing models that are
stored inside Python data structures (lists, dictionaries, etc.), or inside user classes aren’t affected.

Example usage:

resetParams()

setParam()

setParam (paramname, newvalue)

508

Set the value of a parameter to a new value. Note that existing models that are stored inside
Python data structures (lists, dictionaries, etc.), or inside user classes aren’t affected.

Arguments:
paramname: String containing the name of parameter that you would like to modify. The
name can include ’*’ and ’?’ wildcards. If more than one parameter matches, the matching
names are listed and none are modified. Note that case is ignored.

newvalue: Desired new value for parameter. Can be ’default’, which indicates that the
parameter should be reset to its default value.

Example usage:

setParam("Cuts", 2)
setParam("Heu*", 0.5)
setParam("*Interval", 10)

system()

system (command)

Issue a system command.
Arguments:

command: A string containing the desired system command.
Example usage:

system("ls")
system("rm junk")

writeParams()

writeParams (filename)

Write all modified parameters to a file. The file is written in PRM format.
Example usage:

setParam("Heu*", 0.5)
writeParams("params.prm") # file will contain changed parameter
system("cat params.prm")

509

6.2 Model
Gurobi model object. Commonly used methods on the model object in the Gurobi shell include
optimize (optimizes the model), printStats (prints statistics about the model), printAttr (prints
the values of an attribute), and write (writes information about the model to a file). Commonly
used methods when building a model include addVar (adds a new variable), addVars (adds multiple
new variables), addMVar (adds an a NumPy ndarray of Gurobi variables), addConstr (adds a new
constraint), and addConstrs (adds multiple new constraints).

Model()

Model (name="", env=defaultEnv)

Model constructor.
Arguments:

name: Name of new model. Note that name will be stored as an ASCII string. Thus, a
name like ’A→B’ will produce an error, because ’→’ can not be represented as an ASCII
character. Note also that names that contain spaces are strongly discouraged, because
they can’t be written to LP format files.

env: Environment in which to create the model. Creating your environment (using the Env
constructor) gives you more control over Gurobi licensing, but it can make your program
more complex. Use the default environment unless you know that you need to control
your own environments.

Return value:
New model object. Model initially contains no variables or constraints.

Example usage:

m = Model("NewModel")
x0 = m.addVar()

env = Env("my.log")
m2 = Model("NewModel2", env)

Model.addConstr()

addConstr (constr, name="")

Add a constraint to a model.
This method accepts a TempConstr as its first argument, and the constraint name as its optional

second argument. You use operator overloading to create the argument (see this section for details).
This one method allows you to add linear constraints, matrix constraints, quadratic constraints,
and general constraints.

Arguments:
constr: TempConstr argument.
name: Name for new constraint. Note that name will be stored as an ASCII string. Thus, a
name like ’A→B’ will produce an error, because ’→’ can not be represented as an ASCII

510

character. Note also that names that contain spaces are strongly discouraged, because
they can’t be written to LP format files.

Return value:
New constraint object. This can be a Constr, an MConstr, or a QConstr, depending on the
type of the argument.

Example usage:

model.addConstr(x + y <= 2.0, "c1")
model.addConstr(x*x + y*y <= 4.0, "qc0")
model.addConstr(x + y + z == [1, 2], "rgc0")
model.addConstr(A @ t >= b)
model.addConstr(z == and_(x, y, w), "gc0")
model.addConstr(z == min_(x, y), "gc1")
model.addConstr((w == 1) >> (x + y <= 1), "ic0")

Warning: A constraint can only have a single comparison operator. While 1 <= x + y <= 2 may
look like a valid constraint, addConstr won’t accept it.

Model.addConstrs()

addConstrs (generator, name="")

Add multiple constraints to a model using a Python generator expression. Returns a Gurobi
tupledict that contains the newly created constraints, indexed by the values generated by the
generator expression.

The first argument to addConstrs is a Python generator expression, a special feature of the
Python language that allows you to iterate over a Python expression. In this case, the Python
expression will be a Gurobi constraint and the generator expression provides values to plug into
that constraint. A new Gurobi constraint is added to the model for each iteration of the generator
expression.

To give an example, if x is a Gurobi variable, then

m.addConstr(x <= 1, name=’c0’)

would add a single linear constraint involving this variable. In contrast, if x is a list of Gurobi
variables, then

m.addConstrs((x[i] <= 1 for i in range(4)), name=’c’)

would add four constraints to the model. The entire first argument is a generator expression, where
the indexing is controlled by the statement for i in range(4), The first constraint that results
from this expression would be named c[0], and would involve variable x[0]. The second would be
named c[1], and would involve variable x[1].

Generator expressions can be much more complex than this. They can involve multiple variables
and conditional tests. For example, you could do:

m.addConstrs((x[i,j] == 0 for i in range(4)
for j in range(4)
if i != j), name=’c’)

511

One restriction that addConstrs places on the generator expression is that each variable must
always take a scalar value (int, float, string, ...). Thus, for i in [1, 2.0, ’a’, ’bc’] is
fine, but for i in [(1, 2), [1, 2, 3]] isn’t.

This method can be used to add linear constraints, quadratic constraints, or general constraints
to the model. Refer to the TempConstr documentation for more information on all of the different
constraint types that can be added.

Note that if you supply a name argument, the generator expression must be enclosed in paren-
thesis. This requirement comes from the Python language interpreter.

Arguments:
generator: A generator expression, where each iteration produces a constraint.
name: Name pattern for new constraints. The given name will be subscripted by the index
of the generator expression, so if the index is an integer, c would become c[0], c[1],
etc. Note that the generated names will be stored as ASCII strings, so you should avoid
using names that contain non-ASCII characters. In addition, names that contain spaces
are strongly discouraged, because they can’t be written to LP format files.

Return value:
A dictionary of Constr objects, indexed by the values specified by the generator expression.

Example usage:

model.addConstrs(x.sum(i, ’*’) <= capacity[i] for i in range(5))
model.addConstrs(x[i] + x[j] <= 1 for i in range(5) for j in range(5))
model.addConstrs(x[i]*x[i] + y[i]*y[i] <= 1 for i in range(5))
model.addConstrs(x.sum(i, ’*’) == [0, 2] for i in [1, 2, 4])
model.addConstrs(z[i] == max_(x[i], y[i]) for i in range(5))
model.addConstrs((x[i] == 1) >> (y[i] + z[i] <= 5) for i in range(5))

Warning: A constraint can only have a single comparison operator. While 1 <= x + y <= 2 may
look like a valid constraint, addConstr won’t accept it.

Model.addGenConstrXxx()
Each of the functions described below adds a new general constraint to a model.

Mathematical programming has traditionally defined a set of fundamental constraint types:
variable bound constraints, linear constraints, quadratic constraints, integrality constraints, and
SOS constraints. These are typically treated directly by the underlying solver (although not always),
and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general
(function) constraints. These are typically not treated directly by the solver. Rather, they are
transformed by presolve into constraints (and variables) chosen from among the fundamental types
listed above. In some cases, the resulting constraint or constraints are mathematically equivalent
to the original; in others, they are approximations. If such constraints appear in your model, but
if you prefer to reformulate them yourself using fundamental constraint types instead, you can
certainly do so. However, note that Gurobi can sometimes exploit information contained in the
other constraints in the model to build a more efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:

• addGenConstrMax: y = max(x1, x2, ..., c)

512

• addGenConstrMin: y = min(x1, x2, ..., c)

• addGenConstrAbs: y = |x|

• addGenConstrAnd: y = x1 ∧ x2 ∧ x3...

• addGenConstrOr: y = x1 ∨ x2 ∨ x3...

• addGenConstrIndicator: y = 1→ a′x ≤ b (an indicator constraint)

• addGenConstrPWL: y = pwl(x) (a piecewise-linear function, specified using breakpoints)

• addGenConstrPoly: y = p0x
d + p1x

d−1 + ...+ pd−1x+ pd

• addGenConstrExp: y = ex

• addGenConstrExpA: y = ax

• addGenConstrLog: y = loge(x)

• addGenConstrLogA: y = loga(x)

• addGenConstrPow: y = xa

• addGenConstrSin: y = sin(x)

• addGenConstrCos: y = cos(x)

• addGenConstrTan: y = tan(x)

You can also add several types of general constraints through addConstr or addConstrs, using
overloaded operators and a few general constraint helper functions. The descriptions below will
make note of these equivalent, more concise alternatives.

Please refer to this section for additional details on general constraints.

Model.addGenConstrMax()

addGenConstrMax (resvar, vars, constant=None, name="")

Add a new general constraint of type GRB.GENCONSTR_MAX to a model.
A MAX constraint r = max{x1, . . . , xn, c} states that the resultant variable r should be equal

to the maximum of the operand variables x1, . . . , xn and the constant c.
You can also add a MAX constraint using the max_ function.
Arguments:

resvar (Var): The variable whose value will be equal to the max of the other variables.
vars (list of Var): The variables over which the max will be taken. Note that this list
may also contain constants (type int, long, or float).

constant (float, optional): An additional operand that allows you to include a constant
among the arguments of the max operation.

name (string, optional): Name for the new general constraint. Note that name will be
stored as an ASCII string. Thus, a name like ’A→B’ will produce an error, because ’→’

513

can not be represented as an ASCII character. Note also that names that contain spaces
are strongly discouraged, because they can’t be written to LP format files.

Example usage:
x5 = max(x1, x3, x4, 2.0)
model.addGenConstrMax(x5, [x1, x3, x4], 2.0, "maxconstr")

alternative form
model.addGenConstrMax(x5, [x1, x3, x4, 2.0], name="maxconstr")

overloaded forms
model.addConstr(x5 == max_([x1, x3, x4, 2.0]), name="maxconstr")
model.addConstr(x5 == max_(x1, x3, x4, 2.0), name="maxconstr")

Model.addGenConstrMin()

addGenConstrMin (resvar, vars, constant=None, name="")

Add a new general constraint of type GRB.GENCONSTR_MIN to a model.
A MIN constraint r = min{x1, . . . , xn, c} states that the resultant variable r should be equal to

the minimum of the operand variables x1, . . . , xn and the constant c.
You can also add a MIN constraint using the min_ function.
Arguments:

resvar (Var): The variable whose value will be equal to the min of the other variables.
vars (list of Var): The variables over which the min will be taken. Note that this list
may also contain constants (type int, long, or float).

constant (float, optional): An additional operand that allows you to include a constant
among the arguments of the min operation.

name (string, optional): Name for the new general constraint. Note that name will be
stored as an ASCII string. Thus, a name like ’A→B’ will produce an error, because ’→’
can not be represented as an ASCII character. Note also that names that contain spaces
are strongly discouraged, because they can’t be written to LP format files.

Example usage:
x5 = min(x1, x3, x4, 2.0)
model.addGenConstrMin(x5, [x1, x3, x4], 2.0, "minconstr")

alternative form
model.addGenConstrMin(x5, [x1, x3, x4, 2.0], name="minconstr")

overloaded forms
model.addConstr(x5 == min_([x1, x3, x4, 2.0]), name="minconstr")
model.addConstr(x5 == min_(x1, x3, x4, 2.0), name="minconstr")

Model.addGenConstrAbs()

addGenConstrAbs (resvar, argvar, name="")

514

Add a new general constraint of type GRB.GENCONSTR_ABS to a model.
An ABS constraint r = abs{x} states that the resultant variable r should be equal to the

absolute value of the argument variable x.
You can also add an ABS constraint using the abs_ function.
Arguments:

resvar (Var): The variable whose value will be to equal the absolute value of the argument
variable.

argvar (Var): The variable for which the absolute value will be taken.
name (string, optional): Name for the new general constraint. Note that name will be
stored as an ASCII string. Thus, a name like ’A→B’ will produce an error, because ’→’
can not be represented as an ASCII character. Note also that names that contain spaces
are strongly discouraged, because they can’t be written to LP format files.

Example usage:
x5 = abs(x1)
model.addGenConstrAbs(x5, x1, "absconstr")

overloaded form
model.addConstr(x5 == abs_(x1), name="absconstr")

Model.addGenConstrAnd()

addGenConstrAnd (resvar, vars, name="")

Add a new general constraint of type GRB.GENCONSTR_AND to a model.
An AND constraint r = and{x1, . . . , xn} states that the binary resultant variable r should be 1

if and only if all of the operand variables x1, . . . , xn are equal to 1. If any of the operand variables
is 0, then the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent
of how they were created.

You can also add an AND constraint using the and_ function.
Arguments:

resvar (Var): The variable whose value will be equal to the AND concatenation of the
other variables.

vars (list of Var): The variables over which the AND concatenation will be taken.
name (string, optional): Name for the new general constraint. Note that name will be
stored as an ASCII string. Thus, a name like ’A→B’ will produce an error, because ’→’
can not be represented as an ASCII character. Note also that names that contain spaces
are strongly discouraged, because they can’t be written to LP format files.

Example usage:
x5 = and(x1, x3, x4)
model.addGenConstrAnd(x5, [x1, x3, x4], "andconstr")

overloaded forms
model.addConstr(x5 == and_([x1, x3, x4]), "andconstr")
model.addConstr(x5 == and_(x1, x3, x4), "andconstr")

515

Model.addGenConstrOr()

addGenConstrOr (resvar, vars, name="")

Add a new general constraint of type GRB.GENCONSTR_OR to a model.
An OR constraint r = or{x1, . . . , xn} states that the binary resultant variable r should be 1 if

and only if any of the operand variables x1, . . . , xn is equal to 1. If all operand variables are 0, then
the resultant should be 0 as well.

Note that all variables participating in such a constraint will be forced to be binary, independent
of how they were created.

You can also add an OR constraint using the or_ function.
Arguments:

resvar (Var): The variable whose value will be equal to the OR concatenation of the other
variables.

vars (list of Var): The variables over which the OR concatenation will be taken.
name (string, optional): Name for the new general constraint. Note that name will be
stored as an ASCII string. Thus, a name like ’A→B’ will produce an error, because ’→’
can not be represented as an ASCII character. Note also that names that contain spaces
are strongly discouraged, because they can’t be written to LP format files.

Example usage:
x5 = or(x1, x3, x4)
model.addGenConstrOr(x5, [x1, x3, x4], "orconstr")

overloaded forms
model.addConstr(x5 == or_([x1, x3, x4]), "orconstr")
model.addConstr(x5 == or_(x1, x3, x4), "orconstr")

Model.addGenConstrIndicator()

addGenConstrIndicator (binvar, binval, lhs, sense=None, rhs=None, name="")

Add a new general constraint of type GRB.GENCONSTR_INDICATOR to a model.
An INDICATOR constraint z = f → aTx ≤ b states that if the binary indicator variable z is

equal to f , where f ∈ {0, 1}, then the linear constraint aTx ≤ b should hold. On the other hand,
if z = 1 − f , the linear constraint may be violated. The sense of the linear constraint can also be
specified to be = or ≥.

Note that the indicator variable z of a constraint will be forced to be binary, independent of
how it was created.

You can also add an INDICATOR constraint using a special overloaded syntax. See the exam-
ples below for details.

Arguments:
binvar (Var): The binary indicator variable.
binval (Boolean): The value for the binary indicator variable that would force the linear
constraint to be satisfied.

lhs (float, Var, LinExpr, or TempConstr): Left-hand side expression for the linear
constraint triggered by the indicator. Can be a constant, a Var, or a LinExpr. Alterna-

516

tively, a temporary constraint object can be used to define the linear constraint that is
triggered by the indicator. The temporary constraint object is created using an overloaded
comparison operator. See TempConstr for more information. In this case, the “sense” and
“rhs” parameters must stay at their default values None.

sense (char): Sense for the linear constraint. Options are GRB.LESS_EQUAL, GRB.EQUAL,
or GRB.GREATER_EQUAL.

rhs (float): Right-hand side value for the linear constraint.
name (string, optional): Name for the new general constraint. Note that name will be
stored as an ASCII string. Thus, a name like ’A→B’ will produce an error, because ’→’
can not be represented as an ASCII character. Note also that names that contain spaces
are strongly discouraged, because they can’t be written to LP format files.

Example usage:
x7 = 1 -> x1 + 2 x3 + x4 = 1
model.addGenConstrIndicator(x7, True, x1 + 2*x2 + x4, GRB.EQUAL, 1.0)

alternative form
model.addGenConstrIndicator(x7, True, x1 + 2*x2 + x4 == 1.0)

overloaded form
model.addConstr((x7 == 1) >> (x1 + 2*x2 + x4 == 1.0))

Model.addGenConstrPWL()

addGenConstrPWL (xvar, yvar, xpts, ypts, name="")

Add a new general constraint of type GRB.GENCONSTR_PWL to a model.
A piecewise-linear (PWL) constraint states that the relationship y = f(x) must hold between

variables x and y, where f is a piecewise-linear function. The breakpoints for f are provided as
arguments. Refer to the description of piecewise-linear objectives for details of how piecewise-linear
functions are defined.

Arguments:
xvar (Var): The x variable.
yvar (Var): The y variable.
xpts (list of float): The x values for the points that define the piecewise-linear func-
tion. Must be in non-decreasing order.

ypts (list of float): The y values for the points that define the piecewise-linear func-
tion.

name (string, optional): Name for the new general constraint.
Return value:

New general constraint.
Example usage:

gc = model.addGenConstrPWL(x, y, [0, 1, 2], [1.5, 0, 3], "myPWLConstr")

Model.addGenConstrPoly()

addGenConstrPoly (xvar, yvar, p, name="", options="")

517

Add a new general constraint of type GRB.GENCONSTR_POLY to a model.
A polynomial function constraint states that the relationship y = p0x

d+p1x
d−1 + ...+pd−1x+pd

should hold between variables x and y.
A piecewise-linear approximation of the function is added to the model. The details of the

approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Arguments:
xvar (Var): The x variable.
yvar (Var): The y variable.
p: The coefficients for the polynomial function (starting with the coefficient for the highest
power).

name (string, optional): Name for the new general constraint.
options (string, optional): A string that can be used to set the attributes that control
the piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").

Return value:
New general constraint.

Example usage:
y = 2 x^3 + 1.5 x^2 + 1
gc = model.addGenConstrPoly(x, y, [2, 1.5, 0, 1])

Model.addGenConstrExp()

addGenConstrExp (xvar, yvar, name="", options="")

Add a new general constraint of type GRB.GENCONSTR_EXP to a model.
A natural exponential function constraint states that the relationship y = exp(x) should hold

for variables x and y.
A piecewise-linear approximation of the function is added to the model. The details of the

approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Arguments:
xvar (Var): The x variable.
yvar (Var): The y variable.
name (string, optional): Name for the new general constraint.
options (string, optional): A string that can be used to set the attributes that control
the piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").

Return value:

518

New general constraint.
Example usage:

y = exp(x)
gc = model.addGenConstrExp(x, y)

Model.addGenConstrExpA()

addGenConstrExpA (xvar, yvar, a, name="", options="")

Add a new general constraint of type GRB.GENCONSTR_EXPA to a model.
An exponential function constraint states that the relationship y = ax should hold for variables

x and y, where a > 0 is the (constant) base.
A piecewise-linear approximation of the function is added to the model. The details of the

approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Arguments:
xvar (Var): The x variable.
yvar (Var): The y variable.
a (float): The base of the function, a > 0.
name (string, optional): Name for the new general constraint.
options (string, optional): A string that can be used to set the attributes that control
the piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").

Return value:
New general constraint.

Example usage:
y = 3^x
gc = model.addGenConstrExpA(x, y, 3.0, "expa")

Model.addGenConstrLog()

addGenConstrLog (xvar, yvar, name="", options="")

Add a new general constraint of type GRB.GENCONSTR_LOG to a model.
A natural logarithmic function constraint states that the relationship y = log(x) should hold

for variables x and y.
A piecewise-linear approximation of the function is added to the model. The details of the

approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Arguments:
xvar (Var): The x variable.
yvar (Var): The y variable.

519

name (string, optional): Name for the new general constraint.
options (string, optional): A string that can be used to set the attributes that control
the piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").

Return value:
New general constraint.

Example usage:
y = ln(x)
gc = model.addGenConstrLog(x, y)

Model.addGenConstrLogA()

addGenConstrLogA (xvar, yvar, a, name="", options="")

Add a new general constraint of type GRB.GENCONSTR_LOGA to a model.
A logarithmic function constraint states that the relationship y = loga(x) should hold for

variables x and y, where a > 0 is the (constant) base.
A piecewise-linear approximation of the function is added to the model. The details of the

approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Arguments:
xvar (Var): The x variable.
yvar (Var): The y variable.
a (float): The base of the function, a > 0.
name (string, optional): Name for the new general constraint.
options (string, optional): A string that can be used to set the attributes that control
the piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").

Return value:
New general constraint.

Example usage:
y = log10(x)
gc = model.addGenConstrLogA(x, y, 10.0, "log10", "FuncPieces=-1 FuncPieceError=1e-5")

Model.addGenConstrPow()

addGenConstrPow (xvar, yvar, a, name="", options="")

Add a new general constraint of type GRB.GENCONSTR_POW to a model.

520

A power function constraint states that the relationship y = xa should hold for variables x and
y, where a is the (constant) exponent. The lower bound of variable x must be nonnegative, even if
a is an integer.

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Arguments:
xvar (Var): The x variable.
yvar (Var): The y variable.
a (float): The exponent of the function, a > 0.
name (string, optional): Name for the new general constraint.
options (string, optional): A string that can be used to set the attributes that control
the piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").

Return value:
New general constraint.

Example usage:
y = x^3.5
gc = model.addGenConstrPow(x, y, 3.5, "gf", "FuncPieces=1000")

Model.addGenConstrSin()

addGenConstrSin (xvar, yvar, name="", options="")

Add a new general constraint of type GRB.GENCONSTR_SIN to a model.
A sine function constraint states that the relationship y = sin(x) should hold for variables x

and y.
A piecewise-linear approximation of the function is added to the model. The details of the

approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Arguments:
xvar (Var): The x variable.
yvar (Var): The y variable.
name (string, optional): Name for the new general constraint.
options (string, optional): A string that can be used to set the attributes that control
the piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").

Return value:
New general constraint.

Example usage:

521

y = sin(x)
gc = model.addGenConstrSin(x, y)

Model.addGenConstrCos()

addGenConstrCos (xvar, yvar, name="", options="")

Add a new general constraint of type GRB.GENCONSTR_COS to a model.
A cosine function constraint states that the relationship y = cos(x) should hold for variables x

and y.
A piecewise-linear approximation of the function is added to the model. The details of the

approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Arguments:
xvar (Var): The x variable.
yvar (Var): The y variable.
name (string, optional): Name for the new general constraint.
options (string, optional): A string that can be used to set the attributes that control
the piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").

Return value:
New general constraint.

Example usage:
y = cos(x)
gc = model.addGenConstrCos(x, y)

Model.addGenConstrTan()

addGenConstrTan (xvar, yvar, name="", options="")

Add a new general constraint of type GRB.GENCONSTR_TAN to a model.
A tangent function constraint states that the relationship y = tan(x) should hold for variables

x and y.
A piecewise-linear approximation of the function is added to the model. The details of the

approximation are controlled using the following four attributes (or using the parameters with the
same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For details,
consult the General Constraint discussion.

Arguments:
xvar (Var): The x variable.
yvar (Var): The y variable.
name (string, optional): Name for the new general constraint.

522

options (string, optional): A string that can be used to set the attributes that control
the piecewise-linear approximation of this function constraint. To assign a value to an at-
tribute, follow the attribute name with an equal sign and the desired value (with no spaces).
Assignments for different attributes should be separated by spaces (e.g. "FuncPieces=-1
FuncPieceError=0.001").

Return value:
New general constraint.

Example usage:
y = tan(x)
gc = model.addGenConstrTan(x, y)

Model.addLConstr()

addLConstr (lhs, sense=None, rhs=None, name="")

Add a linear constraint to a model. This method is faster than addConstr() (as much as 50%
faster for very sparse constraints), but can only be used to add linear constraints.

Note that this method also accepts a TempConstr as its first argument (with the name as
its second argument). This allows you to use operator overloading to create constraints. See
TempConstr for more information.

Arguments:
lhs: Left-hand side for the new constraint. Can be a constant, a Var, a LinExpr, or a
TempConstr (while the TempConstr can only be of linear form).

sense: Sense for the new constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhs: Right-hand side for the new constraint. Can be a constant, a Var, or a LinExpr.
name: Name for new constraint. Note that name will be stored as an ASCII string. Thus, a
name like ’A→B’ will produce an error, because ’→’ can not be represented as an ASCII
character. Note also that names that contain spaces are strongly discouraged, because
they can’t be written to LP format files.

Return value:
New constraint object.

Example usage:
model.addLConstr(x + 2*y, GRB.EQUAL, 3*z, "c0")
model.addLConstr(x + y <= 2.0, "c1")
model.addLConstr(LinExpr([1.0,1.0], [x,y]), GRB.LESS_EQUAL, 1)

Model.addMConstr()

addMConstr (A, x, sense, b, name="")

Add a set of linear constraints to the model using matrix semantics. The added constraints are
Ax = b (except that the constraint sense is determined by the sense argument). The A argument
must be a NumPy dense ndarray or a SciPy sparse matrix.

Note that you will typically use overloaded operators to build and add constraints using matrix
semantics. The overloaded @ operator can be used to build a linear matrix expression, which can

523

then be used with an overloaded comparison operator to build a TempConstr object. This can then
be passed to addConstr.

Arguments:
A: The constraint matrix - a NumPy 2-D dense ndarray or a SciPy sparse matrix.
x: Decision variables. Argument can be an MVar object, a list of Var objects, or None (None
uses all variables in the model). The length of the argument must match the size of the
second dimension of A.

sense: Constraint senses, provided as a NumPy 1-D ndarray or as a single character. Valid
values are <, >, or =. The length of the array must be equal the size of the first dimension
of A. A character will be promoted to an ndarray of the appropriate length.

b: Right-hand side vector, stored as a NumPy 1-D ndarray. The length of the array must
be equal the size of the first dimension of A.

name: Names for new constraints. The given name will be subscripted by the index of the
constraint in the matrix.

Return value:
MConstr object.

Example usage:
A = np.full((5, 10), 1)
x = model.addMVar(10)
b = np.full(5, 1)

model.addMConstr(A, x, ’=’, b)

Model.addMQConstr()

addMQConstr (Q, c, sense, rhs, xQ_L=None, xQ_R=None, xc=None, name="")

Add a quadratic constraint to the model using matrix semantics. The added constraint is
x′QL

QxQR
+ c′xc = rhs (except that the constraint sense is determined by the sense argument).

The Q argument must be a NumPy ndarray or a SciPy sparse matrix.
Note that you will typically use overloaded operators to build and add constraints using matrix

semantics. The overloaded @ operator can be used to build a linear matrix expression or quadratic
matrix expression. An overloaded comparison operator can then be used to build a TempConstr
object, which is then passed to addConstr.

Arguments:
Q: The quadratic constraint matrix - a NumPy 2-D ndarray or a SciPy sparse matrix.
c: The linear constraint vector - a NumPy 1-D ndarray. This can be None if there are no
linear terms.

sense: Constraint sense. Valid values are <, >, or =.
rhs: Right-hand-side value.
xQ_L: Decision variables for quadratic terms; left multiplier for Q. Argument can be an
MVar object, a list of Var objects, or None (None uses all variables in the model). The
length of the argument must match the size of the first dimension of Q.

xQ_R: Decision variables for quadratic terms; right multiplier for Q. The length of the argu-
ment must match the size of the second dimension of Q.

524

xc: Decision variables for linear terms. Argument can be an MVar object, a list of Var
objects, or None (None uses all variables in the model). The length of the argument must
match the length of c.

name: Name for new constraint.
Return value:

The QConstr object.
Example usage:

Q = np.full((2, 3), 1)
xL = model.addMVar(2)
xR = model.addMVar(3)
model.addMQConstr(Q, None, ’<’, 1.0, xL, xR)

Model.addMVar()

addMVar (shape, lb=0.0, ub=float(’inf’), obj=0.0, vtype=GRB.CONTINUOUS,
name="")

Add an MVar object to a model. An MVar is a NumPy ndarray of Gurobi decision variables.
The ndarray can have an arbitrary number of dimensions, but you will generally need to slice a
multi-dimensional array into 1-D objects to use an MVar to build constraints.

You can multiply a 1-D MVar by a 2-D matrix (a NumPy dense ndarray or a SciPy sparse
matrix), using overloaded Python matrix-multiply operators (@), to create a linear matrix expression
or quadratic matrix expression, which can then be used to build linear or quadratic objectives or
constraints

Note that the returned MVar object supports standard NumPy slicing.
Arguments:

shape: The shape of the array.
lb (optional): Lower bound(s) for new variables.
ub (optional): Upper bound(s) for new variables.
obj (optional): Objective coefficient(s) for new variables.
vtype (optional): Variable type(s) for new variables.
name (optional): Names for new variables. The given name will be subscripted by the
index of the generator expression, so if the index is an integer, c would become c[0], c[1],
etc. Note that the generated names will be stored as ASCII strings, so you should avoid
using names that contain non-ASCII characters. In addition, names that contain spaces
are strongly discouraged, because they can’t be written to LP format files.

Return value:
New MVar object.

Example usage:
x = model.addMVar(10) # add a 1-D array of 10 variables
y = model.addMVar((3,4), vtype=GRB.BINARY) # add a 3x4 2-D array of binary variables
print(y[:,1:3]) # take a slice of a 2-D array

Model.addQConstr()

addQConstr (lhs, sense=None, rhs=None, name="")

525

Add a quadratic constraint to a model.
Important note: Gurobi can handle both convex and non-convex quadratic constraints. The

differences between them can be both important and subtle. Refer to this discussion for additional
information.

Arguments:
lhs: Left-hand side for new quadratic constraint. Can be a constant, a Var, a LinExpr, or
a QuadExpr.

sense: Sense for new quadratic constraint (GRB.LESS_EQUAL or GRB.GREATER_EQUAL).
rhs: Right-hand side for new quadratic constraint. Can be a constant, a Var, a LinExpr,
or a QuadExpr.

name: Name for new constraint. Note that name will be stored as an ASCII string. Thus, a
name like ’A→B’ will produce an error, because ’→’ can not be represented as an ASCII
character. Note also that names that contain spaces are strongly discouraged, because
they can’t be written to LP format files.

Return value:
New quadratic constraint object.

Example usage:
model.addQConstr(x*x + y*y, GRB.LESS_EQUAL, z*z, "c0")
model.addQConstr(x*x + y*y <= 2.0, "c1")

Model.addRange()

addRange (expr, lower, upper, name="")

Add a range constraint to a model. A range constraint states that the value of the input
expression must be between the specified lower and upper bounds in any solution.

Note that range constraints are stored internally as equality constraints. We add an extra
variable to the model to capture the range information. Thus, the Sense attribute on a range
constraint will always be GRB.EQUAL.

Arguments:
expr: Linear expression for new range constraint. Can be a Var or a LinExpr.
lower: Lower bound for linear expression.
upper: Upper bound for linear expression.
name: Name for new constraint. Note that name will be stored as an ASCII string. Thus, a
name like ’A→B’ will produce an error, because ’→’ can not be represented as an ASCII
character. Note also that names that contain spaces are strongly discouraged, because
they can’t be written to LP format files.

Return value:
New constraint object.

Example usage:
1 <= x + y <= 2
model.addRange(x + y, 1.0, 2.0, "range0")

overloaded forms
model.addConstr(x + y == [1.0, 2.0], name="range0")

526

Model.addSOS()

addSOS (type, vars, wts=None)

Add an SOS constraint to the model. Please refer to this section for details on SOS constraints.
Arguments:

type: SOS type (can be GRB.SOS_TYPE1 or GRB.SOS_TYPE2).
vars: List of variables that participate in the SOS constraint.
weights (optional): Weights for the variables in the SOS constraint. Default weights are
1, 2, ...

Return value:
New SOS object.

Example usage:
model.addSOS(GRB.SOS_TYPE1, [x, y, z], [1, 2, 4])

Model.addVar()

addVar (lb=0.0, ub=float(’inf’), obj=0.0, vtype=GRB.CONTINUOUS, name="",
column=None)

Add a decision variable to a model.
Arguments:

lb (optional): Lower bound for new variable.
ub (optional): Upper bound for new variable.
obj (optional): Objective coefficient for new variable.
vtype (optional): Variable type for new variable (GRB.CONTINUOUS, GRB.BINARY, GRB.-
INTEGER, GRB.SEMICONT, or GRB.SEMIINT).

name (optional): Name for new variable. Note that name will be stored as an ASCII string.
Thus, a name like ’A→B’ will produce an error, because ’→’ can not be represented as
an ASCII character. Note also that names that contain spaces are strongly discouraged,
because they can’t be written to LP format files.

column (optional): Column object that indicates the set of constraints in which the new
variable participates, and the associated coefficients.

Return value:
New variable object.

Example usage:
x = model.addVar() # all default arguments
y = model.addVar(vtype=GRB.INTEGER, obj=1.0, name="y") # arguments by name
z = model.addVar(0.0, 1.0, 1.0, GRB.BINARY, "z") # arguments by position

Model.addVars()

addVars (*indices, lb=0.0, ub=float(’inf’), obj=0.0, vtype=GRB.CONTINUOUS,
name="")

Add multiple decision variables to a model.

527

Returns a Gurobi tupledict object that contains the newly created variables. The keys for the
tupledict are derived from the indices argument(s). The arguments for this method can take
several different forms, which will be described now.

The first arguments provide the indices that will be used as keys to access the variables in
the returned tupledict. In its simplest version, you would specify one or more integer values,
and this method would create the equivalent of a multi-dimensional array of variables. For exam-
ple, x = model.addVars(2, 3) would create six variables, accessed as x[0,0], x[0,1], x[0,2],
x[1,0], x[1,1], and x[1,2].

In a more complex version, you can specify arbitrary lists of immutable objects, and this
method will create variables for each member of the cross product of these lists. For example,
x = model.addVars([3, 7], [’a’, ’b’, ’c’]) would create six variables, accessed as x[3,’a’],
x[7,’c’], etc.

You can also provide your own list of tuples as indices. For example,
x = model.addVars([(3,’a’), (3,’b’), (7,’b’), (7,’c’)]) would be accessed in the same
way as the previous example (x[3,’a’], x[7,’c’], etc.), except that not all combinations will be
present. This is typically how sparse indexing is handled.

Note that while the indices can be provided as multiple lists of objects, or as a list of tuples, the
member values for a specific index must always be scalars (int, float, string, ...). For example,
x = model.addVars([(1, 3), 7], [’a’]) is not allowed, since the first argument for the first
member would be (1, 3). Similarly, x = model.addVars([((1, 3),’a’), (7,’a’)]) is also not
allowed.

The named arguments (lb, obj, etc.) can take several forms. If you provide a scalar value (or
use the default), then every variable will use that value. Thus, for example, lb=1.0 will give every
created variable a lower bound of 1.0. Note that a scalar value for the name argument has a special
meaning, which will be discussed separately.

You can also provide a Python dict as the argument. In that case, the value for each variable
will be pulled from the dict, using the indices argument to build the keys. For example, if the
variables created by this method are indexed as x[i,j], then the dict provided for the argument
should have an entry for each possible (i,j) value.

Finally, if your indices argument is a single list, you can provide a Python list of the same
length for the named arguments. For each variable, it will pull the value from the corresponding
position in the list.

As noted earlier, the name argument is special. If you provide a scalar argument for the name,
that argument will be transformed to have a subscript that corresponds to the index of the associ-
ated variable. For example, if you do x = model.addVars(2,3,name="x"), the variables will get
names x[0,0], x[0,1], etc.

Arguments:
indices: Indices for accessing the new variables.
lb (optional): Lower bound(s) for new variables.
ub (optional): Upper bound(s) for new variables.
obj (optional): Objective coefficient(s) for new variables.
vtype (optional): Variable type(s) for new variables.
name (optional): Names for new variables. The given name will be subscripted by the
index of the generator expression, so if the index is an integer, c would become c[0], c[1],
etc. Note that the generated names will be stored as ASCII strings, so you should avoid

528

using names that contain non-ASCII characters. In addition, names that contain spaces
are strongly discouraged, because they can’t be written to LP format files.

Return value:
New tupledict object that contains the new variables as values, using the provided indices
as keys.

Example usage:
3-D array of binary variables
x = model.addVars(3, 4, 5, vtype=GRB.BINARY)

variables index by tuplelist
l = tuplelist([(1, 2), (1, 3), (2, 3)])
y = model.addVars(l, ub=[1, 2, 3])

Model.cbCut()

cbCut (lhs, sense, rhs)

Add a new cutting plane to a MIP model from within a callback function. Note that this method
can only be invoked when the where value on the callback function is equal to GRB.Callback.MIPNODE
(see the Callback Codes section for more information).

Cutting planes can be added at any node of the branch-and-cut tree. However, they should be
added sparingly, since they increase the size of the relaxation model that is solved at each node
and can significantly degrade node processing speed.

Cutting planes are typically used to cut off the current relaxation solution. To retrieve the
relaxation solution at the current node, you should first call cbGetNodeRel.

You should consider setting parameter PreCrush to value 1 when adding your own cuts. This
setting shuts off a few presolve reductions that can sometimes prevent your cut from being applied
to the presolved model (which would result in your cut being silently ignored).

One very important note: you should only add cuts that are implied by the constraints in your
model. If you cut off an integer solution that is feasible according to the original model constraints,
you are likely to obtain an incorrect solution to your MIP problem.

Note that this method also accepts a TempConstr as its first argument. This allows you to use
operator overloading to create constraints. See TempConstr for more information.

Arguments:
lhs: Left-hand side for new cut. Can be a constant, a Var, or a LinExpr.
sense: Sense for new cut (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_EQUAL).
rhs: Right-hand side for new cut. Can be a constant, a Var, or a LinExpr.

Example usage:
def mycallback(model, where):

if where == GRB.Callback.MIPNODE:
status = model.cbGet(GRB.Callback.MIPNODE_STATUS)
if status == GRB.OPTIMAL:

rel = model.cbGetNodeRel([model._vars[0], model._vars[1]])
if rel[0] + rel[1] > 1.1:
model.cbCut(model._vars[0] + model._vars[1] <= 1)

529

model._vars = model.getVars()
model.optimize(mycallback)

Model.cbGet()

cbGet (what)

Query the optimizer from within the user callback.
Arguments:

what: Integer code that indicates what type of information is being requested by the callback.
The set of valid codes depends on the where value that is passed into the user callback
function. Please refer to the Callback Codes section for a list of possible where and what
values.

Example usage:
def mycallback(model, where):

if where == GRB.Callback.SIMPLEX:
print(model.cbGet(GRB.Callback.SPX_OBJVAL))

model.optimize(mycallback)

Model.cbGetNodeRel()

cbGetNodeRel (vars)

Retrieve values from the node relaxation solution at the current node. Note that this method can
only be invoked when the where value on the callback function is equal to GRB.Callback.MIPNODE,
and GRB.Callback.MIPNODE_STATUS is equal to GRB.OPTIMAL (see the Callback Codes section for
more information).

Arguments:
vars: The variables whose relaxation values are desired. Can be a variable, a matrix
variable, a list of variables or matrix variables, or a dict of variables.

Return value:
Values for the specified variables in the node relaxation for the current node. The format
will depend on the input argument (a scalar, an ndarray, a list of values or ndarrays, or a
dict).

Example usage:
def mycallback(model, where):

if where == GRB.Callback.MIPNODE:
print(model.cbGetNodeRel(model._vars))

model._vars = model.getVars()
model.optimize(mycallback)

Model.cbGetSolution()

cbGetSolution (vars)

530

Retrieve values from the new MIP solution. Note that this method can only be invoked when the
where value on the callback function is equal to GRB.Callback.MIPSOL or GRB.Callback.MULTIOBJ
(see the Callback Codes section for more information).

Arguments:
vars: The variables whose solution values are desired. Can be a variable, a matrix variable,
a list of variables or matrix variables, or a dict of variables.

Return value:
Values for the specified variables in the solution. The format will depend on the input
argument (a scalar, an ndarray, a list of values or ndarrays, or a dict).

Example usage:
def mycallback(model, where):

if where == GRB.Callback.MIPSOL:
print(model.cbGetSolution(model._vars))

model._vars = model.getVars()
model.optimize(mycallback)

Model.cbLazy()

cbLazy (lhs, sense, rhs)

Add a new lazy constraint to a MIP model from within a callback function. Note that this
method can only be invoked when the where value on the callback function is GRB.Callback.MIPNODE
or GRB.Callback.MIPSOL (see the Callback Codes section for more information).

Lazy constraints are typically used when the full set of constraints for a MIP model is too large
to represent explicitly. By only including the constraints that are actually violated by solutions
found during the branch-and-cut search, it is sometimes possible to find a proven optimal solution
while only adding a fraction of the full set of constraints.

You would typically add a lazy constraint by first querying the current node solution (by calling
cbGetSolution from a GRB.CB_MIPSOL callback, or cbGetNodeRel from a GRB.CB_MIPNODE callback),
and then calling cbLazy() to add a constraint that cuts off the solution. Gurobi guarantees that
you will have the opportunity to cut off any solutions that would otherwise be considered feasible.

Your callback should be prepared to cut off solutions that violate any of your lazy constraints,
including those that have already been added. Node solutions will usually respect previously added
lazy constraints, but not always.

Note that you must set the LazyConstraints parameter if you want to use lazy constraints.
Note that this method also accepts a TempConstr as its first argument. This allows you to use

operator overloading to create constraints. See TempConstr for more information.
Arguments:

lhs: Left-hand side for new lazy constraint. Can be a constant, a Var, or a LinExpr.
sense: Sense for new lazy constraint (GRB.LESS_EQUAL, GRB.EQUAL, or GRB.GREATER_-
EQUAL).

rhs: Right-hand side for new lazy constraint. Can be a constant, a Var, or a LinExpr.
Example usage:

def mycallback(model, where):
if where == GRB.Callback.MIPSOL:

531

sol = model.cbGetSolution([model._vars[0], model._vars[1]])
if sol[0] + sol[1] > 1.1:

model.cbLazy(model._vars[0] + model._vars[1] <= 1)

model._vars = model.getVars()
model.optimize(mycallback)

Model.cbSetSolution()

cbSetSolution (vars, solution)

Import solution values for a heuristic solution. Only available when the where value on the call-
back function is equal to GRB.CB_MIPNODE. (see the Callback Codes section for more information).

When you specify a heuristic solution from a callback, variables initially take undefined val-
ues. You should use this method to specify variable values. You can make multiple calls to
cbSetSolution from one callback invocation to specify values for multiple sets of variables. After
the callback, if values have been specified for any variables, the Gurobi optimizer will try to com-
pute a feasible solution from the specified values, possibly filling in values for variables whose values
were left undefined. You can also optionally call cbUseSolution within your callback function to
try to immediately compute a feasible solution from the specified values.

Arguments:
vars: The variables whose values are being set. This can be a list of variables or a single
variable.

solution: The desired values of the specified variables in the new solution.
Example usage:

def mycallback(model, where):
if where == GRB.Callback.MIPNODE:
model.cbSetSolution(vars, newsolution)

model.optimize(mycallback)

Model.cbStopOneMultiObj()

cbStopOneMultiObj (objcnt)

Interrupt the optimization process of one of the optimization steps in a multi-objective MIP
problem without stopping the hierarchical optimization process. Only available for multi-objective
MIP models and when the where member variable is not equal to GRB.Callback.MULTIOBJ (see
the Callback Codes section for more information).

You would typically stop a multi-objective optimization step by querying the last finished num-
ber of multi-objectives steps, and using that number to stop the current step and move on to the
next hierarchical objective (if any) as shown in the following example:

Example usage:
import time

def mycallback(model, where):

532

if where == GRB.Callback.MULTIOBJ:
get current objective number
model._objcnt = model.cbGet(GRB.Callback.MULTIOBJ_OBJCNT)

reset start time to current time
model._starttime = time.time()

See if we want to stop current multiobjective step
else if time.time() - model._starttime > BIG or

solution is good enough:
stop only this optimization step
cbStopOneMultiObj(model._objcnt)

model._objcnt = 0
model._starttime = time.time()
model.optimize(mycallback)

You should refer to the section on Multiple Objectives for information on how to specify multiple
objective functions and control the trade-off between them.

Arguments:
objnum: The number of the multi-objective optimization step to interrupt. For processes
running locally, this argument can have the special value -1, meaning to stop the current
step.

Model.cbUseSolution()

cbUseSolution ()

Once you have imported solution values using cbSetSolution, you can optionally call cbUseSolution
to immediately use these values to try to compute a heuristic solution.

Return value:
The objective value for the solution obtained from your solution values (or GRB.INFINITY
if no improved solution is found).

Example usage:
def mycallback(model, where):

if where == GRB.Callback.MIPNODE:
model.cbSetSolution(vars, newsolution)
objval = model.cbUseSolution()

model.optimize(mycallback)

Model.chgCoeff()

chgCoeff (constr, var, newvalue)

533

Change one coefficient in the model. The desired change is captured using a Var object, a
Constr object, and a desired coefficient for the specified variable in the specified constraint. If you
make multiple changes to the same coefficient, the last one will be applied.

Note that, due to our lazy update approach, the change won’t actually take effect until you
update the model (using Model.update), optimize the model (using Model.optimize), or write the
model to disk (using Model.write).

Arguments:
constr: Constraint for coefficient to be changed.
var: Variable for coefficient to be changed.
newvalue: Desired new value for coefficient.

Example usage:
model.chgCoeff(c0, x, 2.0)

Model.computeIIS()

computeIIS (void)

Compute an Irreducible Inconsistent Subsystem (IIS). An IIS is a subset of the constraints and
variable bounds with the following properties:
• It is still infeasible, and

• If a single constraint or bound is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily
the smallest one; there may exist others with fewer constraints or bounds.

IIS results are returned in a number of attributes: IISConstr, IISLB, IISUB, IISSOS, IISQCon-
str, and IISGenConstr. Each indicates whether the corresponding model element is a member of
the computed IIS.

The IIS log provides information about the progress of the algorithm, including a guess at the
eventual IIS size.

If an IIS computation is interrupted before completion, Gurobi will return the smallest infeasible
subsystem found to that point.

This method populates the IISConstr, IISQConstr, and IISGenConstr constraint attributes, the
IISSOS, SOS attribute, and the IISLB and IISUB variable attributes. You can also obtain infor-
mation about the results of the IIS computation by writing an .ilp format file (see Model.write).
This file contains only the IIS from the original model.

Use the IISMethod parameter to adjust the behavior of the IIS algorithm.
Note that this method can be used to compute IISs for both continuous and MIP models.
Example usage:

model.computeIIS()
model.write("model.ilp")

Model.copy()

copy ()

534

Copy a model. Note that due to the lazy update approach in Gurobi, you have to call update
before copying it.

Return value:
Copy of model.

Example usage:
model.update() # If you have unstaged changes in the model
copy = model.copy()

Model.discardConcurrentEnvs()

discardConcurrentEnvs ()

Discard concurrent environments for a model.
The concurrent environments created by getConcurrentEnv will be used by every subsequent

call to the concurrent optimizer until the concurrent environments are discarded.
Example usage:

env0 = model.getConcurrentEnv(0)
env1 = model.getConcurrentEnv(1)

env0.setParam(’Method’, 0)
env1.setParam(’Method’, 1)

model.optimize()

model.discardConcurrentEnvs()

Model.discardMultiobjEnvs()

discardMultiobjEnvs ()

Discard all multi-objective environments associated with the model, thus restoring multi objec-
tive optimization to its default behavior.

Please refer to the discussion of Multiple Objectives for information on how to specify multiple
objective functions and control the trade-off between them.

Use getMultiobjEnv to create a multi-objective environment.
Example usage:

env0 = model.getMultiobjEnv(0)
env1 = model.getMultiobjEnv(1)

env0.setParam(’Method’, 2)
env1.setParam(’Method’, 1)

model.optimize()

model.discardMultiobjEnvs()

535

Model.dispose()

dispose ()

Free all resources associated with this Model object. After this method is called, this Model
object must no longer be used.

Example usage:
env = Env()
model = read("misc07.mps", env)
model.optimize()
model.dispose()
env.dispose()

Model.feasRelaxS()

feasRelaxS (relaxobjtype, minrelax, vrelax, crelax)

Modifies the Model object to create a feasibility relaxation. Note that you need to call optimize
on the result to compute the actual relaxed solution. Note also that this is a simplified version of
this method - use feasRelax for more control over the relaxation performed.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the
solution violates the bounds and linear constraints of the original model. This method provides a
number of options for specifying the relaxation.

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the sum
of the magnitudes of the bound and constraint violations.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the sum
of the squares of the bound and constraint violations.

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the
total number of bound and constraint violations.

To give an example, if a constraint is violated by 2.0, it would contribute 2.0 to the feasibility
relaxation objective for relaxobjtype=0, it would contribute 2.0*2.0 for relaxobjtype=1, and it
would contribute 1.0 for relaxobjtype=2.

The minrelax argument is a boolean that controls the type of feasibility relaxation that is
created. If minrelax=False, optimizing the returned model gives a solution that minimizes the
cost of the violation. If minrelax=True, optimizing the returned model finds a solution that
minimizes the original objective, but only from among those solutions that minimize the cost of the
violation. Note that feasRelaxS must solve an optimization problem to find the minimum possible
relaxation when minrelax=True, which can be quite expensive.

Note that this is a destructive method: it modifies the model on which it is invoked. If you
don’t want to modify your original model, use copy to create a copy before invoking this method.

Arguments:
relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.
vrelax: Indicates whether variable bounds can be relaxed.
crelax: Indicates whether constraints can be relaxed.

Return value:

536

Zero if minrelax is False. If minrelax is True, the return value is the objective value for
the relaxation performed. If the value is less than 0, it indicates that the method failed to
create the feasibility relaxation.

Example usage:
if model.status == GRB.INFEASIBLE:

model.feasRelaxS(1, False, False, True)
model.optimize()

Model.feasRelax()

feasRelax (relaxobjtype, minrelax, vars, lbpen, ubpen, constrs, rhspen)

Modifies the Model object to create a feasibility relaxation. Note that you need to call optimize
on the result to compute the actual relaxed solution. Note also that this is a more complex version
of this method - use feasRelaxS for a simplified version.

The feasibility relaxation is a model that, when solved, minimizes the amount by which the
solution violates the bounds and linear constraints of the original model. This method provides a
number of options for specifying the relaxation.

If you specify relaxobjtype=0, the objective of the feasibility relaxation is to minimize the
sum of the weighted magnitudes of the bound and constraint violations. The lbpen, ubpen, and
rhspen arguments specify the cost per unit violation in the lower bounds, upper bounds, and linear
constraints, respectively.

If you specify relaxobjtype=1, the objective of the feasibility relaxation is to minimize the
weighted sum of the squares of the bound and constraint violations. The lbpen, ubpen, and
rhspen arguments specify the coefficients on the squares of the lower bound, upper bound, and
linear constraint violations, respectively.

If you specify relaxobjtype=2, the objective of the feasibility relaxation is to minimize the
weighted count of bound and constraint violations. The lbpen, ubpen, and rhspen arguments
specify the cost of violating a lower bound, upper bound, and linear constraint, respectively.

To give an example, if a constraint with rhspen value p is violated by 2.0, it would con-
tribute 2*p to the feasibility relaxation objective for relaxobjtype=0, it would contribute 2*2*p
for relaxobjtype=1, and it would contribute p for relaxobjtype=2.

The minrelax argument is a boolean that controls the type of feasibility relaxation that is
created. If minrelax=False, optimizing the returned model gives a solution that minimizes the
cost of the violation. If minrelax=True, optimizing the returned model finds a solution that
minimizes the original objective, but only from among those solutions that minimize the cost of the
violation. Note that feasRelax must solve an optimization problem to find the minimum possible
relaxation when minrelax=True, which can be quite expensive.

Note that this is a destructive method: it modifies the model on which it is invoked. If you
don’t want to modify your original model, use copy to create a copy before invoking this method.

Arguments:
relaxobjtype: The cost function used when finding the minimum cost relaxation.
minrelax: The type of feasibility relaxation to perform.
vars: Variables whose bounds are allowed to be violated.
lbpen: Penalty for violating a variable lower bound. One entry for each variable in argument
vars.

537

ubpen: Penalty for violating a variable upper bound. One entry for each variable in argument
vars.

constrs: Linear constraints that are allowed to be violated.
rhspen: Penalty for violating a linear constraint. One entry for each constraint in argument
constrs.

Return value:
Zero if minrelax is False. If minrelax is True, the return value is the objective value for
the relaxation performed. If the value is less than 0, it indicates that the method failed to
create the feasibility relaxation.

Example usage:
if model.status == GRB.INFEASIBLE:

vars = model.getVars()
ubpen = [1.0]*model.numVars
model.feasRelax(1, False, vars, None, ubpen, None, None)
model.optimize()

Model.fixed()

fixed ()

Create the fixed model associated with a MIP model. The MIP model must have a solution
loaded (e.g., after a call to the optimize method). In the fixed model, each integer variable is fixed
to the value that variable takes in the MIP solution. In addition, continuous variables may be fixed
to satisfy SOS or general constraints. The result is a model without any integrality constraints,
SOS constraints, or general constraints.

Note that, while the fixed problem is always a continuous model, it may contain a non-convex
quadratic objective or non-convex quadratic constraints. As a result, it may still be solved using
the MIP algorithm.

Return value:
Fixed model associated with calling object.

Example usage:
fixed = model.fixed()

Model.getA()

getA ()

Query the linear constraint matrix of the model. You’ll need to have scipy installed for this
function to work.

Arguments:
Return value:

The matrix as a scipy.sparse matrix in CSR format.
Example usage:

A = model.getA()
print(A.toarray())

538

Model.getAttr()

getAttr (attrname, objs=None)

Query the value of an attribute. When called with a single argument, it returns the value of a
model attribute. When called with two arguments, it returns the value of an attribute for either a
list or a dictionary containing either variables or constraints. If called with a list, the result is a list.
If called with a dictionary, the result is a dictionary that uses the same keys, but is populated with
the requested attribute values. The full list of available attributes can be found in the Attributes
section.

Raises an AttributeError if the requested attribute doesn’t exist or can’t be queried. Raises
a GurobiError if there is a problem with the Model object.

Arguments:
attrname: Name of the attribute.
objs (optional): List or dictionary containing either constraints or variables

Example usage:
print(model.numintvars)
print(model.getAttr("numIntVars"))
print(model.getAttr(GRB.Attr.NumIntVars))
print(model.getAttr("X", model.getVars()))
print(model.getAttr("Pi", model.getConstrs()))

Model.getCoeff()

getCoeff (constr, var)

Query the coefficient of variable var in linear constraint constr (note that the result can be
zero).

Arguments:
constr: The requested constraint.
var: The requested variable.

Return value:
The current value of the requested coefficient.

Example usage:
print(model.getCoeff(constr, var))

Model.getCol()

getCol (var)

Retrieve the list of constraints in which a variable participates, and the associated coefficients.
The result is returned as a Column object.

Arguments:
var: The variable of interest.

Return value:
A Column object that captures the set of constraints in which the variable participates.

Example usage:

539

print(model.getCol(model.getVars()[0]))

Model.getConcurrentEnv()

getConcurrentEnv (num)

Create/retrieve a concurrent environment for a model.
This method provides fine-grained control over the concurrent optimizer. By creating your

own concurrent environments and setting appropriate parameters on these environments (e.g., the
Method parameter), you can control exactly which strategies the concurrent optimizer employs.
For example, if you create two concurrent environments, and set Method to primal simplex for
one and dual simplex for the other, subsequent concurrent optimizer runs will use the two simplex
algorithms rather than the default choices.

Note that you must create contiguously numbered concurrent environments, starting with
num=0. For example, if you want three concurrent environments, they must be numbered 0, 1,
and 2.

Once you create concurrent environments, they will be used for every subsequent concurrent
optimization on that model. Use discardConcurrentEnvs to revert back to default concurrent
optimizer behavior.

Arguments:
num (int): The concurrent environment number.

Return value:
The concurrent environment for the model.

Example usage:
env0 = model.getConcurrentEnv(0)
env1 = model.getConcurrentEnv(1)

env0.setParam(’Method’, 0)
env1.setParam(’Method’, 1)

model.optimize()

model.discardConcurrentEnvs()

Model.getConstrByName()

getConstrByName (name)

Retrieve a linear constraint from its name. If multiple linear constraints have the same name,
this method chooses one arbitrarily.

Arguments:
name: Name of desired constraint.

Return value:
Constraint with the specified name.

Example usage:

540

c0 = model.getConstrByName("c0")

Model.getConstrs()

getConstrs ()

Retrieve a list of all linear constraints in the model.
Return value:

All linear constraints in the model.
Example usage:

constrs = model.getConstrs()
c0 = constrs[0]

Model.getGenConstrMax()

getGenConstrMax (genconstr)

Retrieve the data associated with a general constraint of type MAX. Calling this method for
a general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrMax for a description of the semantics of this general constraint type.
Arguments:

genconstr: The general constraint object of interest.
Return value:

A tuple (resvar, vars, constant) that contains the data of the general constraint:
resvar (Var): Resultant variable of the MAX constraint.
vars (list of Var): Operand variables of the MAX constraint.
constant (float): Additional constant operand of the MAX constraint.

Example usage:
(resvar, vars, constant) = model.getGenConstrMax(model.getGenConstrs()[0])

Model.getGenConstrMin()

getGenConstrMin (genconstr)

Retrieve the data associated with a general constraint of type MIN. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrMin for a description of the semantics of this general constraint type.
Arguments:

genconstr: The general constraint object of interest.
Return value:

A tuple (resvar, vars, constant) that contains the data of the general constraint:
resvar (Var): Resultant variable of the MIN constraint.
vars (list of Var): Operand variables of the MIN constraint.

541

constant (float): Additional constant operand of the MIN constraint.
Example usage:

(resvar, vars, constant) = model.getGenConstrMin(model.getGenConstrs()[0])

Model.getGenConstrAbs()

getGenConstrAbs (genconstr)

Retrieve the data associated with a general constraint of type ABS. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrAbs for a description of the semantics of this general constraint type.
Arguments:

genconstr: The general constraint object of interest.
Return value:

A tuple (resvar, argvar) that contains the data of the general constraint:
resvar (Var): Resultant variable of ABS constraint.
argvar (Var): Argument variable of ABS constraint.

Example usage:
(resvar, argvar) = model.getGenConstrAbs(model.getGenConstrs()[0])

Model.getGenConstrAnd()

getGenConstrAnd (genconstr)

Retrieve the data associated with a general constraint of type AND. Calling this method for
a general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrAnd for a description of the semantics of this general constraint type.
Arguments:

genconstr: The general constraint object of interest.
Return value:

A tuple (resvar, vars) that contains the data of the general constraint:
resvar (Var): Resultant variable of AND constraint.
vars (list of Var): Operand variables of AND constraint.

Example usage:
(resvar, vars) = model.getGenConstrAnd(model.getGenConstrs()[0])

Model.getGenConstrOr()

getGenConstrOr (genconstr)

Retrieve the data associated with a general constraint of type OR. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrOr for a description of the semantics of this general constraint type.
Arguments:

542

genconstr: The general constraint object of interest.
Return value:

A tuple (resvar, vars) that contains the data of the general constraint:
resvar (Var): Resultant variable of OR constraint.
vars (list of Var): Operand variables of OR constraint.

Example usage:
(resvar, vars) = model.getGenConstrOr(model.getGenConstrs()[0])

Model.getGenConstrIndicator()

getGenConstrIndicator (genconstr)

Retrieve the data associated with a general constraint of type INDICATOR. Calling this method
for a general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrIndicator for a description of the semantics of this general constraint
type.

Arguments:
genconstr: The general constraint object of interest.

Return value:
A tuple (binvar, binval, expr, sense, rhs) that contains the data of the general constraint:
binvar (Var): Antecedent variable of indicator constraint.
binval (Boolean): Value of antecedent variable that activates the linear constraint.
expr (LinExpr): LinExpr object containing the left-hand side of the constraint triggered
by the indicator.

sense (char): Sense of linear constraint triggered by the indicator (e.g., GRB.LESS_EQUAL).
rhs (float): Right-hand side of linear constraint triggered by the indicator.

Example usage:
(binvar, binval, expr, sense, rhs) =

model.getGenConstr(model.getGenConstrIndicator()[3])

Model.getGenConstrPWL()

getGenConstrPWL (genconstr)

Retrieve the data associated with a general constraint of type PWL. Calling this method for
a general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrPWL for a description of the semantics of this general constraint type.
Arguments:

genc: The general constraint object.
Return value:

A tuple (xvar, yvar, xpts, ypts) that contains the data of the general constraint:
xvar (Var): The x variable.
yvar (Var): The y variable.

543

xpts (list of float): The x values for the points that define the piecewise-linear func-
tion.

ypts (list of float): The y values for the points that define the piecewise-linear func-
tion.

Example usage:
(xvar, yvar, xpts, ypts) = model.getGenConstrPWL(model.getGenConstrs()[0])

Model.getGenConstrPoly()

getGenConstrPoly (genconstr)

Retrieve the data associated with a general constraint of type POLY. Calling this method for
a general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrPoly for a description of the semantics of this general constraint type.
Arguments:

genc: The general constraint object.
Return value:

A tuple (xvar, yvar, p) that contains the data of the general constraint:
xvar (Var): The x variable.
yvar (Var): The y variable.
p (list of float): The coefficients for polynomial function.

Example usage:
(xvar, yvar, p) = model.getGenConstrPoly(model.getGenConstrs()[0])

Model.getGenConstrExp()

getGenConstrExp (genconstr)

Retrieve the data associated with a general constraint of type EXP. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrExp for a description of the semantics of this general constraint type.
Arguments:

genc: The general constraint object.
Return value:

A tuple (xvar, yvar) that contains the data of the general constraint:
xvar (Var): The x variable.
yvar (Var): The y variable.

Example usage:
(xvar, yvar) = model.getGenConstrExp(model.getGenConstrs()[0])

Model.getGenConstrExpA()

getGenConstrExpA (genconstr)

544

Retrieve the data associated with a general constraint of type EXPA. Calling this method for
a general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrExpA for a description of the semantics of this general constraint type.
Arguments:

genc: The general constraint object.
Return value:

A tuple (xvar, yvar, a) that contains the data of the general constraint:
xvar (Var): The x variable.
yvar (Var): The y variable.
a (float): The base of the function.

Example usage:
(xvar, yvar, a) = model.getGenConstrExpA(model.getGenConstrs()[0])

Model.getGenConstrLog()

getGenConstrLog (genconstr)

Retrieve the data associated with a general constraint of type LOG. Calling this method for
a general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrLog for a description of the semantics of this general constraint type.
Arguments:

genc: The general constraint object.
Return value:

A tuple (xvar, yvar) that contains the data of the general constraint:
xvar (Var): The x variable.
yvar (Var): The y variable.

Model.getGenConstrLogA()

getGenConstrLogA (genconstr)

Retrieve the data associated with a general constraint of type LOGA. Calling this method for
a general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrLogA for a description of the semantics of this general constraint type.
Arguments:

genc: The general constraint object.
Return value:

A tuple (xvar, yvar, a) that contains the data of the general constraint:
xvar (Var): The x variable.
yvar (Var): The y variable.
a (float): The base of the function.

Model.getGenConstrPow()

getGenConstrPow (genconstr)

545

Retrieve the data associated with a general constraint of type POW. Calling this method for
a general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrPow for a description of the semantics of this general constraint type.
Arguments:

genc: The general constraint object.
Return value:

A tuple (xvar, yvar, a) that contains the data of the general constraint:
xvar (Var): The x variable.
yvar (Var): The y variable.
a (float): The exponent of the function.

Model.getGenConstrSin()

getGenConstrSin (genconstr)

Retrieve the data associated with a general constraint of type SIN. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrSin for a description of the semantics of this general constraint type.
Arguments:

genc: The general constraint object.
Return value:

A tuple (xvar, yvar) that contains the data of the general constraint:
xvar (Var): The x variable.
yvar (Var): The y variable.

Model.getGenConstrCos()

getGenConstrCos (genconstr)

Retrieve the data associated with a general constraint of type COS. Calling this method for a
general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

See also addGenConstrCos for a description of the semantics of this general constraint type.
Arguments:

genc: The general constraint object.
Return value:

A tuple (xvar, yvar) that contains the data of the general constraint:
xvar (Var): The x variable.
yvar (Var): The y variable.

Model.getGenConstrTan()

getGenConstrTan (genconstr)

Retrieve the data associated with a general constraint of type TAN. Calling this method for
a general constraint of a different type leads to an exception. You can query the GenConstrType
attribute to determine the type of the general constraint.

546

See also addGenConstrTan for a description of the semantics of this general constraint type.
Arguments:

genc: The general constraint object.
Return value:

A tuple (xvar, yvar) that contains the data of the general constraint:
xvar (Var): The x variable.
yvar (Var): The y variable.

Model.getGenConstrs()

getGenConstrs ()

Retrieve a list of all general constraints in the model.
Return value:

All general constraints in the model.
Example usage:

gencons = model.getGenConstrs()
for gc in gencons:

print(model.getGenConstr(gc))

Model.getJSONSolution()

getJSONSolution ()

After a call to optimize, this method returns the resulting solution and related model attributes
as a JSON string. Please refer to the JSON solution format section for details.

Return value:
A JSON string.

Example usage:
model = read(’p0033.mps’)
model.optimize()
print(model.getJSONSolution())

Model.getMultiobjEnv()

getMultiobjEnv (index)

Create/retrieve a multi-objective environment for the objective with the given index. This
environment enables fine-grained control over the multi-objective optimization process. Specifically,
by changing parameters on this environment, you modify the behavior of the optimization that
occurs during the corresponding pass of the multi-objective optimization.

Each multi-objective environment starts with a copy of the current model environment.
Please refer to the discussion of Multiple Objectives for information on how to specify multiple

objective functions and control the trade-off between them.
Use discardMultiobjEnvs to discard multi-objective environments and return to standard be-

havior.
Arguments:

index (int): The objective index.

547

Return value:
The multi-objective environment for the model.

Example usage:
env0 = model.getMultiobjEnv(0)
env1 = model.getMultiobjEnv(1)

env0.setParam(’TimeLimit’, 100)
env1.setParam(’TimeLimit’, 10)

model.optimize()

model.discardMultiobjEnvs()

Model.getObjective()

getObjective (index=None)

Retrieve the model objective(s).
Call this with no argument to retrieve the primary objective, or with an integer argument to

retrieve the corresponding alternative objective.
Arguments:

index (int, optional): The index for the requested alternative objective.
Return value:

The model objective. A LinExpr object for a linear objective, or a QuadExpr object for a
quadratic objective. Note that alternative objectives are always linear.

Example usage:
obj = model.getObjective()
print(obj.getValue())

Model.getParamInfo()

getParamInfo (paramname)

Retrieve information about a Gurobi parameter, including the type, the current value, the
minimum and maximum allowed values, and the default value.

Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

Arguments:
paramname: String containing the name of the parameter of interest. The name can include
’*’ and ’?’ wildcards. If more than one parameter matches, the matching names are listed
and the method returns None.

Return value:
Returns a 6-entry tuple that contains: the parameter name, the parameter type, the current
value, the minimum value, the maximum value, and the default value.

Example usage:
print(model.getParamInfo(’Heuristics’))

548

Model.getPWLObj()

getPWLObj (var)

Retrieve the piecewise-linear objective function for a variable. The function returns a list of
tuples, where each provides the x and y coordinates for the points that define the piecewise-linear
objective function.

Refer to this discussion for additional information on what the values in x and y mean.
Arguments:

var: A Var object that gives the variable whose objective function is being retrieved.
Return value:

The points that define the piecewise-linear objective function.
Example usage:

> print(model.getPWLObj(var))
[(1, 1), (2, 2), (3, 4)]

Model.getQConstrs()

getQConstrs ()

Retrieve a list of all quadratic constraints in the model.
Return value:

All quadratic constraints in the model.
Example usage:

qconstrs = model.getQConstrs()
qc0 = qconstrs[0]

Model.getQCRow()

getQCRow (qconstr)

Retrieve the left-hand side expression from a quadratic constraint. The result is returned as a
QuadExpr object.

Arguments:
qconstr: The constraint of interest. A QConstr object, typically obtained from addQConstr
or getQConstrs.

Return value:
A QuadExpr object that captures the left-hand side of the quadratic constraint.

Example usage:
print(model.getQCRow(model.getQConstrs()[0]))

Model.getRow()

getRow (constr)

Retrieve the list of variables that participate in a constraint, and the associated coefficients.
The result is returned as a LinExpr object.

549

Arguments:
constr: The constraint of interest. A Constr object, typically obtained from addConstr or
getConstrs.

Return value:
A LinExpr object that captures the set of variables that participate in the constraint.

Example usage:
constrs = model.getConstrs()
print(model.getRow(constrs[0]))

Model.getSOS()

getSOS (sos)

Retrieve information about an SOS constraint. The result is a tuple that contains the SOS type
(1 or 2), the list of participating Var objects, and the list of associated SOS weights.

Arguments:
sos: The SOS constraint of interest. An SOS object, typically obtained from addSOS or
getSOSs.

Return value:
A tuple that contains the SOS type (1 or 2), a list of participating Var objects, and a list of
associated SOS weights.

Example usage:
(sostype, vars, weights) = model.getSOS(model.getSOSs()[0])

Model.getSOSs()

getSOSs ()

Retrieve a list of all SOS constraints in the model.
Return value:

All SOS constraints in the model.
Example usage:

sos = model.getSOSs()
for s in sos:

print(model.getSOS(s))

Model.getTuneResult()

getTuneResult ()

Use this routine to retrieve the results of a previous tune call. Calling this method with argument
n causes tuned parameter set n to be copied into the model. Parameter sets are stored in order of
decreasing quality, with parameter set 0 being the best. The number of available sets is stored in
attribute TuneResultCount.

Once you have retrieved a tuning result, you can call optimize to use these parameter settings
to optimize the model, or write to write the changed parameters to a .prm file.

Please refer to the parameter tuning section for details on the tuning tool.

550

Arguments:
n: The index of the tuning result to retrieve. The best result is available as index 0. The
number of stored results is available in attribute TuneResultCount.

Example usage:
model.tune()
for i in range(model.tuneResultCount):

model.getTuneResult(i)
model.write(’tune’+str(i)+’.prm’)

Model.getVarByName()

getVarByName (name)

Retrieve a variable from its name. If multiple variables have the same name, this method
chooses one arbitrarily.

Arguments:
name: Name of desired variable.

Return value:
Variable with the specified name.

Example usage:
x0 = model.getVarByName("x0")

Model.getVars()

getVars ()

Retrieve a list of all variables in the model.
Return value:

All variables in the model.
Example usage:

vars = model.getVars()
x0 = vars[0]

Model.message()

message (msg)

Append a string to the Gurobi log file.
Arguments:

msg: String to append to Gurobi log file.
Example usage:

model.message(’New message’)

Model.optimize()

optimize (callback=None)

551

Optimize the model. The algorithm used for the optimization depends on the model type
(simplex or barrier for a continuous model; branch-and-cut for a MIP model). Upon successful
completion, this method will populate the solution related attributes of the model. See the At-
tributes section for more information on attributes.

Please consult this section for a discussion of some of the practical issues associated with solving
a precisely defined mathematical model using finite-precision floating-point arithmetic.

Note that this method will process all pending model modifications.
Arguments:

callback: Callback function. The callback function should take two arguments, model and
where. During the optimization, the function will be called periodically, with model set to
the model being optimized, and where indicating where in the optimization the callback
is called from. See the Callback class for additional information.

Example usage:
model.optimize()

Model.optimizeBatch()

optimizeBatch ()

Submit a new batch request to the Cluster Manager. Returns the BatchID (a string), which
uniquely identifies the job in the Cluster Manager and can be used to query the status of this
request (from this program or from any other). Once the request has completed, the BatchID can
also be used to retrieve the associated solution. To submit a batch request, you must tag at least
one element of the model by setting one of the VTag, CTag or QCTag attributes. For more details
on batch optimization, please refer to the Batch Optimization section.

Note that this routine will process all pending model modifications.
Example usage:

Submit batch request
batchID = model. optimizeBatch ()

Return value:
A unique string identifier for the batch request.

Model.presolve()

presolve ()

Perform presolve on a model.
Return value:

Presolved version of original model.
Example usage:

p = model.presolve()
p.printStats()

552

Model.printAttr()

printAttr (attrs, filter=’*’)

Print the value of one or more attributes. If attrs is a constraint or variable attribute, print
all non-zero values of the attribute, along with the associate constraint or variable names. If attrs
is a list of attributes, print attribute values for all listed attributes. The method takes an optional
filter argument, which allows you to select which specific attribute values to print (by filtering
on the constraint or variable name).

See the Attributes section for a list of all available attributes.
Arguments:

attrs: Name of attribute or attributes to print. The value can be a single attribute or a
list of attributes. If a list is given, all listed attributes must be of the same type (model,
variable, or constraint).

filter (optional): Filter for values to print -- name of constr/var must match filter to
be printed.

Example usage:
model.printAttr(’x’) # all non-zero solution values
model.printAttr(’lb’, ’x*’) # bounds for vars whose names begin with ’x’
model.printAttr([’lb’, ’ub’]) # lower and upper bounds

Model.printQuality()

printQuality ()

Print statistics about the quality of the computed solution (constraint violations, integrality
violations, etc.).

For continuous models, the output will include the maximum unscaled and scaled violation,
as well as the variable or constraint name associated with the worst unscaled violation. For MIP
models, the output will include the maximum unscaled violation and the associated variable or
constraint name.

Example usage:
model.optimize()
model.printQuality()

Model.printStats()

printStats ()

Print statistics about the model (number of constraints and variables, number of non-zeros in
constraint matrix, smallest and largest coefficients, etc.).

Example usage:
model.printStats()

553

Model.read()

read (filename)

This method is the general entry point for importing data from a file into a model. It can be
used to read basis files for continuous models, start vectors for MIP models, or parameter settings.
The type of data read is determined by the file suffix. File formats are described in the File Format
section.

Note that this is not the method to use if you want to read a new model from a file. For that,
use the read command.

Arguments:
filename: Name of the file to read. The suffix on the file must be either .bas (for an LP
basis), .mst or .sol (for a MIP start), .hnt (for MIP hints), .ord (for a priority order),
or .prm (for a parameter file). The suffix may optionally be followed by .zip, .gz, .bz2,
or .7z. The file name may contain * or ? wildcards. No file is read when no wildcard
match is found. If more than one match is found, this method will attempt to read the
first matching file.

Example usage:
model.read(’input.bas’)
model.read(’input.mst’)

Model.relax()

relax ()

Create the relaxation of a MIP model. Transforms integer variables into continuous variables,
and removes SOS and general constraints.

Return value:
Relaxed version of model.

Example usage:
r = model.relax()

Model.remove()

remove (items)

Remove variables, linear constraints, quadratic constraints, SOS constraints, or general con-
straints from a model.

Arguments:
items: The items to remove from the model. Argument can be a single Var, MVar, Constr,
MConstr, QConstr, SOS, or GenConstr, or a list, tuple, or dict containing these objects.
If the argument is a dict, the values will be removed, not the keys.

Example usage:
model.remove(model.getVars()[0])
model.remove(model.getVars()[0:10])
model.remove(model.getConstrs()[0])
model.remove(model.getConstrs()[1:3])

554

model.remove(model.getQConstrs()[0])
model.remove(model.getSOSs()[0])
model.remove(model.getGenConstrs()[0])

Model.reset()

reset (clearall=0)

Reset the model to an unsolved state, discarding any previously computed solution information.
Arguments:

clearall (int, optional): A value of 1 discards additional information that affects the
solution process but not the actual model (currently MIP starts, variable hints, branch-
ing priorities, lazy flags, and partition information). The default value just discards the
solution.

Example usage:
model.reset(0)

Model.resetParams()

resetParams ()

Reset all parameters to their default values.
Example usage:

model.resetParams()

Model.setAttr()

setAttr (attrname, objects, newvalues)

Change the value of an attribute.
Call this method with two arguments (i.e., setAttr(attrname, newvalue)) to set a model

attribute.
Call it with three arguments (i.e., setAttr(attrname, objects, newvalues)) to set attribute

values for a list or dict of model objects (Var objects, Constr objects, etc.). To set the same value
for all objects in the second argument, you can pass a scalar value in the third argument. If the
second argument is a list, the third argument should be a list of the same length. If the second
argument is a dict, the third argument should be dict with a value for every key from the second.

The full list of available attributes can be found in the Attributes section.
Raises an AttributeError if the specified attribute doesn’t exist or can’t be set. Raises a

GurobiError if there is a problem with the Model object.
Note that, due to our lazy update approach, the change won’t actually take effect until you

update the model (using Model.update), optimize the model (using Model.optimize), or write the
model to disk (using Model.write).

Arguments:
attrname: Name of attribute to set.
objs: List of model objects (Var or Constr or ...)

555

newvalue: Desired new value(s) for attribute.
Example usage:

model.setAttr("objCon", 0)
model.setAttr(GRB.Attr.ObjCon, 0)
model.setAttr("LB", model.getVars(), [0]*model.numVars)
model.setAttr("RHS", model.getConstrs(), [1.0]*model.numConstrs)
model.setAttr("vType", model.getVars(), GRB.CONTINUOUS)
model.objcon = 0

Model.setMObjective()

setMObjective (Q, c, constant, xQ_L=None, xQ_R=None, xc=None, sense=None)

Set the model objective equal to a quadratic (or linear) expression using matrix semantics.
Note that you will typically use overloaded operators to set the objective using matrix objects.

The overloaded @ operator can be used to build a linear matrix expression or a quadratic matrix
expression, which is then passed to setObjective.

Arguments:
Q: The quadratic objective matrix - a NumPy 2-D dense ndarray or a SciPy sparse matrix.
This can be None if there are no quadratic terms.

c: The linear constraint vector - a NumPy 1-D ndarray. This can be None if there are no
linear terms.

constant: Objective constant.
xQ_L (optional): Decision variables for quadratic objective terms; left multiplier for Q.
Argument can be an MVar object, a list of Var objects, or None (None uses all variables in
the model). The length of the argument must match the size of the first dimension of Q.

xQ_R (optional): Decision variables for quadratic objective terms; right multiplier for Q.
The length of the argument must match the size of the second dimension of Q.

xc (optional): Decision variables for linear objective terms. Argument can be an MVar
object, a list of Var objects, or None (None uses all variables in the model). The length of
the argument must match the length of c.

sense (optional): Optimization sense (GRB.MINIMIZE for minimization, GRB.MAXIMIZE
for maximization). Omit this argument to use the ModelSense attribute value to determine
the sense.

Example usage:
c = np.full(10, 1.0)
xc = model.addMVar(10)

model.setMObjective(None, c, 0.0, None, None, xc, GRB.MAXIMIZE)

Q = np.full((2, 3), 1.0)
xL = model.addMVar(2)
xR = model.addMVar(3)

model.setMObjective(Q, None, 0.0, xL, xR, None, GRB.MINIMIZE)

556

Model.setObjective()

setObjective (expr, sense=None)

Set the model objective equal to a linear or quadratic expression (for multi-objective optimiza-
tion, see setObjectiveN).

Note that you can also modify a linear model objective using the Obj variable attribute. If you
wish to mix and match these two approaches, please note that this method will replace the existing
objective.

Arguments:
expr: New objective expression. Argument can be a linear or quadratic expression (an
objective of type LinExpr or QuadExpr).

sense (optional): Optimization sense (GRB.MINIMIZE for minimization, GRB.MAXIMIZE
for maximization). Omit this argument to use the ModelSense attribute value to determine
the sense.

Example usage:
model.setObjective(x + y, GRB.MAXIMIZE)
model.setObjective(x*x + y*y)

Model.setObjectiveN()

setObjectiveN (expr, index, priority=0, weight=1, abstol=1e-6, reltol=0,
name="")

Set an alternative optimization objective equal to a linear expression.
Please refer to the discussion of Multiple Objectives for more information on the use of alter-

native objectives.
Note that you can also modify an alternative objective using the ObjN variable attribute. If

you wish to mix and match these two approaches, please note that this method replaces the entire
existing objective, while the ObjN attribute can be used to modify individual terms.

Arguments:
expr (LinExpr): New alternative objective.
index (int): Index for new objective. If you use an index of 0, this routine will change the
primary optimization objective.

priority (int, optional): Priority for the alternative objective. This initializes the
ObjNPriority attribute for this objective.

weight (float, optional): Weight for the alternative objective. This initializes the Ob-
jNWeight attribute for this objective.

abstol (float, optional): Absolute tolerance for the alternative objective. This initial-
izes the ObjNAbsTol attribute for this objective.

reltol (float, optional): Relative tolerance for the alternative objective. This initial-
izes the ObjNRelTol attribute for this objective.

name (string, optional): Name of the alternative objective. This initializes the ObjN-
Name attribute for this objective. Note that name will be stored as an ASCII string. Thus,
a name like ’A→B’ will produce an error, because ’→’ can not be represented as an ASCII
character. Note also that names that contain spaces are strongly discouraged, because
they can’t be written to LP format files.

557

Example usage:
Primary objective: x + 2 y
model.setObjectiveN(x + 2*y, 0, 2)
Alternative, lower priority objectives: 3 y + z and x + z
model.setObjectiveN(3*y + z, 1, 1)
model.setObjectiveN(x + z, 2, 0)

Model.setPWLObj()

setPWLObj (var, x, y)

Set a piecewise-linear objective function for a variable.
The arguments to this method specify a list of points that define a piecewise-linear objective

function for a single variable. Specifically, the x and y arguments give coordinates for the vertices
of the function.

For additional details on piecewise-linear objective functions, refer to this discussion.
Arguments:

var: A Var object that gives the variable whose objective function is being set.
x: The x values for the points that define the piecewise-linear function. Must be in non-
decreasing order.

y: The y values for the points that define the piecewise-linear function.
Example usage:

model.setPWLObj(var, [1, 3, 5], [1, 2, 4])

Model.setParam()

setParam (paramname, newvalue)

Set the value of a parameter to a new value. Note that this method only affects the parameter
setting for this model. Use global function setParam to change the parameter for all models.

You can also set parameters using the Model.Params class. For example, to set parameter
MIPGap to value 0 for model m, you can do either m.setParam(’MIPGap’, 0) or m.Params.MIPGap=0.

Please consult the parameter section for a complete list of Gurobi parameters, including de-
scriptions of their purposes and their minimum, maximum, and default values.

Arguments:
paramname: String containing the name of parameter that you would like to modify. The
name can include ’*’ and ’?’ wildcards. If more than one parameter matches, the matching
names are listed and none are modified. Note that case is ignored.

newvalue: Desired new value for parameter. Can be ’default’, which indicates that the
parameter should be reset to its default value.

Example usage:
model.setParam("heu*", 0.5)
model.setParam(GRB.Param.heuristics, 0.5)
model.setParam("heu*", "default")

558

Model.singleScenarioModel()

singleScenarioModel ()

Capture a single scenario from a multi-scenario model. Use the ScenarioNumber parameter to
indicate which scenario to capture.

The model on which this method is invoked must be a multi-scenario model, and the result will
be a single-scenario model.

Return value:
Model for a single scenario.

Example usage:
model.params.ScenarioNumber = 0
s = model.singleScenarioModel()

Model.terminate()

terminate ()

Generate a request to terminate the current optimization. This method can be called at any
time during an optimization (from a callback, from another thread, from an interrupt handler,
etc.). Note that, in general, the request won’t be acted upon immediately.

When the optimization stops, the Status attribute will be equal to GRB_INTERRUPTED.
Example usage:

model.terminate()

Model.tune()

tune ()

Perform an automated search for parameter settings that improve performance. Upon comple-
tion, this method stores the best parameter sets it found. The number of stored parameter sets
can be determined by querying the value of the TuneResultCount attribute. The actual settings
can be retrieved using getTuneResult.

Please refer to the parameter tuning section for details on the tuning tool.
Example usage:

model.tune()

Model.update()

update ()

Process any pending model modifications.
Example usage:

model.update()

559

Model.write()

write (filename)

This method is the general entry point for writing optimization data to a file. It can be used
to write optimization models, solutions vectors, basis vectors, start vectors, or parameter settings.
The type of data written is determined by the file suffix. File formats are described in the File
Format section.

Note that writing a model to a file will process all pending model modifications. However,
writing other model information (solutions, bases, etc.) will not.

Note also that when you write a Gurobi parameter file (PRM), both integer or double parameters
not at their default value will be saved, but no string parameter will be saved into the file.

Arguments:
filename: The name of the file to be written. The file type is encoded in the file name suffix.
Valid suffixes are .mps, .rew, .lp, or .rlp for writing the model itself, .ilp for writing just
the IIS associated with an infeasible model (see Model.computeIIS for further information),
.sol for writing the current solution, .mst for writing a start vector, .hnt for writing a
hint file, .bas for writing an LP basis, .prm for writing modified parameter settings, .attr
for writing model attributes, or .json for writing solution information in JSON format.
If your system has compression utilities installed (e.g., 7z or zip for Windows, and gzip,
bzip2, or unzip for Linux or Mac OS), then the files can be compressed, so additional
suffixes of .gz, .bz2, or .7z are accepted.

Example usage:
model.write("out.mst")
model.write("out.sol")

560

6.3 Var
Gurobi variable object. Variables are always associated with a particular model. You create a
variable object by adding a variable to a model (using Model.addVar), rather than by using a Var
constructor.

Variable objects have a number of attributes. The full list can be found in the Attributes section
of this document. Some variable attributes can only be queried, while others can also be set. Recall
that the Gurobi optimizer employs a lazy update approach, so changes to attributes don’t take effect
until the next call to Model.update, Model.optimize, or Model.write on the associated model.

We should point out a few things about variable attributes. Consider the lb attribute. Its value
can be queried using var.lb. The Gurobi library ignores letter case in attribute names, so it can
also be queried as var.LB. It can be set using a standard assignment statement (e.g., var.lb = 0).
However, as mentioned earlier, attribute modification is done in a lazy fashion, so you won’t see
the effect of the change immediately. And some attributes can not be set (e.g., the x attribute), so
attempts to assign new values to them will raise an exception.

You can also use Var.getAttr/ Var.setAttr to access attributes. The attribute name can be
passed to these routines as a string, or you can use the constants defined in the GRB.Attr class
(e.g., GRB.Attr.LB).

To build expressions using variable objects, you generally use operator overloading. You can
build either linear or quadratic expressions:

expr1 = x + 2 * y + 3 * z + 4.0
expr2 = x ** 2 + 2 * x * y + 3 * z + 4.0

The first expression is linear, while the second is quadratic. An expression is typically then passed
to setObjective (to set the optimization objective) or addConstr (to add a constraint).

Var.getAttr()

getAttr (attrname)

Query the value of a variable attribute. The full list of available attributes can be found in the
Attributes section.

Raises an AttributeError if the requested attribute doesn’t exist or can’t be queried. Raises
a GurobiError if there is a problem with the Var object (e.g., it was removed from the model).

Arguments:
attrname: The attribute being queried.

Return value:
The current value of the requested attribute.

Example usage:
print(var.getAttr(GRB.Attr.X))
print(var.getAttr("x"))

Var.sameAs()

sameAs (var2)

561

Check whether two variable objects refer to the same variable.
Arguments:

var2: The other variable.
Return value:

Boolean result indicates whether the two variable objects refer to the same model variable.
Example usage:

print(model.getVars()[0].sameAs(model.getVars()[1]))

Var.index

index

This property returns the current index, or order, of the variable in the underlying constraint
matrix.

Return value:
-2: removed, -1: not in model, otherwise: index of the variable in the model

Note that the index of a variable may change after subsequent model modifications.
Example usage:

v = model.getVars()[0]
print(v.index) # Index will be 0

Var.setAttr()

setAttr (attrname, newvalue)

Set the value of a variable attribute. Note that, due to our lazy update approach, the change
won’t actually take effect until you update the model (using Model.update), optimize the model
(using Model.optimize), or write the model to disk (using Model.write).

The full list of available attributes can be found in the Attributes section.
Raises an AttributeError if the specified attribute doesn’t exist or can’t be set. Raises a

GurobiError if there is a problem with the Var object (e.g., it was removed from the model).
Arguments:

attrname: The attribute being modified.
newvalue: The desired new value of the attribute.

Example usage:
var.setAttr(GRB.Attr.UB, 0.0)
var.setAttr("ub", 0.0)

562

6.4 MVar
Gurobi matrix variable object. An MVar is a NumPy ndarray of Gurobi variables. Variables are
always associated with a particular model. You typically create these objects using Model.addMVar.

You generally use MVar objects to build matrix expressions, typically using overloaded operators.
You can build linear matrix expressions or quadratic matrix expressions:

expr1 = A @ x
expr2 = A @ x + B @ y + z
expr3 = x @ A @ x + y @ B @ y

The first two expressions are linear, while the third is quadratic.
Dimensions and data types must always be compatible. In the examples above, matrix A must

be either a NumPy ndarray with two dimensions or a SciPy sparse matrix (which will always have
two dimensions), and x must be a 1-D MVar. In expr1, the size of the second dimension of A must
be equal to the length of x. The same must be true of B and y in expr2. In addition, the size of
the first dimension of A in expr2 must be equal to the size of the first dimension of B, and also to
the length of z.

For expr3, the size of the first dimension of A must be equal to the length of the MVar on the
left, and the size of the second dimension must be equal to the length of the MVar on the right.
The same is true for B.

An expression is typically then passed to setObjective (to set the optimization objective) or
addConstr (to add a constraint).

Variable objects have a number of attributes. The full list can be found in the Attributes section
of this document. Some variable attributes can only be queried, while others can also be set. Recall
that the Gurobi optimizer employs a lazy update approach, so changes to attributes don’t take effect
until the next call to Model.update, Model.optimize, or Model.write on the associated model.

We should point out a few things about variable attributes. Consider the lb attribute. Its value
can be queried using mvar.lb. The Gurobi library ignores letter case in attribute names, so it can
also be queried as var.LB. Attribute values are returns as a NumPy ndarray that has the same
shape as mvar. An attribute can be set, using a standard assignment statement (e.g., var.lb = l),
with l being either an ndarray with the appropriate shape, or a scalar which is then applied to all
of the associated variables. However, as mentioned earlier, attribute modification is done in a lazy
fashion, so you won’t see the effect of the change immediately. And some attributes can not be set
(e.g., the x attribute), so attempts to assign new values to them will raise an exception.

You can also use MVar.getAttr/ MVar.setAttr to access attributes. The attribute name can be
passed to these routines as a string, or you can use the constants defined in the GRB.Attr class
(e.g., GRB.Attr.LB).

MVar()

MVar (vars)

MVar constructor. Create an MVar object from a list of Var objects. Note that MVar objects
are more typically created using Model.addMVar.

Arguments:
vars: List of Gurobi Var objects.

563

Return value:
The new MVar object.

Example usage:

x = MVar(model.getVars())

MVar.copy()

copy ()

Copy an MVar object.
Return value:

The new object.
Example usage:

print(copy = mvar.copy)

MVar.tolist()

tolist ()

Return the variables associated with this matrix variable as a list of individual Var objects.
Return value:

List of Var objects.
Example usage:

mvar = model.addMVar(5)
varlist = mvar.tolist()
Do something with the Var correponding to mvar[3]
print(varlist[3])

MVar.getAttr()

getAttr (attrname)

Query the value of an attribute for a matrix variable. The full list of available attributes can
be found in the Attributes section.

Raises an AttributeError if the requested attribute doesn’t exist or can’t be queried. Raises
a GurobiError if there is a problem with the MVar object (e.g., it was removed from the model).

The result is returned in a NumPy ndarray with the same shape as the MVar object.
Arguments:

attrname: The attribute being queried.
Return value:

Current values for the requested attribute.
Example usage:

print(var.getAttr(GRB.Attr.X))
print(var.getAttr("x"))

564

MVar.setAttr()

setAttr (attrname, newvalue)

Set the value of a matrix variable attribute.
Note that, due to our lazy update approach, the change won’t actually take effect until you

update the model (using Model.update), optimize the model (using Model.optimize), or write the
model to disk (using Model.write).

The full list of available attributes can be found in the Attributes section.
Raises an AttributeError if the specified attribute doesn’t exist or can’t be set. Raises a

GurobiError if there is a problem with the MVar object (e.g., it was removed from the model).
Arguments:

attrname: The attribute being modified.
newvalue: The desired new value of the attribute. The shape must be the same as the
MVar object. Alternatively, you can pass a scalar argument, which will automatically be
promoted to have the right shape.

Example usage:
var.setAttr("ub", np.full((5,), 0)
var.setAttr(GRB.Attr.UB, 0.0)
var.setAttr("ub", 0.0)

MVar.sum()

sum ()

Sum the variables in an MVar. Returns an MLinExpr.
Return value:

The sum, as a linear matrix expression.
Example usage:

x.sum()
x[:,1].sum()

565

6.5 Constr
Gurobi constraint object. Constraints are always associated with a particular model. You create a
constraint object by adding a constraint to a model (using Model.addConstr), rather than by using
a Constr constructor.

Constraint objects have a number of attributes. The full list can be found in the Attributes
section of this document. Some constraint attributes can only be queried, while others can also be
set. Recall that the Gurobi optimizer employs a lazy update approach, so changes to attributes don’t
take effect until the next call to Model.update, Model.optimize, or Model.write on the associated
model.

We should point out a few things about constraint attributes. Consider the rhs attribute. Its
value can be queried using constr.rhs. The Gurobi library ignores letter case in attribute names,
so it can also be queried as constr.rhs. It can be set using a standard assignment statement (e.g.,
constr.rhs = 0). However, as mentioned earlier, attribute modification is done in a lazy fashion,
so you won’t see the effect of the change immediately. And some attributes can not be set (e.g.,
the Pi attribute), so attempts to assign new values to them will raise an exception.

You can also use Constr.getAttr/ Constr.setAttr to access attributes. The attribute name can
be passed to these routines as a string, or you can use the constants defined in the GRB.Attr class
(e.g., GRB.Attr.RHS).

Constr.getAttr()

getAttr (attrname)

Query the value of a constraint attribute. The full list of available attributes can be found in
the Attributes section.

Raises an AttributeError if the requested attribute doesn’t exist or can’t be queried. Raises
a GurobiError if there is a problem with the Constr object (e.g., it was removed from the model).

Arguments:
attrname: The attribute being queried.

Return value:
The current value of the requested attribute.

Example usage:
print(constr.getAttr(GRB.Attr.Slack))
print(constr.getAttr("slack"))

Constr.index

index

This property returns the current index, or order, of the constraint in the underlying constraint
matrix.

Note that the index of a constraint may change after subsequent model modifications.
Return value:

-2: removed, -1: not in model, otherwise: index of the constraint in the model
Example usage:

566

c = model.getConstrs()[0]
print(c.index) # Index will be 0

Constr.sameAs()

sameAs (constr2)

Check whether two constraint objects refer to the same constraint.
Arguments:

constr2: The other constraint.
Return value:

Boolean result indicates whether the two constraint objects refer to the same model con-
straint.

Example usage:
print(model.getConstrs()[0].sameAs(model.getConstrs()[1]))

Constr.setAttr()

setAttr (attrname, newvalue)

Set the value of a constraint attribute. Note that, due to our lazy update approach, the change
won’t actually take effect until you update the model (using Model.update), optimize the model
(using Model.optimize), or write the model to disk (using Model.write).

The full list of available attributes can be found in the Attributes section.
Raises an AttributeError if the specified attribute doesn’t exist or can’t be set. Raises a

GurobiError if there is a problem with the Constr object (e.g., it was removed from the model).
Arguments:

attrname: The attribute being modified.
newvalue: The desired new value of the attribute.

Example usage:
constr.setAttr(GRB.Attr.RHS, 0.0)
constr.setAttr("rhs", 0.0)

567

6.6 MConstr
Gurobi matrix constraint object. An MConstr object is an array-like data structure that represents
multiple linear constraints (in contrast to a Constr object, which represents a single constraint). It
behaves similar to NumPy’s ndarrays, e.g., it has a shape and can be indexed and sliced. Matrix
constraints are always associated with a particular model. You typically create these objects with
Model.addConstr, using overloaded comparison operators on matrix variables and linear matrix
expressions, or with the method Model.addMConstr.

Constraint objects have a number of attributes. The full list can be found in the Attributes
section of this document. Some constraint attributes can only be queried, while others can also be
set. Recall that the Gurobi optimizer employs a lazy update approach, so changes to attributes don’t
take effect until the next call to Model.update, Model.optimize, or Model.write on the associated
model.

We should point out a few things about constraint attributes. Consider the rhs attribute.
The values for a matrix constraint mc can be queried using mc.rhs. The Gurobi library ignores
letter case in attribute names, so it can also be queried as mc.RHS. Attribute values are returned
as a NumPy ndarray that has the same shape as mc. An attribute can be set, using a standard
assignment statement (e.g., constr.rhs = b), with b being either an ndarray with the appropriate
shape, or a scalar which is then applied to all of the associated constraints. However, as mentioned
earlier, attribute modification is done in a lazy fashion, so you won’t see the effect of the change
immediately. And some attributes can not be set (e.g., the Pi attribute), so attempts to assign
new values to them will raise an exception.

You can also use MConstr.getAttr/ MConstr.setAttr to access attributes. The attribute name
can be passed to these routines as a string, or you can use the constants defined in the GRB.Attr
class (e.g., GRB.Attr.RHS).

MConstr.tolist()

tolist ()

Return the constraints associated with this matrix constraint as a list of individual Constr
objects.

Return value:
List of Constr objects.

Example usage:
mc = model.addConstr(A @ x <= b)
constrlist = mc.tolist()
Do something with the Constr correponding to mc[3]
print(constrlist[3])

MConstr.getAttr()

getAttr (attrname)

Query the value of an attribute for a matrix constraint. The full list of available attributes can
be found in the Attributes section.

568

Raises an AttributeError if the requested attribute doesn’t exist or can’t be queried. Raises a
GurobiError if there is a problem with the MConstr object (e.g., it was removed from the model).

The result is returned as a NumPy ndarray with the same shape as the MConstr object.
Arguments:

attrname: The attribute being queried.
Return value:

ndarray of current values for the requested attribute.
Example usage:

mc = model.addConstr(A @ x <= b)
rhs = mc.getAttr("RHS")

MConstr.setAttr()

setAttr (attrname, newvalue)

Set the value of a matrix constraint attribute.
Note that, due to our lazy update approach, the change won’t actually take effect until you

update the model (using Model.update), optimize the model (using Model.optimize), or write the
model to disk (using Model.write).

The full list of available attributes can be found in the Attributes section.
Raises an AttributeError if the specified attribute doesn’t exist or can’t be set. Raises a

GurobiError if there is a problem with the MConstr object (e.g., it was removed from the model).
Arguments:

attrname: The attribute being modified.
newvalue: ndarray of desired new values for the attribute. The shape must be the same as
the MConstr object. Alternatively, you can pass a scalar argument, which will automati-
cally be promoted to have the right shape.

Example usage:
mc = model.addConstr(A @ x <= b)
mc.setAttr("RHS", np.arange(A.shape[0]))
mc.setAttr(GRB.Attr.RHS, 0.0) # broadcast

569

6.7 QConstr
Gurobi quadratic constraint object. Quadratic constraints are always associated with a particular
model. You create a quadratic constraint object by adding a quadratic constraint to a model (using
Model.addQConstr), rather than by using a QConstr constructor.

Quadratic constraint objects have a number of attributes. The full list can be found in the
Attributes section of this document. Some constraint attributes can only be queried, while others
can also be set. Recall that the Gurobi optimizer employs a lazy update approach, so changes to
attributes don’t take effect until the next call to Model.update, Model.optimize, Model.write on
the associated model.

We should point out a few things about quadratic constraint attributes. Consider the qcrhs
attribute. Its value can be queried using qconstr.qcrhs. The Gurobi library ignores letter case
in attribute names, so it can also be queried as qconstr.QCRHS. It can be set using a standard
assignment statement (e.g., qconstr.qcrhs = 0). However, as mentioned earlier, attribute modi-
fication is done in a lazy fashion, so you won’t see the effect of the change immediately. And some
attributes can not be set (e.g., the qcpi attribute), so attempts to assign new values to them will
raise an exception.

You can also use QConstr.getAttr/ QConstr.setAttr to access attributes. The attribute name
can be passed to these routines as a string, or you can use the constants defined in the GRB.Attr
class (e.g., GRB.Attr.QCRHS).

QConstr.getAttr()

getAttr (attrname)

Query the value of a quadratic constraint attribute. The full list of available attributes can be
found in the Attributes section.

Raises an AttributeError if the requested attribute doesn’t exist or can’t be queried. Raises a
GurobiError if there is a problem with the QConstr object (e.g., it was removed from the model).

Arguments:
attrname: The attribute being queried.

Return value:
The current value of the requested attribute.

Example usage:
print(qconstr.getAttr(GRB.Attr.QCSense))
print(qconstr.getAttr("qcsense"))

QConstr.setAttr()

setAttr (attrname, newvalue)

Set the value of a quadratic constraint attribute. Note that, due to our lazy update approach,
the change won’t actually take effect until you update the model (using Model.update), optimize
the model (using Model.optimize), or write the model to disk (using Model.write).

The full list of available attributes can be found in the Attributes section.

570

Raises an AttributeError if the specified attribute doesn’t exist or can’t be set. Raises a
GurobiError if there is a problem with the QConstr object (e.g., it was removed from the model).

Arguments:
attrname: The attribute being modified.
newvalue: The desired new value of the attribute.

Example usage:
constr.setAttr(GRB.Attr.QCRHS, 0.0)
constr.setAttr("qcrhs", 0.0)

571

6.8 SOS
Gurobi SOS constraint object. SOS constraints are always associated with a particular model.
You create an SOS object by adding an SOS constraint to a model (using Model.addSOS), rather
than by using an SOS constructor. Similarly, SOS constraints are removed using the Model.remove
method.

An SOS constraint can be of type 1 or 2 (GRB.SOS_TYPE1 or GRB.SOS_TYPE2). A type 1 SOS
constraint is a set of variables where at most one variable in the set may take a value other than
zero. A type 2 SOS constraint is an ordered set of variables where at most two variables in the set
may take non-zero values. If two take non-zero values, they must be contiguous in the ordered set.

SOS constraint objects have one attribute, IISSOS, which can be queried with the SOS.getAttr
method.

SOS.getAttr()

getAttr (attrname)

Query the value of an SOS attribute. The full list of available attributes can be found in the
Attributes section.

Raises an AttributeError if the requested attribute doesn’t exist or can’t be queried. Raises
a GurobiError if there is a problem with the SOS object (e.g., it was removed from the model).

Arguments:
attrname: The attribute being queried.

Return value:
The current value of the requested attribute.

Example usage:
print(sos.getAttr(GRB.Attr.IISSOS))

572

6.9 GenConstr
Gurobi general constraint object. General constraints are always associated with a particular
model. You add a general constraint to a model either by using one of the Model.addGenConstrXxx
method, or by using Model.addConstr or Model.addConstrs plus a general constraint helper func-
tion).

General constraint objects have a number of attributes, which can be queried with the Gen-
Constr.getAttr method. The full list can be found in the Attributes section of this document.

GenConstr.getAttr()

getAttr (attrname)

Query the value of a general constraint attribute. The full list of available attributes can be
found in the Attributes section.

Raises an AttributeError if the requested attribute doesn’t exist or can’t be queried. Raises
a GurobiError if there is a problem with the GenConstr object (e.g., it was removed from the
model).

Arguments:
attrname: The attribute being queried.

Return value:
The current value of the requested attribute.

Example usage:
print(genconstr.getAttr(GRB.Attr.GenConstrType))
print(genconstr.getAttr("GenConstrType"))

GenConstr.setAttr()

setAttr (attrname, newvalue)

Set the value of a general constraint attribute. Note that, due to our lazy update approach, the
change won’t actually take effect until you update the model (using Model.update), optimize the
model (using Model.optimize), or write the model to disk (using Model.write).

The full list of available attributes can be found in the Attributes section.
Raises an AttributeError if the specified attribute doesn’t exist or can’t be set. Raises a

GurobiError if there is a problem with the GenConstr object (e.g., it was removed from the
model).

Arguments:
attrname: The attribute being modified.
newvalue: The desired new value of the attribute.

6.10 LinExpr
Gurobi linear expression object. A linear expression consists of a constant term, plus a list of
coefficient-variable pairs that capture the linear terms. Linear expressions are used to build linear
objective and constraints. They are temporary objects that typically have short lifespans.

You generally build linear expressions using overloaded operators. For example, if x is a Var
object, then x + 1 is a LinExpr object. Expressions can be built from constants (e.g., expr = 0),

573

variables (e.g., expr = 1 * x + 2 * y), or from other expressions (e.g., expr2 = 2 * expr1 + x,
or expr3 = expr1 + 2 * expr2). You can also modify existing expressions (e.g., expr += x, or
expr2 -= expr1).

The full list of overloaded operators on LinExpr objects is as follows: +, +=, -, -=, *, *=, /, and **
(only for exponent 2). In Python parlance, we’ve defined the following LinExpr functions: __add__,
__radd__, __iadd__, __sub__, __rsub__, __isub__, __neg__, __mul__, __rmul__, __imul__,
__div__, and __pow__.

We’ve also overloaded the comparison operators (==, <=, and >=), to make it easier to build
constraints from linear expressions.

You can also use add or addTerms to modify expressions. The LinExpr() constructor can also
be used to build expressions. Another option is quicksum; it is a more efficient version of the
Python sum function. Terms can be removed from an expression using remove.

Given all these options for building expressions, you may wonder which is fastest. For small
expressions, you won’t need to worry about performance differences between them. If you are
building lots of very large expressions (100s of terms), you will find that the LinExpr() constructor
is generally going to be fastest, followed by the addTerms method, and then the quicksum function.

To add a linear constraint to your model, you generally build one or two linear expression
objects (expr1 and expr2) and then use an overloaded comparison operator to build an argument
for Model.addConstr. To give a few examples:

model.addConstr(expr1 <= expr2)
model.addConstr(expr1 == 1)
model.addConstr(2 ∗ x+ 3 ∗ y <= 4)

Once you add a constraint to your model, subsequent changes to the expression object you used to
build the constraint will not change the constraint (you would use Model.chgCoeff for that).

Individual terms in a linear expression can be queried using the getVar, getCoeff, and getCon-
stant methods. You can query the number of terms in the expression using the size method.

Note that a linear expression may contain multiple terms that involve the same variable. These
duplicate terms are merged when creating a constraint from an expression, but they may be visible
when inspecting individual terms in the expression (e.g., when using getVar).

LinExpr()

LinExpr (arg1=0.0, arg2=None)

Linear expression constructor. Note that you should generally use overloaded operators instead
of the explicit constructor to build linear expression objects.

This constructor takes multiple forms. You can initialize a linear expression using a constant
(LinExpr(2.0)), a variable (LinExpr(x)), an expression (LinExpr(2*x)), a pair of lists containing
coefficients and variables, respectively (LinExpr([1.0, 2.0], [x, y])), or a list of coefficient-
variable tuples (LinExpr([(1.0, x), (2.0, y), (1.0, z)])).

Return value:
A linear expression object.

Example usage:

expr = LinExpr(2.0)

574

expr = LinExpr(2*x)
expr = LinExpr([1.0, 2.0], [x, y])
expr = LinExpr([(1.0, x), (2.0, y), (1.0, z)])

LinExpr.add()

add (expr, mult=1.0)

Add one linear expression into another. Upon completion, the invoking linear expression will
be equal to the sum of itself and the argument expression.

Arguments:
expr: Linear expression to add.
mult (optional): Multiplier for argument expression.

Example usage:
e1 = x + y
e1.add(z, 3.0)

LinExpr.addConstant()

addConstant (c)

Add a constant into a linear expression.
Arguments:

c: Constant to add to expression.
Example usage:

expr = x + 2 * y
expr.addConstant(0.1)

LinExpr.addTerms()

addTerms (coeffs, vars)

Add new terms into a linear expression.
Arguments:

coeffs: Coefficients for new terms; either a list of coefficients or a single coefficient. The
two arguments must have the same size.

vars: Variables for new terms; either a list of variables or a single variable. The two
arguments must have the same size.

Example usage:
expr.addTerms(1.0, x)
expr.addTerms([2.0, 3.0], [y, z])

LinExpr.clear()

clear ()

Set a linear expression to 0.

575

Example usage:
expr.clear()

LinExpr.copy()

copy ()

Copy a linear expression
Return value:

Copy of input expression.
Example usage:

e0 = 2 * x + 3
e1 = e0.copy()

LinExpr.getConstant()

getConstant ()

Retrieve the constant term from a linear expression.
Return value:

Constant from expression.
Example usage:

e = 2 * x + 3
print(e.getConstant())

LinExpr.getCoeff()

getCoeff (i)

Retrieve the coefficient from a single term of the expression.
Return value:

Coefficient for the term at index i in the expression.
Example usage:

e = x + 2 * y + 3
print(e.getCoeff(1))

LinExpr.getValue()

getValue ()

Compute the value of an expression using the current solution.
Return value:

The value of the expression.
Example usage:

obj = model.getObjective()
print(obj.getValue())

576

LinExpr.getVar()

getVar (i)

Retrieve the variable object from a single term of the expression.
Return value:

Variable for the term at index i in the expression.
Example usage:

e = x + 2 * y + 3
print(e.getVar(1))

LinExpr.remove()

remove (item)

Remove a term from a linear expression.
Arguments:

item: If item is an integer, then the term stored at index item of the expression is removed.
If item is a Var, then all terms that involve item are removed.

Example usage:
e = x + 2 * y + 3
e.remove(x)

LinExpr.size()

size ()

Retrieve the number of terms in the linear expression (not including the constant).
Return value:

Number of terms in the expression.
Example usage:

e = x + 2 * y + 3
print(e.size())

LinExpr.__eq__()

__eq__ ()

Overloads the == operator, creating a TempConstr object that captures an equality constraint.
The result is typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(x + y == 1)

577

LinExpr.__le__()

__le__ ()

Overloads the <= operator, creating a TempConstr object that captures an inequality constraint.
The result is typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(x + y <= 1)

LinExpr.__ge__()

__ge__ (arg)

Overloads the >= operator, creating a TempConstr object that captures an inequality constraint.
The result is typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(x + y >= 1)

578

6.11 QuadExpr
Gurobi quadratic expression object. A quadratic expression consists of a linear expression plus a
list of coefficient-variable-variable triples that capture the quadratic terms. Quadratic expressions
are used to build quadratic objective functions and quadratic constraints. They are temporary
objects that typically have short lifespans.

You generally build quadratic expressions using overloaded operators. For example, if x is a Var
object, then x * x is a QuadExpr object. Expressions can be built from constants (e.g., expr = 0),
variables (e.g., expr = 1 * x *x + 2 * x * y), or from other expressions (e.g., expr2 = 2 *
expr1 + x * x, or expr3 = expr1 + 2 * expr2). You can also modify existing expressions (e.g.,
expr += x * x, or expr2 -= expr1).

The full list of overloaded operators on QuadExpr objects is as follows: +, +=, -, -=, *, *=,
and /. In Python parlance, we’ve defined the following QuadExpr functions: __add__, __radd__,
__iadd__, __sub__, __rsub__, __isub__, __neg__, __mul__, __rmul__, __imul__, and __div__.

We’ve also overloaded the comparison operators (==, <=, and >=), to make it easier to build
constraints from quadratic expressions.

You can use quicksum to build quadratic expressions; it is a more efficient version of the Python
sum function. You can also use add or addTerms to modify expressions. Terms can be removed
from an expression using remove.

Given all these options for building expressions, you may wonder which is fastest. For small
expressions, you won’t need to worry about performance differences between them. If you are
building lots of very large expressions (100s of terms), you will find that a single call to addTerms
is fastest. Next would be a call to quicksum, followed by a series of calls to expr.add(x*x).

To add a quadratic constraint to your model, you generally build one or two quadratic expression
objects (qexpr1 and qexpr2) and then use an overloaded comparison operator to build an argument
for Model.addConstr. To give a few examples:

model.addConstr(qexpr1 <= qexpr2)
model.addConstr(qexpr1 == 1)
model.addConstr(2 ∗ x ∗ x+ 3 ∗ y ∗ y <= 4)

Once you add a constraint to your model, subsequent changes to the expression object you used to
build the constraint will have no effect on that constraint.

Individual quadratic terms in a quadratic expression can be queried using the getVar1, getVar2,
and getCoeff methods. You can query the number of quadratic terms in the expression using the
size method. To query the constant and linear terms associated with a quadratic expression, use
getLinExpr to obtain the linear portion of the quadratic expression, and then use the getVar,
getCoeff, and getConstant methods on this LinExpr object. Note that a quadratic expression may
contain multiple terms that involve the same variable pair. These duplicate terms are merged when
creating a constraint from an expression, but they may be visible when inspecting individual terms
in the expression (e.g., when using getVar1 and getVar2).

QuadExpr()

QuadExpr (expr = None)

579

Quadratic expression constructor. Note that you should generally use overloaded operators
instead of the explicit constructor to build quadratic expression objects.

Arguments:
expr (optional): Initial value of quadratic expression. Can be a LinExpr or a QuadExpr.
If no argument is specified, the initial expression value is 0.

Return value:
A quadratic expression object.

Example usage:

expr = QuadExpr()
expr = QuadExpr(2*x)
expr = QuadExpr(x*x + y+y)

QuadExpr.add()

add (expr, mult=1.0)

Add an expression into a quadratic expression. Argument can be either a linear or a quadratic
expression. Upon completion, the invoking quadratic expression will be equal to the sum of itself
and the argument expression.

Arguments:
expr: Linear or quadratic expression to add.
mult (optional): Multiplier for argument expression.

Example usage:
expr = x * x + 2 * y * y
expr.add(z * z, 3.0)

QuadExpr.addConstant()

addConstant (c)

Add a constant into a quadratic expression.
Arguments:

c: Constant to add to expression.
Example usage:

expr = x * x + 2 * y * y + z
expr.addConstant(0.1)

QuadExpr.addTerms()

addTerms (coeffs, vars, vars2=None)

Add new linear or quadratic terms into a quadratic expression.
Arguments:

coeffs: Coefficients for new terms; either a list of coefficients or a single coefficient. The
arguments must have the same size.

580

vars: Variables for new terms; either a list of variables or a single variable. The arguments
must have the same size.

vars2 (optional): Variables for new quadratic terms; either a list of variables or a single
variable. Only present when you are adding quadratic terms. The arguments must have
the same size.

Example usage:
expr.addTerms(1.0, x)
expr.addTerms([2.0, 3.0], [y, z])
expr.addTerms([2.0, 3.0], [x, y], [y, z])

QuadExpr.clear()

clear ()

Set a quadratic expression to 0.
Example usage:

expr.clear()

QuadExpr.copy()

copy ()

Copy a quadratic expression
Return value:

Copy of input expression.
Example usage:

e0 = x * x + 2 * y * y + z
e1 = e0.copy()

QuadExpr.getCoeff()

getCoeff (i)

Retrieve the coefficient from a single term of the expression.
Return value:

Coefficient for the quadratic term at index i in the expression.
Example usage:

expr = x * x + 2 * y * y + z
print(expr.getCoeff(1))

QuadExpr.getLinExpr()

getLinExpr ()

A quadratic expression is represented as a linear expression, plus a list of quadratic terms. This
method retrieves the linear expression associated with the quadratic expression.

Return value:

581

Linear expression from quadratic expression.
Example usage:

expr = x * x + 2 * y * y + z
le = expr.getLinExpr()

QuadExpr.getValue()

getValue ()

Compute the value of an expression using the current solution.
Return value:

The value of the expression.
Example usage:

obj = model.getObjective()
print(obj.getValue())

QuadExpr.getVar1()

getVar1 (i)

Retrieve the first variable for a single quadratic term of the quadratic expression.
Return value:

First variable associated with the quadratic term at index i in the quadratic expression.
Example usage:

expr = x * x + 2 * y * y + z
print(expr.getVar1(1))

QuadExpr.getVar2()

getVar2 (i)

Retrieve the second variable for a single quadratic term of the quadratic expression.
Return value:

Second variable associated with the quadratic term at index i in the quadratic expression.
Example usage:

expr = x * x + 2 * y * y + z
print(expr.getVar2(1))

QuadExpr.remove()

remove (item)

Remove a term from a quadratic expression.
Arguments:

item: If item is an integer, then the quadratic term stored at index item of the expression
is removed. If item is a Var, then all quadratic terms that involve item are removed.

Example usage:

582

expr = x * x + 2 * y * y + z
expr.remove(x)

QuadExpr.size()

size ()

Retrieve the number of quadratic terms in the expression.
Return value:

Number of quadratic terms in the expression.
Example usage:

expr = x * x + 2 * y * y + z
print(expr.size())

QuadExpr.__eq__()

__eq__ ()

Overloads the == operator, creating a TempConstr object that captures an equality constraint.
The result is typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(x*x + y*y == 1)

QuadExpr.__le__()

__le__ ()

Overloads the <= operator, creating a TempConstr object that captures an inequality constraint.
The result is typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(x*x + y*y <= 1)

QuadExpr.__ge__()

__ge__ (arg)

Overloads the >= operator, creating a TempConstr object that captures an inequality constraint.
The result is typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(x*x + y*y >= 1)

583

6.12 GenExpr
Gurobi general expression object. Objects of this class are created by a set of general constraint
helper functions functions. They are temporary objects, meant to be used in conjunction with over-
loaded operators to build TempConstr objects, which are then passed to addConstr or addConstrs
to build general constraints.

To be more specific, the following creates a GenExpr object...

max_(x, y)

The following creates a TempConstr object...

z == max_(x, y)

The following adds a general constraint to a model...

model.addConstr(z == max_(x, y))

Please refer to the TempConstr documentation for more information on building general con-
straints.

584

6.13 MLinExpr
Gurobi linear matrix expression object. A linear matrix expression consists of a matrix-vector
product, where the matrix is a NumPy dense matrix or a SciPy sparse matrix and the vector is
a Gurobi MVar object, plus an optional constant vector of compatible dimensions (i.e., Ax + b).
Linear matrix expressions are used to build linear objectives and constraints. They are temporary
objects that typically have short lifespans.

You generally build linear matrix expressions using overloaded operators, typically by multi-
plying a 2-D matrix (dense or sparse) by a 1-D MVar object using the Python matrix multiply (@)
operator (e.g., expr = A @ x). You can also promote an MVar object to an MLinExpr using arith-
metic expressions (e.g., expr = x + 1). Most arithmetic operations are supported on MLinExpr
objects, including addition and subtraction (e.g., expr = A @ x - B @ y), and multiplication by
a constant (e.g. expr = 2 * A @ x).

An MLinExpr object has a shape, defined similarly to that of other NumPy ndarray objects.
Due to the way it is defined, the shape will always be 1-dimensional, with the length reflecting the
size of the corresponding matrix-vector result. To give an example, forming A @ x where A has
shape (10,3) and x has shape (3,) gives a result with shape (10,).

When working with MLinExpr objects, you of course need to make sure that the shapes are
compatible. If you want to form A @ x, then A must be a 2-D array, x must be a 1-D array, and
the size of the second dimension of A must be equal to the size of x. Similarly, adding an object
into an MLinExpr object (including another MLinExpr) requires an object of the same shape. The
one exception is a constant, which is automatically promoted to have a compatible shape.

The full list of overloaded operators on MLinExpr objects is as follows: +, +=, -, -=, *, *=,
and @. In Python parlance, we’ve defined the following MLinExpr functions: __add__, __radd__,
__iadd__, __sub__, __rsub__, __isub__, __neg__, __mul__, __rmul__, __imul__, __matmul__,
and __rmatmul__.

We’ve also overloaded the comparison operators (==, <=, and >=), to make it easier to build
constraints from linear matrix expressions.

Note that the Python matrix multiplication operator (@) was introduced in Python version 3.5;
it isn’t available from Python 2.7.

MLinExpr.copy()

copy ()

Create a (shallow) copy of a linear matrix expression.
Return value:

Copy of expression object.
Example usage:

expr2 = expr1.copy()

MLinExpr.getValue()

getValue ()

Compute the value of a linear matrix expression using the current solution.

585

Return value:
Value of expression (1-D array).

Example usage:
expr = A @ x + b
expr.getValue()

MLinExpr.__eq__()

__eq__ ()

Overloads the == operator, creating a TempConstr object that captures a 1-D array of equality
constraints. The result is typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(A @ x == 1)

MLinExpr.__le__()

__le__ ()

Overloads the <= operator, creating a TempConstr object that captures a 1-D array of inequality
constraints. The result is typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(A @ x <= 1)

MLinExpr.__ge__()

__ge__ (arg)

Overloads the >= operator, creating a TempConstr object that captures a 1-D array of inequality
constraints. The result is typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(A @ x >= 1)

586

6.14 MQuadExpr
Gurobi quadratic matrix expression object. Quadratic matrix expressions are used to build quadratic
objective functions and quadratic constraints. They are temporary objects that typically have short
lifespans.

You generally build quadratic matrix expressions using overloaded operators. For example,
if x is an MVar object and A is a 2-D matrix (dense or sparse), then x @ A @ x and x @ x are
both MQuadExpr objects. Most arithmetic operations are support on MQuadExpr objects, including
addition and subtraction (e.g., expr = x @ A @ x - y @ B @ y), and multiplication by a constant
(e.g. expr = 2 * x @ A @ y).

The full list of overloaded operators on MQuadExpr objects is as follows: +, +=, -, -=, *, *=,
and /. In Python parlance, we’ve defined the following QuadExpr functions: __add__, __radd__,
__iadd__, __sub__, __rsub__, __isub__, __neg__, __mul__, __rmul__, and __imul__.

We’ve also overloaded the comparison operators (==, <=, and >=), to make it easier to build
constraints from quadratic expressions.

Note that the Python matrix multiplication operator (@) was introduced in Python version 3.5;
it isn’t available from Python 2.7.

Note that a quadratic matrix expression always produces a scalar result (a result with shape
(1,)). You can add linear terms into a quadratic matrix expression, but for the dimensions to be
compatible they must also have shape (1,).

MQuadExpr.copy()

copy ()

Create a (shallow) copy of a quadratic matrix expression.
Return value:

Copy of expression object.
Example usage:

expr2 = expr1.copy()

MQuadExpr.getValue()

getValue ()

Compute the value of a quadratic matrix expression using the current solution.
Return value:

Value of expression (scalar).
Example usage:

qexpr = x @ A @ x
qexpr.getValue()

MQuadExpr.__eq__()

__eq__ ()

587

Overloads the == operator, creating a TempConstr object that captures an equality constraint.
The result is typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(x @ Q @ y == 1)

MQuadExpr.__le__()

__le__ ()

Overloads the <= operator, creating a TempConstr object that captures an inequality constraint.
The result is typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(x @ Q @ y <= 1)

MQuadExpr.__ge__()

__ge__ (arg)

Overloads the >= operator, creating a TempConstr object that captures an inequality constraint.
The result is typically immediately passed to Model.addConstr.

Return value:
A TempConstr object.

Example usage:
m.addConstr(x @ Q @ y >= 1)

588

6.15 TempConstr
Gurobi temporary constraint object. Objects of this class are created as intermediate results when
building constraints using overloaded operators. There are no member functions on this class.
Instead, TempConstr objects are created by a set of functions on Var, MVar, LinExpr, QuadExpr,
MLinExpr, MQuadExpr, and GenExpr objects (e.g., ==, <=, and >=). You will generally never
store objects of this class in your own variables.

The TempConstr object allows you to create several different types of constraints:

• Linear Constraint: an expression of the form Expr1 sense Expr1, where Expr1 and Expr2
are LinExpr objects, Var objects, or constants, and sense is one of ==, <= or >=. For example,
x + y <= 1 + z is a linear constraint, as is x + y == 5. Note that Expr1 and Expr2 can’t
both be constants.

• Ranged Linear Constraint: an expression of the form LinExpr == [Const1, Const2],
where Const1 and Const2 are constants and LinExpr is a LinExpr object. For example,
x + y == [1, 2] is a ranged linear constraint.

• Quadratic Constraint: an expression of the form Expr1 sense Expr2, where Expr1 and
Expr2 are QuadExpr objects, LinExpr objects, Var objects, or constants, and sense is one of
==, <= or >=. For example, x*x + y*y <= 3 is a quadratic constraint, as is x*x + y*y <= z*z.
Note that one of Expr1 or Expr2 must be a QuadExpr (otherwise, the constraint would be
linear).

• Linear Matrix Constraint: an expression of the form Expr1 sense Expr1, where one
or both of Expr1 and Expr2 are MLinExpr objects and sense is one of ==, <= or >=. For
example, A @ x <= 1 is a linear matrix constraint, as is A @ x == B @ y.

• Quadratic Matrix Constraint: an expression of the form Expr1 sense Expr2, where one
or both of Expr1 and Expr2 are MQuadExpr objects and sense is one of ==, <= or >=. For
example, x @ Q @ y <= 3 is a quadratic constraint, as is x @ Q @ x <= y @ A @ y.

• Absolute Value Constraint: an expression of the form x == abs_(y), where x and y must
be Var objects.

• Logical Constraint: an expression of the form x == op_(y), where x is a binary Var object,
and y is a binary Var, a list of binary Var, or a tupledict of binary Var, and op_ is either
and_ or or_ (or the Python-specific variants, all_ and any_).

• Min or Max Constraint: an expression of the form x == op_(y), where x is a Var object,
and y is a Var, a list of Var and constants, or a tupledict of Var, and op_ is one of min_ or
max_.

• Indicator Constraint: an expression of the form (x == b) >> (Expr1 sense Expr2),
where x is a binary Var object, b is either 0 or 1; Expr1 and Expr2 are LinExpr objects,
Var objects, or constants, and sense is one of ==, <= or >=. Parenthesizing both expressions
is required. For example, (x == 1) >> (y + w <= 5) is an indicator constraint, indicating
that whenever the binary variable x takes the value 1 then the linear constraint y + w <= 5
must hold.

589

Consider the following examples:

model.addConstr(x + y == 1);
model.addConstr(x + y == [1, 2]);
model.addConstr(x*x + y*y <= 1);
model.addConstr(A @ x <= 1);
model.addConstr(x @ A @ x <= 1);
model.addConstr(x == abs_(y));
model.addConstr(x == or_(y, z));
model.addConstr(x == max_(y, z));
model.addConstr((x == 1) >> (y + z <= 5));

In each case, the overloaded comparison operator creates an object of type TempConstr, which is
then immediately passed to method Model.addConstr.

590

6.16 Column
Gurobi column object. A column consists of a list of coefficient, constraint pairs. Columns are used
to represent the set of constraints in which a variable participates, and the associated coefficients.
They are temporary objects that typically have short lifespans.

You generally build columns using the Column constructor. Terms can be added to an existing
column using addTerms. Terms can also be removed from a column using remove.

Individual terms in a column can be queried using the getConstr, and getCoeff methods. You
can query the number of terms in the column using the size method.

Column()

Column (coeffs=None, constrs=None)

Column constructor.
Arguments:

coeffs (optional): Lists the coefficients associated with the members of constrs.
constrs (optional): Constraint or constraints that participate in expression. If constrs
is a list, then coeffs must contain a list of the same length. If constrs is a single
constraint, then coeffs must be a scalar.

Return value:
An expression object.

Example usage:

constrs = model.getConstrs()

c = Column()
c.addTerms(3.0, constrs[0])
model.addVar(vtype=GRB.BINARY, obj=1.0, col=c)

model.addVar(vtype=GRB.INTEGER, col=Column(3.0, constrs[0]))

model.addVar(obj=3.0, col=Column([1.0, 2.0], constrs[1:3]))

Column.addTerms()

addTerms (coeffs, constrs)

Add new terms into a column.
Arguments:

coeffs: Coefficients for added constraints; either a list of coefficients or a single coefficient.
The two arguments must have the same size.

constrs: Constraints to add to column; either a list of constraints or a single constraint.
The two arguments must have the same size.

Example usage:
col.addTerms(1.0, x)
col.addTerms([2.0, 3.0], [y, z])

591

Column.clear()

clear ()

Remove all terms from a column.
Example usage:

col.clear()

Column.copy()

copy ()

Copy a column.
Return value:

Copy of input column.
Example usage:

col0 = Column(1.0, c0)
col1 = col0.copy()

Column.getCoeff()

getCoeff (i)

Retrieve the coefficient from a single term in the column.
Return value:

Coefficient for the term at index i in the column.
Example usage:

col = Column([1.0, 2.0], [c0, c1])
print(col.getCoeff(1))

Column.getConstr()

getConstr (i)

Retrieve the constraint object from a single term in the column.
Return value:

Constraint for the term at index i in the column.
Example usage:

col = Column([1.0, 2.0], [c0, c1])
print(col.getConstr(1))

Column.remove()

remove (item)

Remove a term from a column.
Arguments:

592

item: If item is an integer, then the term stored at index item of the column is removed.
If item is a Constr, then all terms that involve item are removed.

Example usage:
col = Column([1.0, 2.0], [c0, c1])
col.remove(c0)

Column.size()

size ()

Retrieve the number of terms in the column.
Return value:

Number of terms in the column.
Example usage:

print(Column([1.0, 2.0], [c0, c1]).size())

593

6.17 Callbacks
Gurobi callback class. A callback is a user function that is called periodically by the Gurobi
optimizer in order to allow the user to query or modify the state of the optimization. More
precisely, if you pass a function that takes two arguments (model and where) as the argument to
Model.optimize, your function will be called during the optimization. Your callback function can
then call Model.cbGet to query the optimizer for details on the state of the optimization.

Gurobi callbacks can be used both to monitor the progress of the optimization and to modify
the behavior of the Gurobi optimizer. A simple user callback function might call Model.cbGet
to produce a custom display, or perhaps to terminate optimization early (using Model.terminate).
More sophisticated MIP callbacks might use Model.cbGetNodeRel or Model.cbGetSolution to re-
trieve values from the solution to the current node, and then use Model.cbCut or Model.cbLazy
to add a constraint to cut off that solution, or Model.cbSetSolution to import a heuristic solution
built from that solution. For multi-objective problems, you might use Model.cbStopOneMultiObj
to interrupt the optimization process of one of the optimization steps in a multi-objective MIP
problem without stopping the hierarchical optimization process.

The Gurobi callback class provides a set of constants that are used within the user callback
function. The first set of constants in this class list the options for the where argument to the user
callback function. The where argument indicates from where in the optimization process the user
callback is being called. Options are listed in the Callback Codes section of this document.

The other set of constants in this class list the options for the what argument to Model.cbGet.
The what argument is used by the user callback to indicate what piece of status information it
would like to retrieve. The full list of options can be found in the Callback Codes section. As
with the where argument, you refer to a what constant through GRB.Callback. For example, the
simplex objective value would be requested using GRB.Callback.SPX_OBJVAL.

If you would like to pass data to your callback function, you can do so through the Model object.
For example, if your program includes the statement model._value = 1 before the optimization
begins, then your callback function can query the value of model._value. Note that the name of
the user data field must begin with an underscore.

When solving a model using multiple threads, the user callback is only ever called from a single
thread, so you don’t need to worry about the thread-safety of your callback.

Note that changing parameters from within a callback is not supported, doing so may lead to
undefined behavior.

You can look at callback.py in the examples directory for details of how to use Gurobi call-
backs.

594

6.18 GurobiError
Gurobi exception object. Upon catching an exception e, you can examine e.errno (an integer) or
e.message (a string). A list of possible values for errno can be found in the Error Code section.
message provides additional information on the source of the error.

595

6.19 Env
Gurobi environment object. Note that environments play a much smaller role in the Python
interface than they do in other Gurobi language APIs, mainly because the Python interface has a
default environment. Unless you explicitly pass your own environment to routines that require an
environment, the default environment will be used.

The primary situations where you will want to use your own environment are:

• When you are using a Gurobi Compute Server and want to choose the server from within
your program.

• When you need control over garbage collection of your environment. The Gurobi Python
interface maintains a reference to the default environment, so by default it will never be
garbage collected. By creating your own environment, you can control exactly when your
program releases any licensing tokens or Compute Servers it is using.

• When you are using concurrent environments in one of the concurrent optimizers.

It is good practice to use the with keyword when dealing with environment (and model) objects.
That way the resources tied to these objects are properly released even if an exception is raised at
some point. The following example illustrates two typical use patterns.

Example usage:

import gurobipy as gp
with gp.Env("gurobi.log") as env, gp.Model(env=env) as model:

Populate model object here...
m.optimize()

with gp.Env(empty=True) as env:
env.setParam("ComputeServer", "myserver1:32123")
env.setParam("ServerPassword", "pass")
env.start()
with gp.Model(env=env) as model:

Populate model object here...
model.optimize()

Note that you can manually remove the reference to the default environment by calling dis-
poseDefaultEnv. After calling this, and after all models built within the default environment are
garbage collected, the default environment will be garbage collected as well. A new default envi-
ronment will be created automatically if you call a routine that needs one.

Env()

Env (logfilename=””, empty=False, params=None)

Env constructor. You will generally want to use the default environment in Gurobi Python
programs. The exception is when you want explicit control over environment garbage collection. By
creating your own environment object and always passing it to methods that take an environment
as input (read or the Model constructor), you will avoid creating the default environment. Once

596

every model created using an Env object is garbage collected, and once the Env object itself is
no longer referenced, the garbage collector will reclaim the environment and release all associated
resources.

If the environment is not empty, This method will also populate any parameter (ComputeServer,
TokenServer, ServerPassword, etc.) specified in your gurobi.lic file. This method will also check
the current working directory for a file named gurobi.env, and it will attempt to read parameter
settings from this file if it exists. The file should be in PRM format (briefly, each line should contain
a parameter name, followed by the desired value for that parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Arguments:
logfilename: Name of the log file for this environment. Pass an empty string if you don’t
want a log file.

empty: Indicates whether the environment should be empty. You should use empty=True if
you want to set parameters before actually starting the environment. This can be useful
if you want to connect to a Compute Server, a Token Server, the Gurobi Instant Cloud or
a Cluster Manager. See the Environment Section for more details.

params: A dict containing Gurobi parameter/value pairs that should be set already upon
environment creation. Any server related parameters can be set through this dict, too.

Return value:
New environment object.

Example usage:

env = Env("gurobi.log")
m = read("misc07.mps", env)
m.optimize()

Example usage:

p = {"ComputeServer": "localhost:33322",
"ServerPassword": "pass",
"TimeLimit": 120.0}

with Env(params=p) as env, read(’misc07.mps’, env=env) as model:
model.optimize()

Env.ClientEnv()

Env.ClientEnv (logfilename, computeServer, router=””, password=””, group=””,
CStlsInsecure=0, priority=0, timeout=-1)

Compute Server Env constructor. Creates a client environment on a compute server. If all
compute servers are at capacity, this command will cause a job to be placed in the compute server
queue, and the command will return an environment once capacity is available.

Client environments have limited uses in the Python environment. You can use a client envi-
ronment as an argument to the Model constructor, to indicate that a model should be constructed

597

on a Compute Server, or as an argument to the global read function, to indicate that the result of
reading the file should be place on a Compute Server.

This method will also check the current working directory for a file named gurobi.env, and
it will attempt to read parameter settings from this file if it exists. The file should be in PRM
format (briefly, each line should contain a parameter name, followed by the desired value for that
parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Arguments:
logfilename: Name of the log file for this environment. Pass an empty string if you don’t
want a log file.

computeServer: A Compute Server. You can refer to the server using its name or its IP
address. If you are using a non-default port, the server name should be followed by the
port number (e.g., server1:61000)

router: The router for a Compute Server cluster. A router can be used to improve the
robustness of a Compute Server deployment. You should refer to the router using either
its name or its IP address. If no router is used (which is the typical case), pass an empty
string.

password: The password for gaining access to the specified Compute Server cluster. Pass
an empty string if no password is required.

group: The name of the Compute Server group.
CStlsInsecure: Indicates whether to use insecure mode in the TLS (Transport Layer Se-
curity). Set this to 0 unless your server administrator tells you otherwise.

priority: The priority of the job. Priorities must be between -100 and 100, with a default
value of 0 (by convention). Higher priority jobs are chosen from the server job queue before
lower priority jobs. Depending on the configuration of the server, a job with priority 100
runs immediately, bypassing the job queue and ignoring the job limit on the server. You
should exercise caution with priority 100 jobs, since they can severely overload a server,
which can cause jobs to fail, and in extreme cases can cause the server to crash. This
behavior is managed by the HARDJOBLIMIT, and is disabled by default. Refer to the
Gurobi Remote Services Reference Manual for more information on starting Compute
Server options.

timeout: Queue timeout (in seconds). If the job doesn’t reach the front of the queue before
the specified timeout, the call will exit with a JOB_REJECTED error. Use -1 to indicate that
the call should never timeout.

Return value:
New environment object.

Example usage:

env = Env.ClientEnv("client.log", "server1.mycompany.com,server2.mycompany.com")
m = read("misc07.mps", env)
m.optimize()

598

https://www.gurobi.com/documentation/9.1/remoteservices/remoteservices.html

Env.CloudEnv()

Env.CloudEnv (logfilename, accessID, secretKey, pool=””, priority=0)

Instant Cloud Env constructor. Creates a Gurobi environment on an Instant Cloud server. Uses
an existing Instant Cloud machine if one is currently active within the specified machine pool, and
launches a new one otherwise. Note that launching a machine can take a few minutes.

Once an Instant Cloud server is active (either because it was already active or because the
launch of a new server completed), this command places a job in the server queue. If the server
has sufficient capacity, the job will start immediately. Otherwise, it is placed in the server queue
and this command returns once capacity becomes available.

You should visit the Gurobi Instant Cloud site to obtain your accessID and secretKey, con-
figure your machine pools, and perform other cloud setup and maintenance tasks.

Note that you should keep your secretKey private. Sharing it with others will allow them to
launch Instant Cloud instances in your account.

This method will also check the current working directory for a file named gurobi.env, and
it will attempt to read parameter settings from this file if it exists. The file should be in PRM
format (briefly, each line should contain a parameter name, followed by the desired value for that
parameter).

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Most methods in the Gurobi Python interface will use the default environment, so you’ll need to
take special action to use the cloud environment created by this method. You can use a cloud envi-
ronment as an argument to the Model constructor, to indicate that a model should be constructed
on the given Instant Cloud server, or as an argument to the global read function, to indicate that
the result of reading the file should be placed on the given Instant Cloud Server.

Arguments:
logfilename: The name of the log file for this environment. May be NULL (or an empty
string), in which case no log file is created.

accessID: The access ID for your Gurobi Instant Cloud license. This can be retrieved from
the Gurobi Instant Cloud website. When used in combination with your secretKey, this
allows you to launch Instant Cloud instances and submit jobs to them.

secretKey: The secret key for your Gurobi Instant Cloud license. This can be retrieved
from the Gurobi Instant Cloud website. When used in combination with your accessID,
this allows you to launch Instant Cloud instances and submit jobs to them. Note that you
should keep your secret key private.

pool: The machine pool. Machine pools allow you to create fixed configurations on the
Instant Cloud website (capturing things like type of machine, geographic region, etc.),
and then launch and share machines from client programs without having to restart the
configuration information each time you launch a machine. May be NULL (or an empty
string), in which case your job will be launched in the default pool associated with your
cloud license.

priority: The priority of the job. Priorities must be between -100 and 100, with a default

599

value of 0 (by convention). Higher priority jobs are chosen from the server job queue
before lower priority jobs.

Return value:
New environment object.

Example usage:

env = Env.CloudEnv("cloud.log",
"3d1ecef9-dfad-eff4-b3fa", "ae6L23alJe3+fas");

m = read("misc07.mps", env)
m.optimize()

Env.resetParams()

resetParams ()

Reset the values of all parameters to their default values.
Example usage:

env.resetParams()

Env.setParam()

setParam (paramname, newvalue)

Set the value of a parameter to a new value.
Arguments:

paramname: String containing the name of parameter that you would like to modify. The
name can include ’*’ and ’?’ wildcards. If more than one parameter matches, the matching
names are listed and none are modified. Note that case is ignored.

newvalue: Desired new value for parameter. Can be ’default’, which indicates that the
parameter should be reset to its default value.

Example usage:
env.setParam("Cuts", 2)
env.setParam("Heu*", 0.5)
env.setParam("*Interval", 10)

Env.start()

start ()

Start an empty environment. If the environment has already been started, this method will do
nothing. If the call fails, the environment will have the same state as it had before the call to this
method.

This method will also populate any parameter (ComputeServer, TokenServer, ServerPassword,
etc.) specified in your gurobi.lic file. This method will also check the current working directory
for a file named gurobi.env, and it will attempt to read parameter settings from this file if it exists.
The file should be in PRM format (briefly, each line should contain a parameter name, followed by
the desired value for that parameter). After that, it will apply all parameter changes specified by

600

the user prior to this call. Note that this might overwrite parameters set in the license file, or in
the gurobi.env file, if present.

After all these changes are performed, the code will actually activate the environment, and
make it ready to work with models.

In general, you should aim to create a single Gurobi environment in your program, even if you
plan to work with multiple models. Reusing one environment is much more efficient than creating
and destroying multiple environments. The one exception is if you are writing a multi-threaded
program, since environments are not thread safe. In this case, you will need a separate environment
for each of your threads.

Example usage:
env = Env(empty=True)
env.setParam(’ComputeServer’, ’server.mydomain.com:61000’)
env.setParam(’ServerPassword’, ’mypassword’)
env.start()

Env.writeParams()

writeParams (filename)

Write all modified parameters to a file. The file is written in PRM format.
Example usage:

env.setParam("Heu*", 0.5)
env.writeParams("params.prm") # file will contain changed parameter
system("cat params.prm")

Env.dispose()

dispose (force=False)

Free all resources associated with this Env object.
Dispose of all models created in this environment before disposing of this Env object. An error

will be raised if this is not the case. Use the ’force’ parameter to override this behavior, and to
proceed with the disposal nevertheless. When doing so, any resource (memory, etc.), consumed by
still existing models cannot be reclaimed.

After this method is called, this Env object must no longer be used.
Example usage:

env = Env()
model = read("misc07.mps", env)
model.optimize()
model.dispose()
env.dispose()

601

6.20 Batch
Gurobi batch object. Batch optimization is a feature available with the Gurobi Cluster Manager.
It allows a client program to build an optimization model, submit it to a Compute Server cluster
(through a Cluster Manager), and later check on the status of the model and retrieve its solution.
For more information, please refer to the Batch Optimization section.

Commonly used methods on batch objects include update (refresh attributes from the Cluster
Manager), abort (abort execution of a batch request), retry (retry optimization for an interrupted
or failed batch), discard (remove the batch request and all related information from the Cluster
Manager), and getJSONSolution (query solution information for the batch request).

These methods are built on top of calls to the Cluster Manager REST API. They are meant to
simplify such calls, but note that you always have the option of calling the REST API directly.

Batch objects have four attributes:

• BatchID: Unique ID for the batch request.

• BatchStatus: Last batch status.

• BatchErrorCode: Last error code.

• BatchErrorMessage: Last error message.

You can access their values as you would for other attributes: batch.BatchStatus, batch.BatchID,
etc. Note that all Batch attributes are locally cached, and are only updated when you create a
client-side batch object or when you explicitly update this cache, which can done by calling update.

Batch()

Batch (batchID, env)

Given a BatchID, as returned by optimizeBatch, and a Gurobi environment that can con-
nect to the appropriate Cluster Manager (i.e., one where parameters CSManager, UserName, and
ServerPassword have been set appropriately), this function returns a Batch object. With it, you
can query the current status of the associated batch request and, once the batch request has been
processed, you can query its solution. Please refer to the Batch Optimization section for details
and examples.

Arguments:
batchID: ID of the batch request for which you want to access status and other information.
env: The environment in which the new batch object should be created.

Return value:
New batch object.

Example usage:

batch = gp.Batch(batchID, env)

Automatically disposed with context manager
with gp.Batch(batchID, env) as batch:

pass

602

Batch.abort()

abort ()

This method instructs the Cluster Manager to abort the processing of this batch request, chang-
ing its status to ABORTED. Please refer to the Batch Status Codes section for further details.

Example usage:

starttime = time.time ()
while batch. BatchStatus == GRB. BATCH_SUBMITTED :

Abort this batch if it is taking too long
curtime = time.time ()
if curtime - starttime > maxwaittime :

batch.abort ()
break

Batch.discard()

discard ()

This method instructs the Cluster Manager to remove all information related to the batch
request in question, including the stored solution if available. Further queries for the associated
batch request will fail with error code GRB_ERROR_DATA_NOT_AVAILABLE. Use this function with
care, as the removed information can not be recovered later on.

Example usage:
Remove batch request from manager
batch. discard ()

Batch.dispose()

dispose ()

Free all resources associated with this Batch object. After this method is called, this Batch
object must no longer be used.

Example usage:
batch.dispose()

Batch.getJSONSolution()

getJSONSolution ()

This method retrieves the solution of a completed batch request from a Cluster Manager. The
solution is returned as a JSON solution string. For this call to succeed, the status of the batch
request must be COMPLETED. Please refer to the Batch Status Codes section for further details.

Example usage:
print("JSON solution :")
Get JSON solution as string , create dict from it
sol = json.loads(batch. getJSONSolution ())

603

Batch.retry()

retry ()

This method instructs the Cluster Manager to retry optimization of a failed or aborted batch
request, changing its status to SUBMITTED. Please refer to the Batch Status Codes section for further
details.

Example usage:
starttime = time.time ()
while batch. BatchStatus == GRB. BATCH_SUBMITTED :

Abort this batch if it is taking too long
curtime = time.time ()
if curtime - starttime > maxwaittime :

batch.abort ()
break

Wait for two seconds
time.sleep (2)

Update the resident attribute cache of the Batch object with the
latest values from the cluster manager .
batch. update ()

If the batch failed , we retry it
if batch. BatchStatus == GRB. BATCH_FAILED :

batch.retry ()

Batch.update()

update ()

All Batch attribute values are cached locally, so queries return the value received during the last
communication with the Cluster Manager. This method refreshes the values of all attributes with
the values currently available in the Cluster Manager (which involves network communication).

Example usage:
Update the resident attribute cache of the Batch object with the
latest values from the cluster manager .
batch. update ()

Batch.writeJSONSolution()

writeJSONSolution (filename)

This method returns the stored solution of a completed batch request from a Cluster Manager.
The solution is returned in a gzip-compressed JSON file. The file name you provide must end with
a .json.gz extension. The JSON format is described in the JSON solution format section. Note
that for this call to succeed, the status of the batch request must be COMPLETED. Please refer to the
Batch Status Codes section for further details.

Arguments:
filename: Name of file where the solution should be stored (in JSON format).

604

Example usage:
Write the full JSON solution string to a file
batch. writeJSONSolution (’batch -sol.json.gz’)

605

6.21 GRB
Class for Python constants. Classes GRB.Attr and GRB.Param are used to get or set Gurobi
attributes and parameters, respectively.

Constants
The following list contains a set of constants that are used by the Gurobi Python interface. You
would refer to them using a GRB. prefix (e.g., GRB.OPTIMAL).

GRB.Attr
The constants defined in this class are used to get or set attributes (through Model.getAttr or
Model.setAttr, for example). Please refer to the Attributes section to see a list of all attributes
and their functions. You refer to an attribute using a GRB.Attr prefix (e.g., GRB.Attr.Obj). Note
that these constants are simply strings, so wherever you might use this constant, you also have the
option of using the string directly (e.g, ’obj’ rather than GRB.Attr.Obj).

GRB.Param
The constants defined in this class are used to get or set parameters Model.getParamInfo or
Model.setParam. Please refer to the Parameters section to see a list of all parameters and their
functions. You refer to a parameter using a GRB.Param prefix (e.g., GRB.Param.displayInterval).
Note that these constants are simply strings, so wherever you might use this constant, you also
have the option of using the string directly (e.g, ’displayInterval’ rather than GRB.Param.-
displayInterval).

606

6.22 tuplelist
Gurobi tuple list. This is a sub-class of the Python list class that is designed to efficiently
support a usage pattern that is quite common when building optimization models. In particular, if a
tuplelist is populated with a list of tuples, the select function on this class efficiently selects tuples
whose values match specified values in specified tuple fields. To give an example, the statement
l.select(1, ’*’, 5) would select all member tuples whose first field is equal to ’1’ and whose
third field is equal to ’5’. The ’*’ character is used as a wildcard to indicate that any value is
acceptable in that field.

You generally build tuplelist objects in the same way you would build standard Python lists.
For example, you can use the += operator to append a new list of items to an existing tuplelist, or
the + operator to concatenate a pair of tuplelist objects. You can also call the append, extend,
insert, pop, and remove functions.

To access the members of a tuplelist, you also use standard list functions. For example, l[0]
returns the first member of a tuplelist, while l[0:10] returns a tuplelist containing the first
ten members. You can also use len(l) to query the length of a list.

Note that tuplelist objects build and maintain a set of internal data structures to support
efficient select operations. If you wish to reclaim the storage associated with these data structures,
you can call the clean function.

A tuplelist is designed to store tuples containing scalar values (int, float, string, ...). It
may produce unpredictable results with other Python objects, such as tuples of tuples. Thus, you
can store (1, 2.0, ’abc’) in a tuplelist, but you shouldn’t store ((1, 2.0), ’abc’).

tuplelist()

tuplelist (list)

tuplelist constructor.
Arguments:

list: Initial list of member tuples.
Return value:

A tuplelist object.
Example usage:

l = tuplelist([(1,2), (1,3), (2,4)])
l = tuplelist([(’A’, ’B’, ’C’), (’A’, ’C’, ’D’)])

tuplelist.select()

select (pattern)

Returns a tuplelist containing all member tuples that match the specified pattern. The
pattern requires one argument for each field in the member tuple. A scalar argument must match the
corresponding field exactly. A list argument matches if any list member matches the corresponding
field. A ’*’ argument matches any value in the corresponding field.

Arguments:
pattern: Pattern to match for a member tuple.

607

Example usage:
l.select(1, 3, ’*’, 6)
l.select([1, 2], 3, ’*’, 6)
l.select(’A’, ’*’, ’C’)

tuplelist.clean()

clean ()

Discards internal data structure associated with a tuplelist object. Note that calling this
routine won’t affect the contents of the tuplelist. It only affects the memory used and the
performance of later calls to select.

Example usage:
l.clean()

tuplelist.__contains__()

__contains__ (val)

Provides efficient support for the Python in operator.
Example usage:

if (1,2) in l:
print("Tuple (1,2) is in tuplelist l")

608

6.23 tupledict
Gurobi tuple dict. This is a sub-class of the Python dict class that is designed to efficiently
support a usage pattern that is quite common when building optimization models. In particular, a
tupledict is a Python dict where the keys are stored as a Gurobi tuplelist, and where the values
are typically Gurobi Var objects. Objects of this class make it easier to build linear expressions on
sets of Gurobi variables, using tuplelist.select() syntax and semantics.

You typically build a tupledict by calling Model.addVars. Once you’ve created a tupledict
d, you can use d.sum() to create a linear expression that captures the sum of the variables in the
tupledict. You can also use a command like d.sum(1, ’*’, 5) to create a sum over a subset
of the variables in d. Assuming the keys for the tupledict are tuples containing three fields, this
statement would create a linear expression that captures the sum over all variables in d whose keys
contain a 1 in the first field of the tuple and a 5 in the third field (the ’*’ character is a wildcard that
indicates that any value is acceptable in that field). You can also use d.prod(coeff) to create
a linear expression where the coefficients are pulled from the dictionary coeff. For example, if
d(1,2,5) contains variable x and coeff(1,2,5) is 2.0, then the resulting expression would include
term 2.0 ∗ x.

To access the members of a tupledict, you can use standard dict indexing. For example,
d[1,2] returns the value associated with tuple (1,2).

Note that a tupledict key must be a tuple of scalar values (int, float, string, ...). Thus,
you can use (1, 2.0, ’abc’) as a key, but you can’t use ((1, 2.0), ’abc’).

Note that tupledict objects build and maintain a set of internal data structures to support
efficient select operations. If you wish to reclaim the storage associated with these data structures,
you can call the clean function.

tupledict()

tupledict (args, kwargs)

tupledict constructor. Arguments are identical to those of a Python dict constructor.
Note that you will typically use Model.addVars to build a tupledict.
Arguments:

args: Positional arguments.
kwargs: Named arguments.

Return value:
A tupledict object.

Example usage:

d = tupledict([((1,2), ’onetwo’), ((1,3), ’onethree’), ((2,3), ’twothree’)])
print(d[1,2]) # prints ’onetwo’

tupledict.select()

select (pattern)

609

Returns a list containing the values associated with keys that match the specified tuple pattern.
The pattern should provide one value for each field in the key tuple. A ’*’ value indicates that
any value is accepted in that field.

Without arguments, this method returns a list of all values in the tupledict.
Arguments:

pattern: Pattern to match for a key tuple.
Example usage:

d = tupledict([((1,2), ’onetwo’), ((1,3), ’onethree’), ((2,3), ’twothree’)])
print(d.select()) # prints [’onetwo’, ’onethree’, ’twothree’]
print(d.select(1, ’*’)) # prints [’onetwo’, ’onethree’]
print(d.select(’*’, 3)) # prints [’onethree’, ’twothree’]
print(d.select(1, 3)) # prints [’onethree’]

tupledict.sum()

sum (pattern)

Returns the sum of the values associated with keys that match the specified pattern. If the
values are Gurobi Var objects, the result is a LinExpr. The pattern should provide one value for
each field in the key tuple. A ’*’ value indicates that any value is accepted in that field.

Without arguments, this method returns the sum of all values in the tupledict.
Arguments:

pattern: Pattern to match for a key tuple.
Example usage:

x = m.addVars([(1,2), (1,3), (2,3)])
expr = x.sum() # LinExpr: x[1,2] + x[1,3] + x[2,3]
expr = x.sum(1, ’*’) # LinExpr: x[1,2] + x[1,3]
expr = x.sum(’*’, 3) # LinExpr: x[1,3] + x[2,3]
expr = x.sum(1, 3) # LinExpr: x[1,3]

tupledict.prod()

prod (coeff, pattern)

Returns a linear expression that contains one term for each tuple that is present in both the
tupledict and the coeff argument; coeff should be a Python dict object that maps tuples to
coefficient values. For example, x.prod(coeff) would contain term 2.0*var if x[1,2] = var and
coeff[1,2] = 2.0.

Arguments:
coeff: Python dict that maps tuples to coefficients.
pattern: Pattern to match for a key tuple.

Example usage:
x = m.addVars([(1,2), (1,3), (2,3)])
coeff = dict([((1,2), 2.0), ((1,3), 2.1), ((2,3), 3.3)])
expr = x.prod(coeff) # LinExpr: 2.0 x[1,2] + 2.1 x[1,3] + 3.3 x[2,3]
expr = x.prod(coeff, ’*’, 3) # LinExpr: 2.1 x[1,3] + 3.3 x[2,3]

610

tupledict.clean()

clean ()

Discards internal data structure associated with a tupledict object. Note that calling this
routine won’t affect the contents of the tupledict. It only affects the memory used and the
performance of later calls to select.

Example usage:
d.clean()

611

6.24 General Constraint Helper Functions
Gurobi general constraint helper functions - used in conjunction with overloaded operators and
Model.addConstr or Model.addConstrs to build general constraints.

abs_()

abs_ (variable)

Used to set a decision variable equal to the absolute value of another decision variable.
Example usage:

m.addConstr(y == abs_(x))

Return value:
Returns a GenExpr object.

and_()

and_ (variables)

Used to set a binary decision variable equal to the logical AND of a list of other binary decision
variables. You can pass the arguments as a Python list or as a comma-separated list.

Note that the Gurobi Python interface includes an equivalent all_() function.
Example usage:

m.addConstr(z == and_(x, y))
m.addConstr(z == and_([x, y]))

Return value:
Returns a GenExpr object.

max_()

max_ (variables)

Used to set a decision variable equal to the maximum of a list of decision variables (or constants).
You can pass the arguments as a Python list or as a comma-separated list.

Example usage:

m.addConstr(z == max_(x, y, 3))
m.addConstr(z == max_([x, y, 3]))

Return value:
Returns a GenExpr object.

612

min_()

min_ (variables)

Used to set a decision variable equal to the minimum of a list of decision variables (or constants).
You can pass the arguments as a Python list or as a comma-separated list.

Example usage:

m.addConstr(z == min_(x, y, 3))
m.addConstr(z == min_([x, y, 3]))

Return value:
Returns a GenExpr object.

or_()

or_ (variables)

Used to set a binary decision variable equal to the logical OR of a list of other binary decision
variables. You can pass the arguments as a Python list or as a comma-separated list.

Note that the Gurobi Python interface includes an equivalent any_() function.
Example usage:

m.addConstr(z == or_(x, y))
m.addConstr(z == or_([x, y]))

Return value:
Returns a GenExpr object.

613

MATLAB API Overview

This section documents the Gurobi MATLAB R© interface. For those of you who are not familiar
with MATLAB, it is an environment for doing numerical computing. Please visit the MATLAB web
site for more information. This manual begins with a quick overview of the methods provided by
our MATLAB API. It then continues with a comprehensive presentation of all of the available
methods, their arguments, and their return values.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide
or the Example Tour. These documents provide concrete examples of how to use the methods
described here.

The MATLAB Optimization Toolbox provides its own interface for building optimization models
(starting with version 2017b). Gurobi supports this interface as well. We’ll discuss this aspect in
the problem-based modeling section; consult also the linprog, intlinprog, opttoolbox_lp, and
opttoolbox_mip1 examples in the Gurobi distribution for illustrations of how to pass models built
using this interface to Gurobi.

A quick note for new users: the convention in math programming is that variables are non-
negative unless specified otherwise. You’ll need to explicitly set lower bounds if you want variables
to be able to take negative values.
Models

Our Gurobi MATLAB interface enables you to express problems of the following form:
minimize xTQx+ cTx+ alpha
subject to Ax = b (linear constraints)

` ≤ x ≤ u (bound constraints)
some xj integral (integrality constraints)
xTQcx+ qTx ≤ beta (quadratic constraints)
some xi in SOS (special ordered set constraints)
min, max, abs, or, ... (general constraints)

Models are stored as struct variables, each consisting of multiple fields. The fields capture
the different model components listed above. Many of these model components are optional. For
example, integrality constraints may be omitted.

An optimization model may be loaded from a file (using the gurobi_read function), or it
can be built by populating the appropriate fields of a model variable (using standard MATLAB
constructs). We will discuss the details of how models are represented in the model argument
section.

We often refer to the class of an optimization model. A model with a linear objective function,
linear constraints, and continuous variables is a Linear Program (LP). If the objective is quadratic,
the model is a Quadratic Program (QP). If any of the constraints are quadratic, the model is
a Quadratically-Constrained Program (QCP). We will sometimes refer to a few special cases of

614

https://www.mathworks.com/products/matlab
https://www.mathworks.com/products/matlab
https://www.gurobi.com/documentation/9.1/quickstart_windows/index.html
https://www.gurobi.com/documentation/9.1/examples/index.html

QCP: QCPs with convex constraints, QCPs with non-convex constraints, bilinear programs, and
Second-Order Cone Programs (SOCP). If the model contains any integer variables, semi-continuous
variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the
model is a Mixed Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, in-
cluding Mixed Integer Linear Programs (MILP), Mixed Integer Quadratic Programs (MIQP), Mixed
Integer Quadratically-Constrained Programs (MIQCP), and Mixed Integer Second-Order Cone Pro-
grams (MISOCP). The Gurobi Optimizer handles all of these model classes.
Solving a Model

Once you have built a model, you can call gurobi to compute a solution. By default, gurobi will
use the concurrent optimizer to solve LP models, the barrier algorithm to solve QP models and QCP
models with convex constraints, and the branch-and-cut algorithm to solve mixed integer models.
The solution is returned as a struct variable. We will discuss the details of how optimization
results are represented when we discuss the gurobi function.
Here is a simple example of a likely sequence of commands in the MATLAB API:
model = gurobi_read(’examples/data/stein9.mps’);
result = gurobi(model);

Multiple Solutions and Multiple Objectives

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to
a model with a single objective function. Gurobi provides features that allow you to relax either
of these assumptions. You should refer to the section on Solution Pools for information on how to
request more than one solution, or the section on Multiple Objectives for information on how to
specify multiple objective functions and control the trade-off between them.
Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause
of the infeasibility, attempt to repair the infeasibility, or both. To obtain information that can
be useful for diagnosing the cause of an infeasibility, call gurobi_iis to compute an Irreducible
Inconsistent Subsystem (IIS). This method can be used for both continuous and MIP models, but
you should be aware that the MIP version can be quite expensive. We will discuss the details of
how IIS results are represented in the gurobi_iis function documentation.

To attempt to repair an infeasibility, call gurobi_feasrelax to compute a feasibility relaxation
for the model. This relaxation allows you to find a solution that minimizes the magnitude of the
constraint violation.
Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of
the optimization process. Factors like feasibility and optimality tolerances, choices of algorithms,
strategies for exploring the MIP search tree, etc., can be controlled by modifying Gurobi parameters
before beginning the optimization.

Each Gurobi parameter has a default value. Desired parameter changes are passed in a struct
variable. The name of each field within this struct must be the name of a Gurobi parameter, and
the associated value should be the desired value of that parameter. You can find a complete list
of the available Gurobi parameters here. We will provide additional details on changing parameter
settings in the params argument section.

615

Monitoring Progress

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will
send output to the screen. A few simple controls are available for modifying the default logging
behavior. If you would like to direct output to a file as well as to the screen, set the LogFile
parameter to the name of your desired log file. The frequency of logging output can be controlled
with the DisplayInterval parameter, and logging can be turned off entirely with the OutputFlag
parameter. A detailed description of the Gurobi log file can be found in the Logging section.
Error Handling

If unsuccessful, the methods of the Gurobi MATLAB interface will return an error code and an
error message. A list of possible error codes can be found in the Error Code section.
Environments

By default, the various Gurobi functions will look for a valid license file and create a local Gurobi
environment. This environment exists for as long as the corresponding MATLAB API function is
running, and is released upon completion.

Another option is to provide an optional env argument (also through a struct). This argument
allows you to solve the given problem on a Gurobi Compute Server or using the Gurobi Instant
Cloud. We will discuss this topic further in the env argument section.

Gurobi will check the current working directory for a file named gurobi.env, and it will attempt
to read parameter settings from this file if it exists. The file should be in PRM format (briefly,
each line should contain a parameter name, followed by the desired value for that parameter).

616

7.1 Common Arguments
Most common arguments in the Gurobi MATLAB interface are MATLAB struct variables, each
containing multiple fields. Several of these fields are optional. Note that you refer to a field of
a struct variable by adding a period to the end of the variable name, followed by the name of the
field. For example, model.A refers to field A of variable model.

The model argument
Model variables store optimization problems (as described in the problem statement).

Models can be built in a number of ways. You can populate the appropriate fields of the
model struct using standard MATLAB routines. You can also read a model from a file, using
gurobi_read. A few API functions (gurobi_feasrelax and gurobi_relax) also return models.

Note that all vector fields within the model variable must be dense vectors except for the linear
part of the quadratic constraints and INDICATOR general constraints, all matrix fields must be
sparse matrices, and all strings, names, etc. must be char arrays.

The following is an enumeration of all of the fields of the model argument that Gurobi will take
into account when optimizing the model:
Commonly used fields:

A: The linear constraint matrix.

obj (optional): The linear objective vector (the c vector in the problem statement). When
present, you must specify one value for each column of A. When absent, each variable has a
default objective coefficient of 0.

sense (optional): The senses of the linear constraints. Allowed values are ’=’, ’<’, or ’>’. You
must specify one value for each row of A, or a single value to specify that all constraints have
the same sense. When absent, all senses default to ’<’.

rhs (optional): The right-hand side vector for the linear constraints (b in the problem state-
ment). You must specify one value for each row of A. When absent, the right-hand side vector
defaults to the zero vector.

lb (optional): The lower bound vector. When present, you must specify one value for each
column of A. When absent, each variable has a default lower bound of 0.

ub (optional): The upper bound vector. When present, you must specify one value for each
column of A. When absent, the variables have infinite upper bounds.

vtype (optional): The variable types. This vector is used to capture variable integrality con-
straints. Allowed values are ’C’ (continuous), ’B’ (binary), ’I’ (integer), ’S’ (semi-continuous),
or ’N’ (semi-integer). Binary variables must be either 0 or 1. Integer variables can take any
integer value between the specified lower and upper bounds. Semi-continuous variables can
take any value between the specified lower and upper bounds, or a value of zero. Semi-integer
variables can take any integer value between the specified lower and upper bounds, or a value
of zero. When present, you must specify one value for each column of A, or a single value to
specify that all variables have the same type. When absent, each variable is treated as being
continuous. Refer to this section for more information on variable types.

617

modelsense (optional): The optimization sense. Allowed values are ’min’ (minimize) or ’max’
(maximize). When absent, the default optimization sense is minimization.

modelname (optional): The name of the model. The name appears in the Gurobi log, and when
writing a model to a file.

objcon (optional): The constant offset in the objective function (alpha in the problem state-
ment).

varnames (optional): The variable names vector. A cell array. When present, each element of
this vector defines the name of a variable. You must specify a name for each column of A.

constrnames (optional): The constraint names vector. A cell array. When present, each element
of the vector defines the name of a constraint. You must specify a name for each row of A.

Quadratic objective and constraint fields:

Q (optional): The quadratic objective matrix. When present, Q must be a square matrix whose
row and column counts are equal to the number of columns in A.

quadcon (optional): The quadratic constraints. A struct array. When present, each element in
quadcon defines a single quadratic constraint: xTQcx+ qTx ≤ beta.
The Qc matrix must be a square matrix whose row and column counts are equal to the number
of columns of A. There are two options to store the matrix: (i) in model.quadcon(i).Qc as a
sparse matrix; (ii) through three dense vectors model.quadcon(i).Qrow, model.quadcon(i).Qcol,
and model.quadcon(i).Qval specifying the matrix in triple format, with row indices, column
indices, and values, respectively.
The optional q vector defines the linear terms in the constraint. It can be a dense vector
specifying a value for each column of A or a sparse vector (sparse n-by-1 matrix). It is stored
in model.quadcon(i).q.
The scalar beta is stored in model.quadcon(i).rhs. It defines the right-hand side value for
the constraint.
The optional sense string defines the sense of the quadratic constraint. Allowed values are
’<’, ’=’ or ’>’. If not present, the default sense is ’<’. It is stored in model.quadcon(i).sense.
The optional name string defines the name of the quadratic constraint. It is stored in
model.quadcon(i).name.

SOS constraint fields:

sos (optional): The Special Ordered Set (SOS) constraints. A struct array. When present, each
entry in sos defines a single SOS constraint. A SOS constraint can be of type 1 or 2. The
type of SOS constraint i is specified via model.sos(i).type. A type 1 SOS constraint is
a set of variables where at most one variable in the set may take a value other than zero.
A type 2 SOS constraint is an ordered set of variables where at most two variables in the
set may take non-zero values. If two take non-zeros values, they must be contiguous in the
ordered set. The members of an SOS constraint are specified by placing their indices in
vector model.sos(i).index. Weights associated with SOS members are provided in vector
model.sos(i).weight. Please refer to this section for details on SOS constraints.

618

Multi-objective fields:

multiobj (optional): Multi-objective specification for the model. A struct array. When present,
each entry in multiobj defines a single objective of a multi-objective problem. Please refer
to the Multiple Objectives section for more details on multi-objective optimization. Each
objective i may have the following fields:

objn: Specified via model.multiobj(i).objn. This is the i-th objective vector.
objcon (optional): Specified via model.multiobj(i).objcon. If provided, this is the i-th

objective constant. The default value is 0.
priority (optional): Specified via model.multiobj(i).priority. If provided, this value

is the hierarchical priority for this objective. The default value is 0.
weight (optional): Specified via model.multiobj(i).weight. If provided, this value is

the multiplier used when aggregating objectives. The default value is 1.0.
reltol (optional): Specified via model.multiobj(i).reltol. If provided, this value spec-

ifies the relative objective degradation when doing hierarchical multi-objective optimiza-
tion. The default value is 0.

abstol (optional): Specified via model.multiobj(i).abstol. If provided, this value spec-
ifies the absolute objective degradation when doing hierarchical multi-objective optimiza-
tion. The default value is 0.

name (optional): Specified via model.multiobj(i).name. If provided, this string specifies
the name of the i-th objective function.

Note that when multiple objectives are present, the result.objval field that is returned in
the result of an optimization call will be a vector of the same length as model.multiobj.
A multi-objective model can’t have other objectives. Thus, combining model.multiobj with
any of model.obj, model.objcon, model.pwlobj, or model.Q is an error.

General constraint fields:

The struct arrays described below are used to add general constraints to a model.
Mathematical programming has traditionally defined a set of fundamental constraint types:

variable bound constraints, linear constraints, quadratic constraints, integrality constraints, and
SOS constraints. These are typically treated directly by the underlying solver (although not always),
and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general
(function) constraints. These are typically not treated directly by the solver. Rather, they are
transformed by presolve into constraints (and variables) chosen from among the fundamental types
listed above. In some cases, the resulting constraint or constraints are mathematically equivalent
to the original; in others, they are approximations. If such constraints appear in your model, but
if you prefer to reformulate them yourself using fundamental constraint types instead, you can
certainly do so. However, note that Gurobi can sometimes exploit information contained in the
other constraints in the model to build a more efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:

• MAX (genconmax): set a decision variable equal to the maximum value from among a set of
decision variables

619

• MIN (genconmin): set a decision variable equal to the minimum value from among a set of
decision variables

• ABS (genconabs): set a decision variable equal to the absolute value of some other decision
variable

• AND (genconand): set a binary variable equal to one if and only if all of a set of binary
decision variables are equal to one

• OR (genconor): set a binary variable equal to one if and only if at least one variable out of
a set of binary decision variables is equal to one

• INDICATOR (genconind): whenever a given binary variable takes a certain value, then the
given linear constraint must be satisfied

• Piecewise-linear constraints (genconpwl): set a variable equal to the piecewise-linear function
defined by a set of points using some other variable

• Polynomial (genconpoly): set a variable equal to the polynomial function defined by some
other variable

• Natural exponential (genconexp): set a variable equal to the natural exponential function by
some other variable

• Exponential (genconexpa): set a variable equal to the exponential function by some other
variable

• Natural logarithm (genconlog): set a variable equal to the natural logarithmic function by
some other variable

• Logarithm (genconloga): set a variable equal to the logarithmic function by some other
variable

• Power (genconpow): set a variable equal to the power function by some other variable

• SIN (genconsin): set a variable equal to the sine function by some other variable

• COS (genconcos): set a variable equal to the cosine function by some other variable

• TAN (gencontan): set a variable equal to the tangent function by some other variable

Please refer to this section for additional details on general constraints.

genconmax (optional): A struct array. When present, each entry in genconmax defines a MAX
general constraint of the form

x[resvar] = max {con, x[j] : j ∈ vars}

Each entry may have the following fields:

resvar: Specified via model.genconmax(i).resvar. Index of the variable in the left-hand
side of the constraint.

620

vars: Specified via model.genconmax(i).vars, it is a vector of indices of variables in the
right-hand side of the constraint.

con (optional): Specified via model.genconmax(i).con. When present, specifies the con-
stant on the left-hand side. Default value is −∞.

name (optional): Specified via model.genconmax(i).name. When present, specifies the
name of the i-th MAX general constraint.

genconmin (optional): A struct array. When present, each entry in genconmax defines a MIN
general constraint of the form

x[resvar] = min {con, x[j] : j ∈ vars}

Each entry may have the following fields:

resvar: Specified via model.genconmin(i).resvar. Index of the variable in the left-hand
side of the constraint.

vars: Specified via model.genconmin(i).vars, it is a vector of indices of variables in the
right-hand side of the constraint.

con (optional): Specified via model.genconmin(i).con. When present, specifies the con-
stant on the left-hand side. Default value is ∞.

name (optional): Specified via model.genconmin(i).name. When present, specifies the
name of the i-th MIN general constraint.

genconabs (optional): A struct array. When present, each entry in genconmax defines an ABS
general constraint of the form

x[resvar] = |x[argvar]|

Each entry may have the following fields:

resvar: Specified via model.genconabs(i).resvar. Index of the variable in the left-hand
side of the constraint.

argvar: Specified via model.genconabs(i).argvar. Index of the variable in the right-hand
side of the constraint.

name (optional): Specified via model.genconabs(i).name. When present, specifies the
name of the i-th ABS general constraint.

genconand (optional): A struct array. When present, each entry in genconand defines an AND
general constraint of the form

x[resvar] = and{x[i] : i ∈ vars}

Each entry may have the following fields:

resvar: Specified via model.genconand(i).resvar. Index of the variable in the left-hand
side of the constraint.

621

vars: Specified via model.genconand(i).vars, it is a vector of indices of variables in the
right-hand side of the constraint.

name (optional): Specified via model.genconand(i).name. When present, specifies the
name of the i-th AND general constraint.

genconor (optional): A struct array. When present, each entry in genconor defines an OR
general constraint of the form

x[resvar] = or{x[i] : i ∈ vars}

Each entry may have the following fields:

resvar: Specified via model.genconor(i).resvar. Index of the variable in the left-hand
side of the constraint.

vars: Specified via model.genconor(i).vars, it is a vector of indices of variables in the
right-hand side of the constraint.

name (optional): Specified via model.genconor(i).name. When present, specifies the
name of the i-th OR general constraint.

genconind (optional): A struct array. When present, each entry in genconind defines an INDI-
CATOR general constraint of the form

x[binvar] = binval⇒
∑

(x(j) · a(j)) sense rhs

This constraint states that when the binary variable x[binvar] takes the value binval then the
linear constraint

∑
(x[vars(j)] · val(j)) sense rhs must hold. Note that sense is one of ’=’,

’<’, or ’>’ for equality (=), less than or equal (≤) or greater than or equal (≥) constraints.
Each entry may have the following fields:

binvar: Specified via model.genconind(i).binvar. Index of the implicating binary vari-
able.

binval: Specified via model.genconind(i).binval. Value for the binary variable that forces
the following linear constraint to be satisfied. It can be either 0 or 1.

a: Specified via model.genconind(i).a. Vector of coefficients of variables participating in
the implied linear constraint. You can specify a value for a for each column of A (dense
vector) or pass a sparse vector (sparse n-by-1 matrix).

sense: Specified via model.genconind(i).sense. Sense of the implied linear constraint.
Must be one of ’=’, ’<’, or ’>’.

rhs: Specified via model.genconind(i).rhs. Right-hand side value of the implied linear
constraint.

name (optional): Specified via model.genconind(i).name. When present, specifies the
name of the i-th INDICATOR general constraint.

genconpwl (optional): A struct array. When present, each entry in genconpwl defines a piecewise-
linear constraint of the form

622

x[yvar] = f(x[xvar])

The breakpoints for f are provided as arguments. Refer to the description of piecewise-linear
objectives for details of how piecewise-linear functions are defined
Each entry may have the following fields:

xvar: Specified via model.genconpwl(i).xvar. Index of the variable in the right-hand side
of the constraint.

yvar: Specified via model.genconpwl(i).yvar. Index of the variable in the left-hand side
of the constraint.

xpts: Specified via model.genconpwl(i).xpts. Specifies the x values for the points that
define the piecewise-linear function. Must be in non-decreasing order.

ypts: Specified via model.genconpwl(i).ypts. Specifies the y values for the points that
define the piecewise-linear function.

name (optional): Specified via model.genconpwl(i).name. When present, specifies the
name of the i-th piecewise-linear general constraint.

genconpoly (optional): A struct array. When present, each entry in genconpoly defines a poly-
nomial function constraint of the form

x[yvar] = p0x[xvar]d + p1x[xvar]d−1 + ...+ pd−1x[xvar] + pd

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with
the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For
details, consult the General Constraint discussion.
Each entry may have the following fields:

xvar: Specified via model.genconpoly(i).xvar. Index of the variable in the right-hand side
of the constraint.

yvar: Specified via model.genconpoly(i).yvar. Index of the variable in the left-hand side
of the constraint.

p: Specified via model.genconpoly(i).p. Specifies the coefficients for the polynomial func-
tion (starting with the coefficient for the highest power). If xd is the highest power term,
a dense vector of length d+ 1 is returned.

name (optional): Specified via model.genconpoly(i).name. When present, specifies the
name of the i-th polynomial function constraint.

funcpieces (optional): Specified via model.genconpoly(i).funcpieces. When present,
specifies the FuncPieces attribute of the i-th polynomial function constraint.

funcpiecelength (optional): Specified via model.genconpoly(i).funcpiecelength. When
present, specifies the FuncPieceLength attribute of the i-th polynomial function con-
straint.

funcpieceerror (optional): Specified via model.genconpoly(i).funcpieceerror. When
present, specifies the FuncPieceError attribute of the i-th polynomial function constraint.

623

funcpieceratio (optional): Specified via model.genconpoly(i).funcpieceratio. When
present, specifies the FuncPieceRatio attribute of the i-th polynomial function constraint.

genconexp (optional): A struct array. When present, each entry in genconexp defines the nat-
ural exponential function constraint of the form

x[yvar] = exp(x[xvar])

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with
the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For
details, consult the General Constraint discussion.
Each entry may have the following fields:

xvar: Specified via model.genconexp(i).xvar. Index of the variable in the right-hand side
of the constraint.

yvar: Specified via model.genconexp(i).yvar. Index of the variable in the left-hand side
of the constraint.

name (optional): Specified via model.genconexp(i).name. When present, specifies the
name of the i-th natural exponential function constraint.

funcpieces (optional): Specified via model.genconexp(i).funcpieces. When present,
specifies the FuncPieces attribute of the i-th natural exponential function constraint.

funcpiecelength (optional): Specified via model.genconexp(i).funcpiecelength. When
present, specifies the FuncPieceLength attribute of the i-th natural exponential function
constraint.

funcpieceerror (optional): Specified via model.genconexp(i).funcpieceerror. When
present, specifies the FuncPieceError attribute of the i-th natural exponential function
constraint.

funcpieceratio (optional): Specified via model.genconexp(i).funcpieceratio. When
present, specifies the FuncPieceRatio attribute of the i-th natural exponential function
constraint.

genconexpa (optional): A struct array. When present, each entry in genconexpa defines an
exponential function constraint of the form

x[yvar] = ax[xvar]

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with
the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For
details, consult the General Constraint discussion.
Each entry may have the following fields:

xvar: Specified via model.genconexpa(i).xvar. Index of the variable in the right-hand side
of the constraint.

624

yvar: Specified via model.genconexpa(i).yvar. Index of the variable in the left-hand side
of the constraint.

a: Specified via model.genconexpa(i).a. Specifies the base of the exponential function
a > 0.

name (optional): Specified via model.genconexpa(i).name. When present, specifies the
name of the i-th exponential function constraint.

funcpieces (optional): Specified via model.genconexpa(i).funcpieces. When present,
specifies the FuncPieces attribute of the i-th exponential function constraint.

funcpiecelength (optional): Specified via model.genconexpa(i).funcpiecelength. When
present, specifies the FuncPieceLength attribute of the i-th exponential function con-
straint.

funcpieceerror (optional): Specified via model.genconexpa(i).funcpieceerror. When
present, specifies the FuncPieceError attribute of the i-th exponential function con-
straint.

funcpieceratio (optional): Specified via model.genconexpa(i).funcpieceratio. When
present, specifies the FuncPieceRatio attribute of the i-th exponential function con-
straint.

genconlog (optional): A struct array. When present, each entry in genconlog defines the nat-
ural logarithmic function constraint of the form

x[yvar] = log(x[xvar])

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with
the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For
details, consult the General Constraint discussion.
Each entry may have the following fields:

xvar: Specified via model.genconlog(i).xvar. Index of the variable in the right-hand side
of the constraint.

yvar: Specified via model.genconlog(i).yvar. Index of the variable in the left-hand side
of the constraint.

name (optional): Specified via model.genconlog(i).name. When present, specifies the
name of the i-th natural logarithmic function constraint.

funcpieces (optional): Specified via model.genconlog(i).funcpieces. When present,
specifies the FuncPieces attribute of the i-th natural logarithmic function constraint.

funcpiecelength (optional): Specified via model.genconlog(i).funcpiecelength. When
present, specifies the FuncPieceLength attribute of the i-th natural logarithmic function
constraint.

funcpieceerror (optional): Specified via model.genconlog(i).funcpieceerror. When
present, specifies the FuncPieceError attribute of the i-th natural logarithmic function
constraint.

625

funcpieceratio (optional): Specified via model.genconlog(i).funcpieceratio. When
present, specifies the FuncPieceRatio attribute of the i-th natural logarithmic function
constraint.

genconloga (optional): A struct array. When present, each entry in genconloga defines a log-
arithmic function constraint of the form

x[yvar] = log(x[xvar]) \ log(a)

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with
the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For
details, consult the General Constraint discussion.
Each entry may have the following fields:

xvar: Specified via model.genconloga(i).xvar. Index of the variable in the right-hand side
of the constraint.

yvar: Specified via model.genconloga(i).yvar. Index of the variable in the left-hand side
of the constraint.

a: Specified via model.genconloga(i).a. Specifies the base of the logarithmic function
a > 0.

name (optional): Specified via model.genconloga(i).name. When present, specifies the
name of the i-th logarithmic function constraint.

funcpieces (optional): Specified via model.genconloga(i).funcpieces. When present,
specifies the FuncPieces attribute of the i-th logarithmic function constraint.

funcpiecelength (optional): Specified via model.genconloga(i).funcpiecelength. When
present, specifies the FuncPieceLength attribute of the i-th logarithmic function con-
straint.

funcpieceerror (optional): Specified via model.genconloga(i).funcpieceerror. When
present, specifies the FuncPieceError attribute of the i-th logarithmic function con-
straint.

funcpieceratio (optional): Specified via model.genconloga(i).funcpieceratio. When
present, specifies the FuncPieceRatio attribute of the i-th logarithmic function con-
straint.

genconpow (optional): A struct array. When present, each entry in genconpow defines a power
function constraint of the form

x[yvar] = x[xvar]a

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with
the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For
details, consult the General Constraint discussion.
Each entry may have the following fields:

626

xvar: Specified via model.genconpow(i).xvar. Index of the variable in the right-hand side
of the constraint.

yvar: Specified via model.genconpow(i).yvar. Index of the variable in the left-hand side
of the constraint.

a: Specified via model.genconpow(i).a. Specifies the exponent of the power function.
name (optional): Specified via model.genconpow(i).name. When present, specifies the

name of the i-th power function constraint.
funcpieces (optional): Specified via model.genconpow(i).funcpieces. When present,

specifies the FuncPieces attribute of the i-th power function constraint.
funcpiecelength (optional): Specified via model.genconpow(i).funcpiecelength. When

present, specifies the FuncPieceLength attribute of the i-th power function constraint.
funcpieceerror (optional): Specified via model.genconpow(i).funcpieceerror. When

present, specifies the FuncPieceError attribute of the i-th power function constraint.
funcpieceratio (optional): Specified via model.genconpow(i).funcpieceratio. When

present, specifies the FuncPieceRatio attribute of the i-th power function constraint.

genconsin (optional): A struct array. When present, each entry in genconsin defines the sine
function constraint of the form

x[yvar] = sin(x[xvar])

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with
the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For
details, consult the General Constraint discussion.
Each entry may have the following fields:

xvar: Specified via model.genconsin(i).xvar. Index of the variable in the right-hand side
of the constraint.

yvar: Specified via model.genconsin(i).yvar. Index of the variable in the left-hand side
of the constraint.

name (optional): Specified via model.genconsin(i).name. When present, specifies the
name of the i-th sine function constraint.

funcpieces (optional): Specified via model.genconsin(i).funcpieces. When present,
specifies the FuncPieces attribute of the i-th sine function constraint.

funcpiecelength (optional): Specified via model.genconsin(i).funcpiecelength. When
present, specifies the FuncPieceLength attribute of the i-th sine function constraint.

funcpieceerror (optional): Specified via model.genconsin(i).funcpieceerror. When
present, specifies the FuncPieceError attribute of the i-th sine function constraint.

funcpieceratio (optional): Specified via model.genconsin(i).funcpieceratio. When
present, specifies the FuncPieceRatio attribute of the i-th sine function constraint.

genconcos (optional): A struct array. When present, each entry in genconcos defines the cosine
function constraint of the form

627

x[yvar] = cos(x[xvar])

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with
the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For
details, consult the General Constraint discussion.
Each entry may have the following fields:

xvar: Specified via model.genconcos(i).xvar. Index of the variable in the right-hand side
of the constraint.

yvar: Specified via model.genconcos(i).yvar. Index of the variable in the left-hand side
of the constraint.

name (optional): Specified via model.genconcos(i).name. When present, specifies the
name of the i-th cosine function constraint.

funcpieces (optional): Specified via model.genconcos(i).funcpieces. When present,
specifies the FuncPieces attribute of the i-th cosine function constraint.

funcpiecelength (optional): Specified via model.genconcos(i).funcpiecelength. When
present, specifies the FuncPieceLength attribute of the i-th cosine function constraint.

funcpieceerror (optional): Specified via model.genconcos(i).funcpieceerror. When
present, specifies the FuncPieceError attribute of the i-th cosine function constraint.

funcpieceratio (optional): Specified via model.genconcos(i).funcpieceratio. When
present, specifies the FuncPieceRatio attribute of the i-th cosine function constraint.

gencontan (optional): A struct array. When present, each entry in gencontan defines the tan-
gent function constraint of the form

x[yvar] = tan(x[xvar])

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with
the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For
details, consult the General Constraint discussion.
Each entry may have the following fields:

xvar: Specified via model.gencontan(i).xvar. Index of the variable in the right-hand side
of the constraint.

yvar: Specified via model.gencontan(i).yvar. Index of the variable in the left-hand side
of the constraint.

name (optional): Specified via model.gencontancos(i).name. When present, specifies the
name of the i-th tangent function constraint.

funcpieces (optional): Specified via model.gencontan(i).funcpieces. When present,
specifies the FuncPieces attribute of the i-th tangent function constraint.

funcpiecelength (optional): Specified via model.gencontan(i).funcpiecelength. When
present, specifies the FuncPieceLength attribute of the i-th tangent function constraint.

628

funcpieceerror (optional): Specified via model.gencontan(i).funcpieceerror. When
present, specifies the FuncPieceError attribute of the i-th tangent function constraint.

funcpieceratio (optional): Specified via model.gencontan(i).funcpieceratio. When
present, specifies the FuncPieceRatio attribute of the i-th tangent function constraint.

Advanced fields:

pwlobj (optional): The piecewise-linear objective functions. A struct array. When present, each
entry in pwlobj defines a piecewise-linear objective function for a single variable. The index
of the variable whose objective function is being defined is stored in model.pwlobj(i).var.
The x values for the points that define the piecewise-linear function are stored in
model.pwlobj(i).x. The values in the x vector must be in non-decreasing order. The y val-
ues for the points that define the piecewise-linear function are stored in model.pwlobj(i).y.

vbasis (optional): The variable basis status vector. Used to provide an advanced starting point
for the simplex algorithm. You would generally never concern yourself with the contents of
this vector, but would instead simply pass it from the result of a previous optimization run
to the input of a subsequent run. When present, you must specify one value for each column
of A.

cbasis (optional): The constraint basis status vector. Used to provide an advanced starting
point for the simplex algorithm. Consult the vbasis description for details. When present,
you must specify one value for each row of A.

varhintval (optional): A set of user hints. If you know that a variable is likely to take a
particular value in high quality solutions of a MIP model, you can provide that value as a
hint. You can also (optionally) provide information about your level of confidence in a hint
with the varhintpri field. If present, you must specify one value for each column of A. Use
a value of nan for variables where no such hint is known. For more details, please refer to the
VarHitVal attribute documentation.

varhintpri (optional): Priorities on user hints. After providing variable hints through the
varhintval struct, you can optionally also provide hint priorities to give an indication of
your level of confidence in your hints. If present, you must specify a value for each column of
A. For more details, please refer to the VarHintPri attribute documentation.

branchpriority (optional): Variable branching priority. If present, the value of this attribute
is used as the primary criteria for selecting a fractional variable for branching during the MIP
search. Variables with larger values always take priority over those with smaller values. Ties
are broken using the standard branch variable selection criteria. If present, you must specify
one value for each column of A.

pstart (optional): The current simplex start vector. If you set pstart values for every variable
in the model and dstart values for every constraint, then simplex will use those values to
compute a warm start basis. For more details, please refer to the PStart attribute documen-
tation.

dstart (optional): The current simplex start vector. If you set dstart values for every linear
constraint in the model and pstart values for every variable, then simplex will use those

629

values to compute a warm start basis. For more details, please refer to the DStart attribute
documentation.

lazy (optional): Determines whether a linear constraint is treated as a lazy constraint. If present,
you must specify one value for each row of A. For more details, please refer to the Lazy attribute
documentation.

start (optional): The MIP start vector. The MIP solver will attempt to build an initial solution
from this vector. When present, you must specify a start value for each variable. Note that
you can set the start value for a variable to nan, which instructs the MIP solver to try to fill
in a value for that variable.

partition (optional): The MIP variable partition number, which is used by the MIP solution
improvement heuristic. If present, you must specify one value for each variable of A. For more
details, please refer to the Partition attribute documentation.

If any of the mandatory components listed above are missing, the gurobi() function will return
an error.

Below is an example that demonstrates the construction of a simple optimization model:

model.A = sparse([1 2 3; 1 1 0]);
model.obj = [1 1 1];
model.modelsense = ’max’;
model.rhs = [4; 1];
model.sense = ’<>’

The params argument

As mentioned previously, the Gurobi optimizer provides a set of parameters that allow you to
control many of the details of the optimization process. Factors like feasibility and optimality
tolerances, choices of algorithms, strategies for exploring the MIP search tree, etc., can be controlled
by modifying Gurobi parameters before beginning the optimization.

Parameter changes are specified using a struct variable having multiple fields, which is passed
as an argument to the appropriate Gurobi function (e.g., gurobi). The name of each field must
be the name of a Gurobi parameter, and the associated value should be the desired value of that
parameter. You can find a complete list of the available Gurobi parameters here.

To create a struct that would set the Gurobi Method parameter to 2 and the ResultFile param-
eter to model.mps, you would do the following:
params.Method = 2;
params.ResultFile = ’model.mps’;

We should say a bit more about the ResultFile parameter. If this parameter is set, the
optimization model that is eventually passed to Gurobi will also be output to the specified file.
The filename suffix should be one of .mps, .lp, .rew, or .rlp, to indicate the desired file format
(see the file format section for details on Gurobi file formats).

630

The env argument
The optional env argument is also a struct. It allows you to solve your problem on a Gurobi
Compute Server or the Gurobi Instant Cloud.
Using a Compute Server License

Gurobi Compute Server allows you to offload optimization jobs to a remote server. Servers are
organized into clusters. By providing the name of any node within the cluster, your job will
automatically be sent to the least heavily loaded node in the cluster. If all nodes are at capacity,
your job will be placed in a queue, and will proceed once capacity becomes available. You can find
additional information about Gurobi Compute Server in the Gurobi Remote Services Reference
Manual.

The following is an enumeration of all of the fields of the env argument that Gurobi will take
into account.

computeserver: A Compute Server. You can refer to the server using its name or its IP address.
If you are using a non-default port, the server name should be followed by the port number
(e.g., server1:61000).

password (optional): User password on the Compute Server cluster. Obtain this from your
Compute Server administrator.

priority (optional): The priority of the job. Priorities must be between -100 and 100, with a
default value of 0 (by convention). Higher priority jobs are chosen from the server job queue
before lower priority jobs. A job with priority 100 runs immediately, bypassing the job queue
and ignoring the job limit on the server. You should exercise caution with priority 100 jobs,
since they can severely overload a server, which can cause jobs to fail, and in extreme cases
can cause the server to crash.

router (optional): The router for the Compute Server cluster. A router can be used to improve
the robustness of a Compute Server deployment. You can refer to the router using either its
name or its IP address. A typical Remote Services deployment won’t use a router, so you
typically won’t need to set this.

CStlsinsecure (optional): Indicates whether to use insecure mode in the TLS (Transport Layer
Security). Set this to 0 unless your server administrator tells you otherwise.

Here is an example of how to use an env argument to connect to a Compute Server:
env.computeserver = ’server1.mycompany.com:61000’;
env.priority = 5;

Using a Gurobi Instant Cloud License

Gurobi Instant Cloud allows you to offload optimization jobs to a Gurobi Compute Server on the
cloud. If an appropriate machine is already running, the job will run on that machine. It will
automatically launch a new machine otherwise. Note that launching a new machine can take a few
minutes. You can find additional information about the Gurobi Instant Cloud service here.

The following is an enumeration of all of the fields of the env argument that Gurobi will take
into account.

631

https://www.gurobi.com/documentation/9.1/remoteservices/remoteservices.html
https://www.gurobi.com/documentation/9.1/remoteservices/remoteservices.html

accessid: The access ID for your Gurobi Instant Cloud license. This can be retrieved from the
Gurobi Instant Cloud website. When used in combination with your secretkey, this allows
you to launch Instant Cloud instances and submit jobs to them.

secretkey: The secret key for your Gurobi Instant Cloud license. This can be retrieved from the
Gurobi Instant Cloud website. When used in combination with your accessid, this allows
you to launch Instant Cloud instances and submit jobs to them. Note that you should keep
your secret key private.

pool (optional): The machine pool. Machine pools allow you to create fixed configurations on
the Instant Cloud website (capturing things like type of machine, geographic region, etc.), and
then launch and share machines from client programs without having to restate configuration
information each time you launch a machine. If not provided, your job will be launched in
the default pool associated with your cloud license.

priority (optional): The priority of the job. Priorities must be between -100 and 100, with a
default value of 0 (by convention). Higher priority jobs are chosen from the server job queue
before lower priority jobs. A job with priority 100 runs immediately, bypassing the job queue
and ignoring the job limit on the server. You should exercise caution with priority 100 jobs,
since they can severely overload a server, which can cause jobs to fail, and in extreme cases
can cause the server to crash.

Here is an example of how to use an env argument to launch a Gurobi Instant Cloud instance:
env.accessid = ’3d1ecef9-dfad-eff4-b3fa’;
env.secretkey = ’ae6L23alJe3+fas’;

Note that when creating an environment variable, you need to choose to use either Compute
Server or Instant Cloud. Populating fields for both will result in an error.

632

7.2 Solving a Model
gurobi()

gurobi (model)
gurobi (model, params)
gurobi (model, params, env)

This function optimizes the given model. The algorithm used for the optimization depends on
the model type (simplex or barrier for a continuous model; branch-and-cut for a MIP model). Upon
successful completion it will return a struct variable containing solution information.

Please consult this section for a discussion of some of the practical issues associated with solving
a precisely defined mathematical model using finite-precision floating-point arithmetic.

Arguments:
model: The model struct must contain a valid Gurobi model. See the model argument
section for more information.

params: The params struct, when provided, contains a list of modified Gurobi parameters.
See the params argument section for more information.

env: The env struct, when provided, allows you to use Gurobi Compute Server or Gurobi
Instant Cloud. See the env argument section for more information.

Example usage:

result = gurobi (model , params);
if strcmp (result .status , ’OPTIMAL ’);

fprintf (’Optimal objective : %e\n’, result . objval);
disp(result .x)

else
fprintf (’Optimization returned status : %s\n’, result . status);

end

Return value:

The optimization result

The gurobi function returns a struct, with the various results of the optimization stored in its
fields. The specific results that are available depend on the type of model that was solved, the
parameters used, and the status of the optimization. The following is a list of fields that might
be available in the returned result. We will discuss the circumstances under which each will be
available after presenting the list.

Model fields:

status: The status of the optimization, returned as a string. The desired result is ’OPTIMAL’,
which indicates that an optimal solution to the model was found. Other status are possible,
for example if the model has no feasible solution or if you set a Gurobi parameter that leads to
early solver termination. See the Status Code section for further information on the Gurobi
status codes.

633

objval: The objective value of the computed solution. Note that for multi-objective models
result.objval will be a vector, where result.objval(i) stores the value for
model.multiobj(i).

objbound: Best available bound on solution (lower bound for minimization, upper bound for max-
imization).

objboundc: The best unrounded bound on the optimal objective. In contrast to objbound, this
attribute does not take advantage of objective integrality information to round to a tighter
bound. For example, if the objective is known to take an integral value and the current best
bound is 1.5, ObjBound will return 2.0 while ObjBoundC will return 1.5.

mipgap: Current relative MIP optimality gap; computed as |ObjBound−ObjV al|/|ObjV al| (where
ObjBound and ObjV al are the MIP objective bound and incumbent solution objective, re-
spectively). Returns GRB_INFINITY when an incumbent solution has not yet been found,
when no objective bound is available, or when the current incumbent objective is 0. This is
only available for mixed-integer problems.

runtime: The elapsed wall-clock time (in seconds) for the optimization.

itercount: Number of simplex iterations performed.

baritercount: Number of barrier iterations performed.

nodecount: Number of branch-and-cut nodes explored.

farkasproof: Magnitude of infeasibility violation in Farkas infeasibility proof. Only available if
the model was found to be infeasible. Please refer to FarkasProof for details.

Variable fields:

x: The computed solution. This vector contains one entry for each column of A.

rc: Variable reduced costs for the computed solution. This vector contains one entry for each
column of A.

vbasis: Variable basis status values for the computed optimal basis. You generally should not
concern yourself with the contents of this vector. If you wish to use an advanced start later,
you would simply copy the vbasis and cbasis fields into the corresponding fields for the
next model. This vector contains one entry for each column of A.

unbdray: Unbounded ray. Provides a vector that, when added to any feasible solution, yields a
new solution that is also feasible but improves the objective. Only available if the model is
found to be unbounded. This vector contains one entry for each column of A.

Linear constraint fields:

slack: The constraint slack for the computed solution. This vector contains one entry for each
row of A.

pi: Dual values for the computed solution (also known as shadow prices). This vector contains one
entry for each row of A.

634

cbasis: Constraint basis status values for the computed optimal basis. This vector contains one
entry for each row of A.

farkasdual: Farkas infeasibility proof. Only available if the model was found to be infeasible.
Please refer to FarkasDual for details.

Quadratic constraint fields:

qcslack: The quadratic constraint slack in the current solution. This vector contains one entry
for each quadratic constraint.

qcpi: The dual values associated with the quadratic constraints. This vector contains one entry
for each quadratic constraint.

Solution Pool fields:

pool: When multiple solutions are found during the optimization call, these solutions are returned
in this field. A struct array. When present, each struct has the following fields:

objval: Stores the objective value of the i-th solution in result.pool(i).objval. Note that
when the model is a multi-objective model, instead of a single value,
result.pool(i).objval(j) stores the value of the j-th objective function for the i-
th solution.

xn: Stores the i-th solution in result.pool(i).xn. This vector contains one entry for each
column of A.

Note that to query the number of solutions stored, you can query the length of result.pool.

poolobjbound: For single-objective MIP optimization problems, this value gives a bound on the
best possible objective of an undiscovered solution. The difference between this value and
objbound is that the former gives an objective bound for undiscovered solutions, while the
latter gives a bound for any solution.

What is Available When

The status field will be present in all cases. It indicates whether Gurobi was able to find a proven
optimal solution to the model. In cases where a solution to the model was found, optimal or
otherwise, the objval and x fields will be present.

For linear and quadratic programs, if a solution is available, then the pi and rc fields will also
be present. For models with quadratic constraints, if the parameter qcpdual is set to 1, the field
qcpi will be present. If the final solution is a basic solution (computed by simplex), then vbasis
and cbasis will be present. If the model is an unbounded linear program and the InfUnbdInfo
parameter is set to 1, the field unbdray will be present. Finally, if the model is an infeasible linear
program and the InfUnbdInfo parameter is set to 1, the fields farkasdual and farkasproof will
be set.

For mixed integer problems, no dual information (i.e. pi, slack, rc, vbasis, cbasis, qcslack,
qcpi, ubdray or farkasdual) is ever available. When multiple solutions are found, the pool and
poolobjbound fields will be present. Depending on the status field value, the fields nodecount,
objbound, objbundc and mipgap will be available.

For continuous and mixed-integer models, under normal execution, the fields runtime, itercount
and baritercount will be available.

635

gurobi_iis()

gurobi_iis (model)
gurobi_iis (model, params)
gurobi_iis (model, params, env)

Compute an Irreducible Inconsistent Subsystem (IIS).
An IIS is a subset of the constraints and variable bounds with the following properties:

• It is still infeasible, and

• If a single constraint or bound is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily
the smallest one; there may exist others with fewer constraints or bounds.

IIS results are returned in a number of attributes: IISConstr, IISLB, IISUB, IISSOS, IISQCon-
str, and IISGenConstr. Each indicates whether the corresponding model element is a member of
the computed IIS.

The IIS log provides information about the progress of the algorithm, including a guess at the
eventual IIS size.

If an IIS computation is interrupted before completion, Gurobi will return the smallest infeasible
subsystem found to that point.

You can obtain information about the outcome of the IIS computation from the returned IIS
result (described below). Note that this method can be used to compute IISs for both continuous
and MIP models.

Arguments:
model: The model struct must contain a valid Gurobi model. See the model argument
section for more information.

params: The params struct, when provided, contains a list of modified Gurobi parameters.
See the params argument section for more information.

env: The env struct, when provided, allows you to use Gurobi Compute Server or Gurobi
Instant Cloud. See the env argument section for more information.

Example usage:

model = gurobi_read(’examples/data/klein1.mps’);
iis = gurobi_iis(model);

Return value:

The gurobi_iis() function returns a struct, with various results stored in its fields. The
specific results that are available depend on the type of model.

The returned struct will always contain the following fields:

minimal: A logical scalar that indicates whether the computed IIS is minimal. It will normally be
true, but it may be false if the IIS computation was stopped early (due to a time limit or a
user interrupt).

636

Arows: A logical vector that indicates whether a linear constraint appears in the computed IIS.

lb: A logical vector that indicates whether a lower bound appears in the computed IIS.

ub: A logical vector that indicates whether a upper bound appears in the computed IIS.

If your model contains general constraints, the returned struct will also contain the following
fields:

genconmax: A logical vector that indicates whether a general MAX constraint appears in the com-
puted IIS.

genconmin: A logical vector that indicates whether a general MIN constraint appears in the com-
puted IIS.

genconand: A logical vector that indicates whether a general AND constraint appears in the com-
puted IIS.

genconor: A logical vector that indicates whether a general OR constraint appears in the computed
IIS.

genconabs: A logical vector that indicates whether a general ABS constraint appears in the com-
puted IIS.

genconind: A logical vector that indicates whether a general INDICATOR constraint appears in
the computed IIS.

genconpwl: A logical vector that indicates whether a general piecewise-linear function constraint
appears in the computed IIS.

genconpoly: A logical vector that indicates whether a polynomial function constraint appears in
the computed IIS.

genconexp: A logical vector that indicates whether a natural exponential function constraint ap-
pears in the computed IIS.

genconexpa: A logical vector that indicates whether a exponential function constraint appears in
the computed IIS.

genconlog: A logical vector that indicates whether a natural logarithmic function constraint ap-
pears in the computed IIS.

genconloga: A logical vector that indicates whether a logarithmic function constraint appears in
the computed IIS.

genconpow: A logical vector that indicates whether a power function constraint appears in the
computed IIS.

genconsin: A logical vector that indicates whether a SIN function constraint appears in the com-
puted IIS.

637

genconcos: A logical vector that indicates whether a COS function constraint appears in the
computed IIS.

gencontan: A logical vector that indicates whether a TAN function constraint appears in the
computed IIS.

If your model contains SOS constraints, the returned struct will also contain the following
field:

sos: A logical vector that indicates whether an SOS constraint appears in the computed IIS

If your model contains quadratic constraints, the returned struct will also contain the following
field:

quadcon: A logical vector that indicates whether a quadratic constraint appears in the computed
IIS.

gurobi_feasrelax()

gurobi_feasrelax (model, relaxobjtype, minrelax, penalties)
gurobi_feasrelax (model, relaxobjtype, minrelax, penalties, params)
gurobi_feasrelax (model, relaxobjtype, minrelax, penalties, params, env)

This function computes a feasibility relaxation for the input model argument. The feasibility
relaxation is a model that, when solved, minimizes the amount by which the solution violates the
bounds and linear constraints of the original model. You must provide a penalty to associate with
relaxing each individual bound or constraint (through the penalties argument). These penalties
are interpreted in different ways, depending on the value of the relaxobjtype argument.

Arguments:
model: The model struct must contain a valid Gurobi model. See the model argument
section for more information.

relaxobjtype: The approach used to impose penalties on violations.
If you specify relaxobjtype=0, the objective for the feasibility relaxation is to minimize
the sum of the weighted magnitudes of the bound and constraint violations.
If you specify relaxobjtype=1, the objective for the feasibility relaxation is to minimize
the weighted sum of the squares of the bound and constraint violations.
If you specify relaxobjtype=2, the objective for the feasibility relaxation is to minimize
the weighted count of bound and constraint violations.
In all cases, the weights are taken from penalties.lb, penalties.ub and penalties.rhs.
You can provide the special penalty value Inf to indicate that the corresponding bound
or constraint cannot be relaxed.

minrelax: The minrelax argument is a boolean that controls the type of feasibility relax-
ation that is created. If minrelax=False, optimizing the returned model gives a solution
that minimizes the cost of the violation. If minrelax=True, optimizing the returned model
finds a solution that minimizes the original objective, but only from among those solutions
that minimize the cost of the violation. Note that gurobi_feasrelax must solve an op-
timization problem to find the minimum possible relaxation when minrelax=True, which
can be quite expensive.

638

penalties: The penalties argument is a struct array, having the following optional fields
(default: all Inf):
lb Penalty for violating each lower bound.
ub Penalty for violating each upper bound.
rhs Penalty for violating each constraint.

To give an example, if a constraint with penalties.rhs value p is violated by 2.0, it would con-
tribute 2*p to the feasibility relaxation objective for relaxobjtype=0, 2*2*p for relaxobjtype=1,
and p for relaxobjtype=2.

env: The env struct, when provided, allows you to use Gurobi Compute Server or Gurobi
Instant Cloud. See the env argument section for more information.

Return value:
A struct containing two fields:
result.model, a struct variable, as described in the model argument section.
result.feasobj, a scalar. If minrelax==true this is the relaxation problem objective value,
0.0 otherwise.

Example usage:

model = gurobi_read(’stein9.mps’);
penalties.lb = ones(length(model.lb),1);
penalties.ub = ones(length(model.ub),1);
penalties.rhs = ones(length(model.rhs),1);
feasrelaxresult = gurobi_feasrelax(model, 0, false, penalties);

gurobi_relax()

gurobi_relax (model)
gurobi_relax (model, env)

Create the relaxation of a MIP model. Transforms integer variables into continuous variables,
and removes SOS and general constraints.

Arguments:
model: The model struct must contain a valid Gurobi model. See the model argument
section for more information.

env: The env struct, when provided, allows you to use Gurobi Compute Server or Gurobi
Instant Cloud. See the env argument section for more information.

Return value:
A model struct variable, as described in the model parameter section.

Example usage:

model = gurobi_read(’stein9.mps’);
relaxed = gurobi_relax(model);

639

7.3 Input/Output
gurobi_read()

gurobi_read (filename)
gurobi_read (filename, env)

Reads a model from a file.
Arguments:

filename: Name of the file to read. Note that the type of the file is encoded in the file
name suffix. The filename suffix should be one of .mps, .rew, .lp, .rlp, .ilp, or .opb (see
the file formats section for details on Gurobi file formats). The files can be compressed,
so additional suffixes of .gz, .bz2, .zip, or .7z are accepted.

env: The env struct, when provided, allows you to use Gurobi Compute Server or Gurobi
Instant Cloud. See the env argument section for more information.

Return value:
A model struct variable, as described in the model section.

Example usage:
model = gurobi_read(’stein9.mps’);
result = gurobi(model);

gurobi_write()

gurobi_write (model, filename)
gurobi_write (model, filename, env)

Writes a model to a file.
Arguments:

model: The model struct must contain a valid Gurobi model. See the model argument
section for more information.

filename: Name of the file to write. Note that the type of the file is encoded in the file
name suffix. The filename suffix should be one of .mps, .rew, .lp, .rlp, or .ilp, to indicate
the desired file format (see the file formats section for details on Gurobi file formats). The
files can be compressed, so additional suffixes of .gz, .bz2, .zip, or .7z are accepted.

env: The env struct, when provided, allows you to use Gurobi Compute Server or Gurobi
Instant Cloud. See the env argument section for more information.

Example usage:
model.A = sparse ([1 2 3; 1 1 0]);
model.obj = [1 1 2];
model. modelsense = ’max ’;
model.rhs = [4; 1];
model.sense = ’<>’;
gurobi_write (model , ’mymodel .mps ’);
gurobi_write (model , ’mymodel .lp’);
gurobi_write (model , ’mymodel .mps.bz2 ’);

640

7.4 Using Gurobi within MATLAB’s Problem-Based Optimization
Starting with release R2017b, the MATLAB Optimization Toolbox offers an alternative way to for-
mulate optimization problems, coined “Problem-Based Optimization”. In this section we’ll explain
how this modeling technique can be used in combination with the Gurobi solver.

The problem-based modeling approach uses an object-oriented paradigm for the components
of an optimization problem; the optimization problem itself, the decision variables, and the linear
constraints are represented by objects. Their creation and modification is effected through methods.
The complete documentation for problem-based optimization is part of the Optimization Toolbox;
we will only walk through a simple example. For this it is important that your MATLAB path
contains Gurobi’s example directory, which can be set as follows:
addpath (fullfile (< path_to_Gurobi >, <architecture >, ’examples ’, ’matlab ’));

The first step is to create an optimization problem:
prob = optimproblem (’ObjectiveSense ’,’maximize ’);

The variable prob now refers to an optimization problem object, which we have specified to be
a maximization problem. Next we create three non-negative optimization variables: x, y and z:
x = optimvar (’x’, ’LowerBound ’, 0);
y = optimvar (’y’, ’LowerBound ’, 0);
z = optimvar (’z’, ’LowerBound ’, 0);

With these variables at hand, we now build linear expressions in order to set an objective
function, and to add two linear constraints to prob:
prob. Objective = x + 2 * y + 3 * z;
prob. Constraints .cons1 = x + y <= 1;
prob. Constraints .cons2 = y + z <= 1;

Finally we create an options object that guides prob’s solution method to the linear program
solver function linprog, and call the solve method.
options = optimoptions (’linprog ’);
sol = solve(prob , options);

Since the examples directory of the Gurobi installation has been added to the path in the very
first step above, a bit of magic happens at this stage: The directory contains a file linprog.m, so
that the invocation of the solve method ends up calling this latter function instead of the built-in
function linprog of MATLAB’s Optimization Toolbox. The following output from Gurobi will be
shown on the console:
Gurobi Optimizer version 9.1.2 build v9.1.2rc0 (linux64)
Optimize a model with 2 rows, 3 columns and 4 nonzeros
Model fingerprint: 0x3a4c68c2
Coefficient statistics:

Matrix range [1e+00, 1e+00]
Objective range [1e+00, 3e+00]
Bounds range [0e+00, 0e+00]
RHS range [1e+00, 1e+00]

Presolve removed 2 rows and 3 columns
Presolve time: 0.03s
Presolve: All rows and columns removed
Iteration Objective Primal Inf. Dual Inf. Time

0 -4.0000000e+00 0.000000e+00 0.000000e+00 0s

641

Solved in 0 iterations and 0.05 seconds
Optimal objective -4.000000000e+00

The example we just discussed can be found in the examples directory in the file opttoolbox_-
lp.m. The example opttoolbox_mip1.m shows an analogous problem formulation with integer
variables, that uses the function intlinprog.m, also found in the Gurobi examples directory, as a
surrogate for MATLAB’s built-in counterpart.

The modeling constructs provided by the Optimization Toolbox do not cover all the features
of Gurobi, e.g., SOS, semi-continuous variables and general constraints to name a few. Moreover
not all Gurobi parameters have equivalent counterparts in the option objects for linprog and
intlinprog. In order to use such features, Gurobi’s own Matlab API should be used.

642

7.5 Setting up the Gurobi MATLAB interface
In order to use our MATLAB interface, you’ll need to use the MATLAB function gurobi_setup to
tell MATLAB where to find the Gurobi mex file. This file is stored in the <installdir>/matlab
directory of your Gurobi installation. For example, if you installed the 64-bit Windows version of
Gurobi 9.1 in the default location, you should run

>> cd c:/Users/jones/gurobi912/win64/matlab

>> gurobi_setup

The gurobi_setup function adjusts your MATLAB path to include the <installdir>/matlab
directory. If you want to avoid typing this command every time you start MATLAB, follow the
instructions issued by gurobi_setup to permanently adjust your path.

The MATLAB examples provided with the Gurobi distribution are included in the
<installdir>/examples/matlab directory. To run these examples you need to change to this
directory. For example, if you are running the 64-bit Windows version of Gurobi, you would say:

>> cd c:/Users/jones/gurobi912/win64/examples/matlab

>> mip1

If the Gurobi package was successfully installed, you should see the following output:

status: ’OPTIMAL’
versioninfo: [1x1 struct]

runtime: 2.9397e-04
objval: 3

x: [3x1 double]
slack: [2x1 double]

poolobjbound: 3
pool: [1x2 struct]

mipgap: 0
objbound: 3

objboundc: 3
itercount: 0

baritercount: 0
nodecount: 0

x 1
y 0
z 1
Obj: 3.000000e+00

643

R API Overview

This section documents the Gurobi R interface. For those of you who are not familiar with R, it
is a free language for statistical computing. Please visit the R web site for more information. This
manual begins with a quick overview of the methods provided by our R API. It then continues
with a comprehensive presentation of all of the available methods, their arguments, and their
return values.

If you are new to the Gurobi Optimizer, we suggest that you start with the Quick Start Guide
or the Example Tour. These documents provide concrete examples of how to use the methods
described here.

A quick note for new users: the convention in math programming is that variables are non-
negative unless specified otherwise. You’ll need to explicitly set lower bounds if you want variables
to be able to take negative values.
Models

Our Gurobi R interface enables you to express problems of the following form:
minimize xTQx+ cTx+ alpha
subject to Ax = b (linear constraints)

` ≤ x ≤ u (bound constraints)
some xj integral (integrality constraints)
xTQcx+ qTx ≤ beta (quadratic constraints)
some xi in SOS (special ordered set constraints)
min, max, abs, or, ... (general constraints)

Models are stored as list variables, each consisting of multiple named components. The named
components capture the different model components listed above. Many of these model components
are optional. For example, integrality constraints may be omitted.

An optimization model may be loaded from a file (using the gurobi_read function), or it can
be built by populating the appropriate named components of a model variable (using standard R
constructs). We will discuss the details of how models are represented in the model argument
section.

We often refer to the class of an optimization model. A model with a linear objective function,
linear constraints, and continuous variables is a Linear Program (LP). If the objective is quadratic,
the model is a Quadratic Program (QP). If any of the constraints are quadratic, the model is
a Quadratically-Constrained Program (QCP). We will sometimes refer to a few special cases of
QCP: QCPs with convex constraints, QCPs with non-convex constraints, bilinear programs, and
Second-Order Cone Programs (SOCP). If the model contains any integer variables, semi-continuous
variables, semi-integer variables, Special Ordered Set (SOS) constraints, or general constraints, the
model is a Mixed Integer Program (MIP). We’ll also sometimes discuss special cases of MIP, in-
cluding Mixed Integer Linear Programs (MILP), Mixed Integer Quadratic Programs (MIQP), Mixed

644

https://www.r-project.org
https://www.gurobi.com/documentation/9.1/quickstart_windows/index.html
https://www.gurobi.com/documentation/9.1/examples/index.html

Integer Quadratically-Constrained Programs (MIQCP), and Mixed Integer Second-Order Cone Pro-
grams (MISOCP). The Gurobi Optimizer handles all of these model classes.
Solving a Model

Once you have built a model, you can call gurobi to compute a solution. By default, gurobi
will use the concurrent optimizer to solve LP models, the barrier algorithm to solve QP models
and QCP models with convex constraints, and the branch-and-cut algorithm to solve mixed integer
models. The solution is returned as a list variable. We will discuss the details of how optimization
results are represented when we discuss the gurobi function.
Here is a simple example of a likely sequence of commands in the R API:
model <- gurobi_read(’examples/data/stein9.mps’)
result <- gurobi(model)

Multiple Solutions and Multiple Objectives

By default, the Gurobi Optimizer assumes that your goal is to find one proven optimal solution to
a model with a single objective function. Gurobi provides features that allow you to relax either
of these assumptions. You should refer to the section on Solution Pools for information on how to
request more than one solution, or the section on Multiple Objectives for information on how to
specify multiple objective functions and control the trade-off between them.
Infeasible Models

You have a few options if a model is found to be infeasible. You can try to diagnose the cause
of the infeasibility, attempt to repair the infeasibility, or both. To obtain information that can
be useful for diagnosing the cause of an infeasibility, call gurobi_iis to compute an Irreducible
Inconsistent Subsystem (IIS). This method can be used for both continuous and MIP models, but
you should be aware that the MIP version can be quite expensive. We will discuss the details of
how IIS results are represented in the gurobi_iis function documentation.

To attempt to repair an infeasibility, call gurobi_feasrelax to compute a feasibility relaxation
for the model. This relaxation allows you to find a solution that minimizes the magnitude of the
constraint violation.
Managing Parameters

The Gurobi optimizer provides a set of parameters that allow you to control many of the details of
the optimization process. Factors like feasibility and optimality tolerances, choices of algorithms,
strategies for exploring the MIP search tree, etc., can be controlled by modifying Gurobi parameters
before beginning the optimization.

Each Gurobi parameter has a default value. Desired parameter changes are passed in a list
variable. The name of each named component within this list must be the name of a Gurobi
parameter, and the associated value should be the desired value of that parameter. You can find
a complete list of the available Gurobi parameters here. We will provide additional details on
changing parameter settings in the params argument section.
Monitoring Progress

Progress of the optimization can be monitored through Gurobi logging. By default, Gurobi will
send output to the screen. A few simple controls are available for modifying the default logging
behavior. If you would like to direct output to a file as well as to the screen, set the LogFile

645

parameter to the name of your desired log file. The frequency of logging output can be controlled
with the DisplayInterval parameter, and logging can be turned off entirely with the OutputFlag
parameter. A detailed description of the Gurobi log file can be found in the Logging section.
Error Handling

If unsuccessful, the methods of the Gurobi R interface will return an error code and an error
message. A list of possible error codes can be found in the Error Code section.
Environments

By default, the various Gurobi functions will look for a valid license file and create a local Gurobi
environment. This environment exists for as long as the corresponding R API function is running,
and is released upon completion.

Another option is to provide an optional env argument (also through a list). This argument
allows you to solve the given problem on a Gurobi Compute Server or using the Gurobi Instant
Cloud. We will discuss this topic further in the env argument section.

Gurobi will check the current working directory for a file named gurobi.env, and it will attempt
to read parameter settings from this file if it exists. The file should be in PRM format (briefly,
each line should contain a parameter name, followed by the desired value for that parameter).

646

8.1 Common Arguments
Most common arguments in the Gurobi R interface are R list variables, each containing multiple
named components. Several of these named components are optional. Note that you refer to
a named component of a list variable by adding a dollar sign to the end of the variable name,
followed by the name of the named component. For example, model$A refers to named component
A of variable model.

The model argument

Model variables store optimization problems (as described in the problem statement).
Models can be built in a number of ways. You can populate the appropriate named compo-

nents of the model list using standard R routines. You can also read a model from a file, using
gurobi_read. A few API functions (gurobi_feasrelax and gurobi_relax) also return models.

Note that all matrix named components within the model variable can be dense or sparse.
Sparse matrices should be built using either sparseMatrix from the Matrix package, or simple_-
triplet_matrix from the slam package.

The following is an enumeration of all of the named components of the model argument that
Gurobi will take into account when optimizing the model:
Commonly used named components:

A: The linear constraint matrix.

obj (optional): The linear objective vector (the c vector in the problem statement). When
present, you must specify one value for each column of A. When absent, each variable has a
default objective coefficient of 0.

sense (optional): The senses of the linear constraints. Allowed values are ’=’, ’<’, or ’>’. You
must specify one value for each row of A, or a single value to specify that all constraints have
the same sense. When absent, all senses default to ’<’.

rhs (optional): The right-hand side vector for the linear constraints (b in the problem state-
ment). You must specify one value for each row of A. When absent, the right-hand side vector
defaults to the zero vector.

lb (optional): The lower bound vector. When present, you must specify one value for each
column of A. When absent, each variable has a default lower bound of 0.

ub (optional): The upper bound vector. When present, you must specify one value for each
column of A. When absent, the variables have infinite upper bounds.

vtype (optional): The variable types. This vector is used to capture variable integrality con-
straints. Allowed values are ’C’ (continuous), ’B’ (binary), ’I’ (integer), ’S’ (semi-continuous),
or ’N’ (semi-integer). Binary variables must be either 0 or 1. Integer variables can take any
integer value between the specified lower and upper bounds. Semi-continuous variables can
take any value between the specified lower and upper bounds, or a value of zero. Semi-integer
variables can take any integer value between the specified lower and upper bounds, or a value
of zero. When present, you must specify one value for each column of A, or a single value to

647

specify that all variables have the same type. When absent, each variable is treated as being
continuous. Refer to this section for more information on variable types.

modelsense (optional): The optimization sense. Allowed values are ’min’ (minimize) or ’max’
(maximize). When absent, the default optimization sense is minimization.

modelname (optional): The name of the model. The name appears in the Gurobi log, and when
writing a model to a file.

objcon (optional): The constant offset in the objective function (alpha in the problem state-
ment).

varnames (optional): The variable names vector. A character vector. When present, each ele-
ment of this vector defines the name of a variable. You must specify a name for each column
of A.

constrnames (optional): The constraint names vector. A character vector. When present, each
element of the vector defines the name of a constraint. You must specify a name for each row
of A.

Quadratic objective and constraint named components:

Q (optional): The quadratic objective matrix. When present, Q must be a square matrix whose
row and column counts are equal to the number of columns in A.

quadcon (optional): The quadratic constraints. A list of lists. When present, each element in
quadcon defines a single quadratic constraint: xTQcx+ qTx ≤ beta.
The Qc matrix must be a square matrix whose row and column counts are equal to the number
of columns of A. It is stored in model$quadcon[[i]]$Qc.
The optional q vector defines the linear terms in the constraint. It can be a dense vector
specifying a value for each column of A or a sparse vector (should be built using sparseVector
from the Matrix package). It is stored in model$quadcon[[i]]$q.
The scalar beta is stored in model$quadcon[[i]]$rhs. It defines the right-hand side value
for the constraint.
The optional sense string defines the sense of the quadratic constraint. Allowed values are
’<’, ’=’ or ’>’. If not present, the default sense is ’<’. It is stored in model$quadcon[[i]]$sense.
The optional name string defines the name of the quadratic constraint. It is stored in
model$quadcon[[i]]$name.

SOS constraint named components:

sos (optional): The Special Ordered Set (SOS) constraints. A list of lists. When present, each
entry in sos defines a single SOS constraint. A SOS constraint can be of type 1 or 2. The
type of SOS constraint i is specified via model$sos[[i]]$type. A type 1 SOS constraint is
a set of variables where at most one variable in the set may take a value other than zero.
A type 2 SOS constraint is an ordered set of variables where at most two variables in the
set may take non-zero values. If two take non-zeros values, they must be contiguous in
the ordered set. The members of an SOS constraint are specified by placing their indices

648

in vector model$sos[[i]]$index. Weights associated with SOS members are provided in
vector model$sos[[i]]$weight. Please refer to this section for details on SOS constraints.

Multi-objective named components:

multiobj (optional): Multi-objective specification for the model. A list of lists. When present,
each entry in multiobj defines a single objective of a multi-objective problem. Please refer
to the Multiple Objectives section for more details on multi-objective optimization. Each
objective i may have the following named components:

objn: Specified via model$multiobj[[i]]$objn. This is the i-th objective vector.
objcon (optional): Specified via model$multiobj[[i]]$objcon. If provided, this is the

i-th objective constant. The default value is 0.
priority (optional): Specified via model$multiobj[[i]]$priority. If provided, this

value is the hierarchical priority for this objective. The default value is 0.
weight (optional): Specified via model$multiobj[[i]]$weight. If provided, this value is

the multiplier used when aggregating objectives. The default value is 1.0.
reltol (optional): Specified via model$multiobj[[i]]$reltol. If provided, this value

specifies the relative objective degradation when doing hierarchical multi-objective op-
timization. The default value is 0.

abstol (optional): Specified via model$multiobj[[i]]$abstol. If provided, this value
specifies the absolute objective degradation when doing hierarchical multi-objective op-
timization. The default value is 0.

name (optional): Specified via model$multiobj[[i]]$name. If provided, this string speci-
fies the name of the i-th objective function.

Note that when multiple objectives are present, the result$objval named component that
is returned in the result of an optimization call will be a vector of the same length as
model$multiobj.
A multi-objective model can’t have other objectives. Thus, combining model$multiobj with
any of model$obj, model$objcon, model$pwlobj, or model$Q is an error.

General constraint named components:

The list of lists described below are used to add general constraints to a model.
Mathematical programming has traditionally defined a set of fundamental constraint types:

variable bound constraints, linear constraints, quadratic constraints, integrality constraints, and
SOS constraints. These are typically treated directly by the underlying solver (although not always),
and are fundamental to the overall algorithm.

Gurobi accepts a number of additional constraint types, which we collectively refer to as general
(function) constraints. These are typically not treated directly by the solver. Rather, they are
transformed by presolve into constraints (and variables) chosen from among the fundamental types
listed above. In some cases, the resulting constraint or constraints are mathematically equivalent
to the original; in others, they are approximations. If such constraints appear in your model, but
if you prefer to reformulate them yourself using fundamental constraint types instead, you can

649

certainly do so. However, note that Gurobi can sometimes exploit information contained in the
other constraints in the model to build a more efficient formulation than what you might create.

The additional constraint types that fall under this general constraint umbrella are:

• MAX (genconmax): set a decision variable equal to the maximum value from among a set of
decision variables

• MIN (genconmin): set a decision variable equal to the minimum value from among a set of
decision variables

• ABS (genconabs): set a decision variable equal to the absolute value of some other decision
variable

• AND (genconand): set a binary variable equal to one if and only if all of a set of binary
decision variables are equal to one

• OR (genconor): set a binary variable equal to one if and only if at least one variable out of
a set of binary decision variables is equal to one

• INDICATOR (genconind): whenever a given binary variable takes a certain value, then the
given linear constraint must be satisfied

• Piecewise-linear constraints (genconpwl): set a variable equal to the piecewise-linear function
defined by a set of points using some other variable

• Polynomial (genconpoly): set a variable equal to the polynomial function defined by some
other variable

• Natural exponential (genconexp): set a variable equal to the natural exponential function by
some other variable

• Exponential (genconexpa): set a variable equal to the exponential function by some other
variable

• Natural logarithm (genconlog): set a variable equal to the natural logarithmic function by
some other variable

• Logarithm (genconloga): set a variable equal to the logarithmic function by some other
variable

• Power (genconpow): set a variable equal to the power function by some other variable

• SIN (genconsin): set a variable equal to the sine function by some other variable

• COS (genconcos): set a variable equal to the cosine function by some other variable

• TAN (gencontan): set a variable equal to the tangent function by some other variable

Please refer to this section for additional details on general constraints.

genconmax (optional): A list of lists. When present, each entry in genconmax defines a MAX
general constraint of the form

650

x[resvar] = max {con, x[j] : j ∈ vars}

Each entry may have the following named components:

resvar: Specified via model$genconmax[[i]]$resvar. Index of the variable in the left-hand
side of the constraint.

vars: Specified via model$genconmax[[i]]$vars, it is a vector of indices of variables in the
right-hand side of the constraint.

con (optional): Specified via model$genconmax[[i]]$con. When present, specifies the
constant on the left-hand side. Default value is −∞.

name (optional): Specified via model$genconmax[[i]]$name. When present, specifies the
name of the i-th MAX general constraint.

genconmin (optional): A list of lists. When present, each entry in genconmax defines a MIN
general constraint of the form

x[resvar] = min {con, x[j] : j ∈ vars}

Each entry may have the following named components:

resvar: Specified via model$genconmin[[i]]$resvar. Index of the variable in the left-hand
side of the constraint.

vars: Specified via model$genconmin[[i]]$vars, it is a vector of indices of variables in the
right-hand side of the constraint.

con (optional): Specified via model$genconmin[[i]]$con. When present, specifies the
constant on the left-hand side. Default value is ∞.

name (optional): Specified via model$genconmin[[i]]$name. When present, specifies the
name of the i-th MIN general constraint.

genconabs (optional): A list of lists. When present, each entry in genconmax defines an ABS
general constraint of the form

x[resvar] = |x[argvar]|

Each entry may have the following named components:

resvar: Specified via model$genconabs[[i]]$resvar. Index of the variable in the left-hand
side of the constraint.

argvar: Specified via model$genconabs[[i]]$argvar. Index of the variable in the right-
hand side of the constraint.

name (optional): Specified via model$genconabs[[i]]$name. When present, specifies the
name of the i-th ABS general constraint.

genconand (optional): A list of lists. When present, each entry in genconand defines an AND
general constraint of the form

651

x[resvar] = and{x[i] : i ∈ vars}

Each entry may have the following named components:

resvar: Specified via model$genconand[[i]]$resvar. Index of the variable in the left-hand
side of the constraint.

vars: Specified via model$genconand[[i]]$vars, it is a vector of indices of variables in the
right-hand side of the constraint.

name (optional): Specified via model$genconand[[i]]$name. When present, specifies the
name of the i-th AND general constraint.

genconor (optional): A list of lists. When present, each entry in genconor defines an OR general
constraint of the form

x[resvar] = or{x[i] : i ∈ vars}

Each entry may have the following named components:

resvar: Specified via model$genconor[[i]]$resvar. Index of the variable in the left-hand
side of the constraint.

vars: Specified via model$genconor[[i]]$vars, it is a vector of indices of variables in the
right-hand side of the constraint.

name (optional): Specified via model$genconor[[i]]$name. When present, specifies the
name of the i-th OR general constraint.

genconind (optional): A list of lists. When present, each entry in genconind defines an INDI-
CATOR general constraint of the form

x[binvar] = binval⇒
∑

(x[[j]] · a[[j]]) sense rhs

This constraint states that when the binary variable x[binvar] takes the value binval then the
linear constraint

∑
(x[vars[[j]]] · val[[j]]) sense rhs must hold. Note that sense is one of ’=’,

’<’, or ’>’ for equality (=), less than or equal (≤) or greater than or equal (≥) constraints.
Each entry may have the following named components:

binvar: Specified via model$genconind[[i]]$binvar. Index of the implicating binary vari-
able.

binval: Specified via model$genconind[[i]]$binval. Value for the binary variable that
forces the following linear constraint to be satisfied. It can be either 0 or 1.

a: Specified via model$genconind[[i]]$a. Vector of coefficients of variables participating in
the implied linear constraint. You can specify a value for a for each column of A (dense
vector) or pass a sparse vector (should be built using sparseVector from the Matrix
package).

sense: Specified via model$genconind[[i]]$sense. Sense of the implied linear constraint.
Must be one of ’=’, ’<’, or ’>’.

652

rhs: Specified via model$genconind[[i]]$rhs. Right-hand side value of the implied linear
constraint.

name (optional): Specified via model$genconind[[i]]$name. When present, specifies the
name of the i-th INDICATOR general constraint.

genconpwl (optional): A list of lists. When present, each entry in genconpwl defines a piecewise-
linear constraint of the form

x[yvar] = f(x[xvar])

The breakpoints for f are provided as arguments. Refer to the description of piecewise-linear
objectives for details of how piecewise-linear functions are defined
Each entry may have the following named components:

xvar: Specified via model$genconpwl[[i]]$xvar. Index of the variable in the right-hand
side of the constraint.

yvar: Specified via model$genconpwl[[i]]$yvar. Index of the variable in the left-hand side
of the constraint.

xpts: Specified via model$genconpwl[[i]]$xpts. Specifies the x values for the points that
define the piecewise-linear function. Must be in non-decreasing order.

ypts: Specified via model$genconpwl[[i]]$ypts. Specifies the y values for the points that
define the piecewise-linear function.

name (optional): Specified via model$genconpwl[[i]]$name. When present, specifies the
name of the i-th piecewise-linear general constraint.

genconpoly (optional): A list of lists. When present, each entry in genconpoly defines a poly-
nomial function constraint of the form

x[yvar] = p0x[xvar]d + p1x[xvar]d−1 + ...+ pd−1x[xvar] + pd

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with
the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For
details, consult the General Constraint discussion.
Each entry may have the following named components:

xvar: Specified via model$genconpoly[[i]]$xvar. Index of the variable in the right-hand
side of the constraint.

yvar: Specified via model$genconpoly[[i]]$yvar. Index of the variable in the left-hand
side of the constraint.

p: Specified via model$genconpoly[[i]]$p. Specifies the coefficients for the polynomial
function (starting with the coefficient for the highest power). If xd is the highest power
term, a dense vector of length d+ 1 is returned.

name (optional): Specified via model$genconpoly[[i]]$name. When present, specifies the
name of the i-th polynomial function constraint.

653

funcpieces (optional): Specified via model$genconpoly[[i]]$funcpieces. When present,
specifies the FuncPieces attribute of the i-th polynomial function constraint.

funcpiecelength (optional): Specified via model$genconpoly[[i]]$funcpiecelength. When
present, specifies the FuncPieceLength attribute of the i-th polynomial function con-
straint.

funcpieceerror (optional): Specified via model$genconpoly[[i]]$funcpieceerror. When
present, specifies the FuncPieceError attribute of the i-th polynomial function constraint.

funcpieceratio (optional): Specified via model$genconpoly[[i]]$funcpieceratio. When
present, specifies the FuncPieceRatio attribute of the i-th polynomial function constraint.

genconexp (optional): A list of lists. When present, each entry in genconexp defines the natural
exponential function constraint of the form

x[yvar] = exp(x[xvar])

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with
the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For
details, consult the General Constraint discussion.
Each entry may have the following named components:

xvar: Specified via model$genconexp[[i]]$xvar. Index of the variable in the right-hand
side of the constraint.

yvar: Specified via model$genconexp[[i]]$yvar. Index of the variable in the left-hand side
of the constraint.

name (optional): Specified via model$genconexp[[i]]$name. When present, specifies the
name of the i-th natural exponential function constraint.

funcpieces (optional): Specified via model$genconexp[[i]]$funcpieces. When present,
specifies the FuncPieces attribute of the i-th natural exponential function constraint.

funcpiecelength (optional): Specified via model$genconexp[[i]]$funcpiecelength. When
present, specifies the FuncPieceLength attribute of the i-th natural exponential function
constraint.

funcpieceerror (optional): Specified via model$genconexp[[i]]$funcpieceerror. When
present, specifies the FuncPieceError attribute of the i-th natural exponential function
constraint.

funcpieceratio (optional): Specified via model$genconexp[[i]]$funcpieceratio. When
present, specifies the FuncPieceRatio attribute of the i-th natural exponential function
constraint.

genconexpa (optional): A list of lists. When present, each entry in genconexpa defines an
exponential function constraint of the form

x[yvar] = ax[xvar]

654

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with
the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For
details, consult the General Constraint discussion.
Each entry may have the following named components:

xvar: Specified via model$genconexpa[[i]]$xvar. Index of the variable in the right-hand
side of the constraint.

yvar: Specified via model$genconexpa[[i]]$yvar. Index of the variable in the left-hand
side of the constraint.

a: Specified via model$genconexpa[[i]]$a. Specifies the base of the exponential function
a > 0.

name (optional): Specified via model$genconexpa[[i]]$name. When present, specifies the
name of the i-th exponential function constraint.

funcpieces (optional): Specified via model$genconexpa[[i]]$funcpieces. When present,
specifies the FuncPieces attribute of the i-th exponential function constraint.

funcpiecelength (optional): Specified via model$genconexpa[[i]]$funcpiecelength. When
present, specifies the FuncPieceLength attribute of the i-th exponential function con-
straint.

funcpieceerror (optional): Specified via model$genconexpa[[i]]$funcpieceerror. When
present, specifies the FuncPieceError attribute of the i-th exponential function con-
straint.

funcpieceratio (optional): Specified via model$genconexpa[[i]]$funcpieceratio. When
present, specifies the FuncPieceRatio attribute of the i-th exponential function con-
straint.

genconlog (optional): A list of lists. When present, each entry in genconlog defines the natural
logarithmic function constraint of the form

x[yvar] = log(x[xvar])

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with
the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For
details, consult the General Constraint discussion.
Each entry may have the following named components:

xvar: Specified via model$genconlog[[i]]$xvar. Index of the variable in the right-hand
side of the constraint.

yvar: Specified via model$genconlog[[i]]$yvar. Index of the variable in the left-hand side
of the constraint.

name (optional): Specified via model$genconlog[[i]]$name. When present, specifies the
name of the i-th natural logarithmic function constraint.

655

funcpieces (optional): Specified via model$genconlog[[i]]$funcpieces. When present,
specifies the FuncPieces attribute of the i-th natural logarithmic function constraint.

funcpiecelength (optional): Specified via model$genconlog[[i]]$funcpiecelength. When
present, specifies the FuncPieceLength attribute of the i-th natural logarithmic function
constraint.

funcpieceerror (optional): Specified via model$genconlog[[i]]$funcpieceerror. When
present, specifies the FuncPieceError attribute of the i-th natural logarithmic function
constraint.

funcpieceratio (optional): Specified via model$genconlog[[i]]$funcpieceratio. When
present, specifies the FuncPieceRatio attribute of the i-th natural logarithmic function
constraint.

genconloga (optional): A list of lists. When present, each entry in genconloga defines a loga-
rithmic function constraint of the form

x[yvar] = log(x[xvar]) \ log(a)

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with
the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For
details, consult the General Constraint discussion.

Each entry may have the following named components:

xvar: Specified via model$genconloga[[i]]$xvar. Index of the variable in the right-hand
side of the constraint.

yvar: Specified via model$genconloga[[i]]$yvar. Index of the variable in the left-hand
side of the constraint.

a: Specified via model$genconloga[[i]]$a. Specifies the base of the logarithmic function
a > 0.

name (optional): Specified via model$genconloga[[i]]$name. When present, specifies the
name of the i-th logarithmic function constraint.

funcpieces (optional): Specified via model$genconloga[[i]]$funcpieces. When present,
specifies the FuncPieces attribute of the i-th logarithmic function constraint.

funcpiecelength (optional): Specified via model$genconloga[[i]]$funcpiecelength. When
present, specifies the FuncPieceLength attribute of the i-th logarithmic function con-
straint.

funcpieceerror (optional): Specified via model$genconloga[[i]]$funcpieceerror. When
present, specifies the FuncPieceError attribute of the i-th logarithmic function con-
straint.

funcpieceratio (optional): Specified via model$genconloga[[i]]$funcpieceratio. When
present, specifies the FuncPieceRatio attribute of the i-th logarithmic function con-
straint.

656

genconpow (optional): A list of lists. When present, each entry in genconpow defines a power
function constraint of the form

x[yvar] = x[xvar]a

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with
the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For
details, consult the General Constraint discussion.
Each entry may have the following named components:

xvar: Specified via model$genconpow[[i]]$xvar. Index of the variable in the right-hand
side of the constraint.

yvar: Specified via model$genconpow[[i]]$yvar. Index of the variable in the left-hand side
of the constraint.

a: Specified via model$genconpow[[i]]$a. Specifies the exponent of the power function.
name (optional): Specified via model$genconpow[[i]]$name. When present, specifies the

name of the i-th power function constraint.
funcpieces (optional): Specified via model$genconpow[[i]]$funcpieces. When present,

specifies the FuncPieces attribute of the i-th power function constraint.
funcpiecelength (optional): Specified via model$genconpow[[i]]$funcpiecelength. When

present, specifies the FuncPieceLength attribute of the i-th power function constraint.
funcpieceerror (optional): Specified via model$genconpow[[i]]$funcpieceerror. When

present, specifies the FuncPieceError attribute of the i-th power function constraint.
funcpieceratio (optional): Specified via model$genconpow[[i]]$funcpieceratio. When

present, specifies the FuncPieceRatio attribute of the i-th power function constraint.

genconsin (optional): A list of lists. When present, each entry in genconsin defines the sine
function constraint of the form

x[yvar] = sin(x[xvar])

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with
the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For
details, consult the General Constraint discussion.
Each entry may have the following named components:

xvar: Specified via model$genconsin[[i]]$xvar. Index of the variable in the right-hand
side of the constraint.

yvar: Specified via model$genconsin[[i]]$yvar. Index of the variable in the left-hand side
of the constraint.

name (optional): Specified via model$genconsin[[i]]$name. When present, specifies the
name of the i-th sine function constraint.

657

funcpieces (optional): Specified via model$genconsin[[i]]$funcpieces. When present,
specifies the FuncPieces attribute of the i-th sine function constraint.

funcpiecelength (optional): Specified via model$genconsin[[i]]$funcpiecelength. When
present, specifies the FuncPieceLength attribute of the i-th sine function constraint.

funcpieceerror (optional): Specified via model$genconsin[[i]]$funcpieceerror. When
present, specifies the FuncPieceError attribute of the i-th sine function constraint.

funcpieceratio (optional): Specified via model$genconsin[[i]]$funcpieceratio. When
present, specifies the FuncPieceRatio attribute of the i-th sine function constraint.

genconcos (optional): A list of lists. When present, each entry in genconcos defines the cosine
function constraint of the form

x[yvar] = cos(x[xvar])

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with
the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For
details, consult the General Constraint discussion.
Each entry may have the following named components:

xvar: Specified via model$genconcos[[i]]$xvar. Index of the variable in the right-hand
side of the constraint.

yvar: Specified via model$genconcos[[i]]$yvar. Index of the variable in the left-hand side
of the constraint.

name (optional): Specified via model$genconcos[[i]]$name. When present, specifies the
name of the i-th cosine function constraint.

funcpieces (optional): Specified via model$genconcos[[i]]$funcpieces. When present,
specifies the FuncPieces attribute of the i-th cosine function constraint.

funcpiecelength (optional): Specified via model$genconcos[[i]]$funcpiecelength. When
present, specifies the FuncPieceLength attribute of the i-th cosine function constraint.

funcpieceerror (optional): Specified via model$genconcos[[i]]$funcpieceerror. When
present, specifies the FuncPieceError attribute of the i-th cosine function constraint.

funcpieceratio (optional): Specified via model$genconcos[[i]]$funcpieceratio. When
present, specifies the FuncPieceRatio attribute of the i-th cosine function constraint.

gencontan (optional): A list of lists. When present, each entry in gencontan defines the tangent
function constraint of the form

x[yvar] = tan(x[xvar])

A piecewise-linear approximation of the function is added to the model. The details of the
approximation are controlled using the following four attributes (or using the parameters with
the same names): FuncPieces, FuncPieceError, FuncPiecesLength, and FuncPieceRatio. For
details, consult the General Constraint discussion.
Each entry may have the following named components:

658

xvar: Specified via model$gencontan[[i]]$xvar. Index of the variable in the right-hand
side of the constraint.

yvar: Specified via model$gencontan[[i]]$yvar. Index of the variable in the left-hand side
of the constraint.

name (optional): Specified via model$gencontancos[[i]]$name. When present, specifies
the name of the i-th tangent function constraint.

funcpieces (optional): Specified via model$gencontan[[i]]$funcpieces. When present,
specifies the FuncPieces attribute of the i-th tangent function constraint.

funcpiecelength (optional): Specified via model$gencontan[[i]]$funcpiecelength. When
present, specifies the FuncPieceLength attribute of the i-th tangent function constraint.

funcpieceerror (optional): Specified via model$gencontan[[i]]$funcpieceerror. When
present, specifies the FuncPieceError attribute of the i-th tangent function constraint.

funcpieceratio (optional): Specified via model$gencontan[[i]]$funcpieceratio. When
present, specifies the FuncPieceRatio attribute of the i-th tangent function constraint.

Advanced named components:

pwlobj (optional): The piecewise-linear objective functions. A list of lists. When present, each
entry in pwlobj defines a piecewise-linear objective function for a single variable. The index
of the variable whose objective function is being defined is stored in model$pwlobj[[i]]$var.
The x values for the points that define the piecewise-linear function are stored in
model$pwlobj[[i]]$x. The values in the x vector must be in non-decreasing order. The y
values for the points that define the piecewise-linear function are stored in model$pwlobj[[i]]$y.

vbasis (optional): The variable basis status vector. Used to provide an advanced starting point
for the simplex algorithm. You would generally never concern yourself with the contents of
this vector, but would instead simply pass it from the result of a previous optimization run
to the input of a subsequent run. When present, you must specify one value for each column
of A.

cbasis (optional): The constraint basis status vector. Used to provide an advanced starting
point for the simplex algorithm. Consult the vbasis description for details. When present,
you must specify one value for each row of A.

varhintval (optional): A set of user hints. If you know that a variable is likely to take a
particular value in high quality solutions of a MIP model, you can provide that value as a
hint. You can also (optionally) provide information about your level of confidence in a hint
with the varhintpri named component. If present, you must specify one value for each
column of A. Use a value of NA for variables where no such hint is known. For more details,
please refer to the VarHitVal attribute documentation.

varhintpri (optional): Priorities on user hints. After providing variable hints through the
varhintval list, you can optionally also provide hint priorities to give an indication of your
level of confidence in your hints. If present, you must specify a value for each column of A.
For more details, please refer to the VarHintPri attribute documentation.

659

branchpriority (optional): Variable branching priority. If present, the value of this attribute
is used as the primary criteria for selecting a fractional variable for branching during the MIP
search. Variables with larger values always take priority over those with smaller values. Ties
are broken using the standard branch variable selection criteria. If present, you must specify
one value for each column of A.

pstart (optional): The current simplex start vector. If you set pstart values for every variable
in the model and dstart values for every constraint, then simplex will use those values to
compute a warm start basis. For more details, please refer to the PStart attribute documen-
tation.

dstart (optional): The current simplex start vector. If you set dstart values for every linear
constraint in the model and pstart values for every variable, then simplex will use those
values to compute a warm start basis. For more details, please refer to the DStart attribute
documentation.

lazy (optional): Determines whether a linear constraint is treated as a lazy constraint. If present,
you must specify one value for each row of A. For more details, please refer to the Lazy attribute
documentation.

start (optional): The MIP start vector. The MIP solver will attempt to build an initial solution
from this vector. When present, you must specify a start value for each variable. Note that
you can set the start value for a variable to NA, which instructs the MIP solver to try to fill
in a value for that variable.

partition (optional): The MIP variable partition number, which is used by the MIP solution
improvement heuristic. If present, you must specify one value for each variable of A. For more
details, please refer to the Partition attribute documentation.

If any of the mandatory components listed above are missing, the gurobi() function will return
an error.

Below is an example that demonstrates the construction of a simple optimization model:

model <- list()
model$A <- matrix(c(1,2,3,1,1,0), nrow=2, byrow=T)
model$obj <- c(1,1,1)
model$modelsense <- ’max’
model$rhs <- c(4,1)
model$sense <- c(’<’, ’>’)

You can also build A as a sparse matrix, using either sparseMatrix or simple_triplet_matrix:

model$A <- spMatrix(2, 3, c(1, 1, 1, 2, 2), c(1, 2, 3, 1, 2), c(1, 2, 3, 1, 1))
model$A <- simple_triplet_matrix(c(1, 1, 1, 2, 2), c(1, 2, 3, 1, 2), c(1, 2, 3, 1,
1))

660

Note that the Gurobi R interface allows you to specify a scalar value for most of the array-
valued components. The specified value will be expanded to an array of the appropriate size, with
each component of the array equal to the scalar (e.g., model$obj <- 1 would be equivalent to
model$obj <- c(1,1,1) in the example).

The params argument

As mentioned previously, the Gurobi optimizer provides a set of parameters that allow you to
control many of the details of the optimization process. Factors like feasibility and optimality
tolerances, choices of algorithms, strategies for exploring the MIP search tree, etc., can be controlled
by modifying Gurobi parameters before beginning the optimization.

Parameter changes are specified using a list variable having multiple named components,
which is passed as an argument to the appropriate Gurobi function (e.g., gurobi). The name
of each named component must be the name of a Gurobi parameter, and the associated value
should be the desired value of that parameter. You can find a complete list of the available Gurobi
parameters here.

To create a list that would set the Gurobi Method parameter to 2 and the ResultFile parameter
to model.mps, you would do the following:
params <- list()
params$Method <- 2
params$ResultFile <- ’model.mps’

We should say a bit more about the ResultFile parameter. If this parameter is set, the
optimization model that is eventually passed to Gurobi will also be output to the specified file.
The filename suffix should be one of .mps, .lp, .rew, or .rlp, to indicate the desired file format
(see the file format section for details on Gurobi file formats).

The env argument

The optional env argument is also a list. It allows you to solve your problem on a Gurobi Compute
Server or the Gurobi Instant Cloud.

Using a Compute Server License

Gurobi Compute Server allows you to offload optimization jobs to a remote server. Servers are
organized into clusters. By providing the name of any node within the cluster, your job will
automatically be sent to the least heavily loaded node in the cluster. If all nodes are at capacity,
your job will be placed in a queue, and will proceed once capacity becomes available. You can find
additional information about Gurobi Compute Server in the Gurobi Remote Services Reference
Manual.

The following is an enumeration of all of the named components of the env argument that
Gurobi will take into account.

computeserver: A Compute Server. You can refer to the server using its name or its IP address.
If you are using a non-default port, the server name should be followed by the port number
(e.g., server1:61000).

661

https://www.gurobi.com/documentation/9.1/remoteservices/remoteservices.html
https://www.gurobi.com/documentation/9.1/remoteservices/remoteservices.html

password (optional): User password on the Compute Server cluster. Obtain this from your
Compute Server administrator.

priority (optional): The priority of the job. Priorities must be between -100 and 100, with a
default value of 0 (by convention). Higher priority jobs are chosen from the server job queue
before lower priority jobs. A job with priority 100 runs immediately, bypassing the job queue
and ignoring the job limit on the server. You should exercise caution with priority 100 jobs,
since they can severely overload a server, which can cause jobs to fail, and in extreme cases
can cause the server to crash.

router (optional): The router for the Compute Server cluster. A router can be used to improve
the robustness of a Compute Server deployment. You can refer to the router using either its
name or its IP address. A typical Remote Services deployment won’t use a router, so you
typically won’t need to set this.

CStlsinsecure (optional): Indicates whether to use insecure mode in the TLS (Transport Layer
Security). Set this to 0 unless your server administrator tells you otherwise.

Here is an example of how to use an env argument to connect to a Compute Server:
env <- list()
env$computeserver <- ’server1.mycompany.com:61000’
env$priority <- 5

Using a Gurobi Instant Cloud License

Gurobi Instant Cloud allows you to offload optimization jobs to a Gurobi Compute Server on the
cloud. If an appropriate machine is already running, the job will run on that machine. It will
automatically launch a new machine otherwise. Note that launching a new machine can take a few
minutes. You can find additional information about the Gurobi Instant Cloud service here.

The following is an enumeration of all of the named components of the env argument that
Gurobi will take into account.

accessid: The access ID for your Gurobi Instant Cloud license. This can be retrieved from the
Gurobi Instant Cloud website. When used in combination with your secretkey, this allows
you to launch Instant Cloud instances and submit jobs to them.

secretkey: The secret key for your Gurobi Instant Cloud license. This can be retrieved from the
Gurobi Instant Cloud website. When used in combination with your accessid, this allows
you to launch Instant Cloud instances and submit jobs to them. Note that you should keep
your secret key private.

pool (optional): The machine pool. Machine pools allow you to create fixed configurations on
the Instant Cloud website (capturing things like type of machine, geographic region, etc.), and
then launch and share machines from client programs without having to restate configuration
information each time you launch a machine. If not provided, your job will be launched in
the default pool associated with your cloud license.

662

priority (optional): The priority of the job. Priorities must be between -100 and 100, with a
default value of 0 (by convention). Higher priority jobs are chosen from the server job queue
before lower priority jobs. A job with priority 100 runs immediately, bypassing the job queue
and ignoring the job limit on the server. You should exercise caution with priority 100 jobs,
since they can severely overload a server, which can cause jobs to fail, and in extreme cases
can cause the server to crash.

Here is an example of how to use an env argument to launch a Gurobi Instant Cloud instance:
env <- list()
env$accessid <- ’3d1ecef9-dfad-eff4-b3fa’
env$secretkey <- ’ae6L23alJe3+fas’

Note that when creating an environment variable, you need to choose to use either Compute
Server or Instant Cloud. Populating named components for both will result in an error.

663

8.2 Solving a Model
gurobi()

gurobi (model, params=NULL, env=NULL)

This function optimizes the given model. The algorithm used for the optimization depends on
the model type (simplex or barrier for a continuous model; branch-and-cut for a MIP model). Upon
successful completion it will return a list variable containing solution information.

Please consult this section for a discussion of some of the practical issues associated with solving
a precisely defined mathematical model using finite-precision floating-point arithmetic.

Arguments:
model: The model list must contain a valid Gurobi model. See the model argument
section for more information.

params: The params list, when provided, contains a list of modified Gurobi parameters.
See the params argument section for more information.

env: The env list, when provided, allows you to use Gurobi Compute Server or Gurobi
Instant Cloud. See the env argument section for more information.

Example usage:

result <- gurobi (model , params)
if (result $ status == ’OPTIMAL ’) {

print(result $ objval)
print(result $x)

} else {
cat(’Optimization returned status :’, formatC (result $ status), ’\n’)

}

Return value:

The optimization result

The gurobi function returns a list, with the various results of the optimization stored in its
named components. The specific results that are available depend on the type of model that was
solved, the parameters used, and the status of the optimization. The following is a list of named
components that might be available in the returned result. We will discuss the circumstances under
which each will be available after presenting the list.
Model named components:

status: The status of the optimization, returned as a string. The desired result is ’OPTIMAL’,
which indicates that an optimal solution to the model was found. Other status are possible,
for example if the model has no feasible solution or if you set a Gurobi parameter that leads to
early solver termination. See the Status Code section for further information on the Gurobi
status codes.

objval: The objective value of the computed solution. Note that for multi-objective models
result$objval will be a vector, where result$objval[[i]] stores the value for
model$multiobj[[i]].

664

objbound: Best available bound on solution (lower bound for minimization, upper bound for max-
imization).

objboundc: The best unrounded bound on the optimal objective. In contrast to objbound, this
attribute does not take advantage of objective integrality information to round to a tighter
bound. For example, if the objective is known to take an integral value and the current best
bound is 1.5, ObjBound will return 2.0 while ObjBoundC will return 1.5.

mipgap: Current relative MIP optimality gap; computed as |ObjBound−ObjV al|/|ObjV al| (where
ObjBound and ObjV al are the MIP objective bound and incumbent solution objective, re-
spectively). Returns GRB_INFINITY when an incumbent solution has not yet been found,
when no objective bound is available, or when the current incumbent objective is 0. This is
only available for mixed-integer problems.

runtime: The elapsed wall-clock time (in seconds) for the optimization.

itercount: Number of simplex iterations performed.

baritercount: Number of barrier iterations performed.

nodecount: Number of branch-and-cut nodes explored.

farkasproof: Magnitude of infeasibility violation in Farkas infeasibility proof. Only available if
the model was found to be infeasible. Please refer to FarkasProof for details.

Variable named components:

x: The computed solution. This vector contains one entry for each column of A.

rc: Variable reduced costs for the computed solution. This vector contains one entry for each
column of A.

vbasis: Variable basis status values for the computed optimal basis. You generally should not
concern yourself with the contents of this vector. If you wish to use an advanced start later,
you would simply copy the vbasis and cbasis named components into the corresponding
named components for the next model. This vector contains one entry for each column of A.

unbdray: Unbounded ray. Provides a vector that, when added to any feasible solution, yields a
new solution that is also feasible but improves the objective. Only available if the model is
found to be unbounded. This vector contains one entry for each column of A.

Linear constraint named components:

slack: The constraint slack for the computed solution. This vector contains one entry for each
row of A.

pi: Dual values for the computed solution (also known as shadow prices). This vector contains one
entry for each row of A.

cbasis: Constraint basis status values for the computed optimal basis. This vector contains one
entry for each row of A.

farkasdual: Farkas infeasibility proof. Only available if the model was found to be infeasible.
Please refer to FarkasDual for details.

665

Quadratic constraint named components:

qcslack: The quadratic constraint slack in the current solution. This vector contains one entry
for each quadratic constraint.

qcpi: The dual values associated with the quadratic constraints. This vector contains one entry
for each quadratic constraint.

Solution Pool named components:

pool: When multiple solutions are found during the optimization call, these solutions are returned
in this named component. A list of lists. When present, each list has the following named
components:

objval: Stores the objective value of the i-th solution in result$pool[[i]]$objval. Note
that when the model is a multi-objective model, instead of a single value,
result$pool[[i]]$objval[j] stores the value of the j-th objective function for the
i-th solution.

xn: Stores the i-th solution in result$pool[[i]]$xn. This vector contains one entry for
each column of A.

Note that to query the number of solutions stored, you can query the length of result$pool.

poolobjbound: For single-objective MIP optimization problems, this value gives a bound on the
best possible objective of an undiscovered solution. The difference between this value and
objbound is that the former gives an objective bound for undiscovered solutions, while the
latter gives a bound for any solution.

What is Available When

The status named component will be present in all cases. It indicates whether Gurobi was able
to find a proven optimal solution to the model. In cases where a solution to the model was found,
optimal or otherwise, the objval and x named components will be present.

For linear and quadratic programs, if a solution is available, then the pi and rc named compo-
nents will also be present. For models with quadratic constraints, if the parameter qcpdual is set
to 1, the named component qcpi will be present. If the final solution is a basic solution (computed
by simplex), then vbasis and cbasis will be present. If the model is an unbounded linear program
and the InfUnbdInfo parameter is set to 1, the named component unbdray will be present. Finally,
if the model is an infeasible linear program and the InfUnbdInfo parameter is set to 1, the named
components farkasdual and farkasproof will be set.

For mixed integer problems, no dual information (i.e. pi, slack, rc, vbasis, cbasis, qcslack,
qcpi, ubdray or farkasdual) is ever available. When multiple solutions are found, the pool and
poolobjbound named components will be present. Depending on the status named component
value, the named components nodecount, objbound, objbundc and mipgap will be available.

For continuous and mixed-integer models, under normal execution, the named components
runtime, itercount and baritercount will be available.

666

gurobi_iis()

gurobi_iis (model, params=NULL, env=NULL)

Compute an Irreducible Inconsistent Subsystem (IIS).
An IIS is a subset of the constraints and variable bounds with the following properties:

• It is still infeasible, and

• If a single constraint or bound is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily
the smallest one; there may exist others with fewer constraints or bounds.

IIS results are returned in a number of attributes: IISConstr, IISLB, IISUB, IISSOS, IISQCon-
str, and IISGenConstr. Each indicates whether the corresponding model element is a member of
the computed IIS.

The IIS log provides information about the progress of the algorithm, including a guess at the
eventual IIS size.

If an IIS computation is interrupted before completion, Gurobi will return the smallest infeasible
subsystem found to that point.

You can obtain information about the outcome of the IIS computation from the returned IIS
result (described below). Note that this method can be used to compute IISs for both continuous
and MIP models.

Arguments:
model: The model list must contain a valid Gurobi model. See the model argument
section for more information.

params: The params list, when provided, contains a list of modified Gurobi parameters.
See the params argument section for more information.

env: The env list, when provided, allows you to use Gurobi Compute Server or Gurobi
Instant Cloud. See the env argument section for more information.

Example usage:

model <- gurobi_read(’examples/data/klein1.mps’)
iis <- gurobi_iis(model)

Return value:

The gurobi_iis() function returns a list, with various results stored in its named components.
The specific results that are available depend on the type of model.

The returned list will always contain the following named components:

minimal: A logical scalar that indicates whether the computed IIS is minimal. It will normally be
true, but it may be false if the IIS computation was stopped early (due to a time limit or a
user interrupt).

Arows: A logical vector that indicates whether a linear constraint appears in the computed IIS.

lb: A logical vector that indicates whether a lower bound appears in the computed IIS.

667

ub: A logical vector that indicates whether a upper bound appears in the computed IIS.

If your model contains general constraints, the returned list will also contain the following
named components:

genconmax: A logical vector that indicates whether a general MAX constraint appears in the com-
puted IIS.

genconmin: A logical vector that indicates whether a general MIN constraint appears in the com-
puted IIS.

genconand: A logical vector that indicates whether a general AND constraint appears in the com-
puted IIS.

genconor: A logical vector that indicates whether a general OR constraint appears in the computed
IIS.

genconabs: A logical vector that indicates whether a general ABS constraint appears in the com-
puted IIS.

genconind: A logical vector that indicates whether a general INDICATOR constraint appears in
the computed IIS.

genconpwl: A logical vector that indicates whether a general piecewise-linear function constraint
appears in the computed IIS.

genconpoly: A logical vector that indicates whether a polynomial function constraint appears in
the computed IIS.

genconexp: A logical vector that indicates whether a natural exponential function constraint ap-
pears in the computed IIS.

genconexpa: A logical vector that indicates whether a exponential function constraint appears in
the computed IIS.

genconlog: A logical vector that indicates whether a natural logarithmic function constraint ap-
pears in the computed IIS.

genconloga: A logical vector that indicates whether a logarithmic function constraint appears in
the computed IIS.

genconpow: A logical vector that indicates whether a power function constraint appears in the
computed IIS.

genconsin: A logical vector that indicates whether a SIN function constraint appears in the com-
puted IIS.

genconcos: A logical vector that indicates whether a COS function constraint appears in the
computed IIS.

gencontan: A logical vector that indicates whether a TAN function constraint appears in the
computed IIS.

668

If your model contains SOS constraints, the returned list will also contain the following named
component:

sos: A logical vector that indicates whether an SOS constraint appears in the computed IIS

If your model contains quadratic constraints, the returned list will also contain the following
named component:

quadcon: A logical vector that indicates whether a quadratic constraint appears in the computed
IIS.

gurobi_feasrelax()

gurobi_feasrelax (model, relaxobjtype, minrelax, penalties, params=NULL, env=NULL)

This function computes a feasibility relaxation for the input model argument. The feasibility
relaxation is a model that, when solved, minimizes the amount by which the solution violates the
bounds and linear constraints of the original model. You must provide a penalty to associate with
relaxing each individual bound or constraint (through the penalties argument). These penalties
are interpreted in different ways, depending on the value of the relaxobjtype argument.

Arguments:
model: The model list must contain a valid Gurobi model. See the model argument
section for more information.

relaxobjtype: The approach used to impose penalties on violations.
If you specify relaxobjtype=0, the objective for the feasibility relaxation is to minimize
the sum of the weighted magnitudes of the bound and constraint violations.
If you specify relaxobjtype=1, the objective for the feasibility relaxation is to minimize
the weighted sum of the squares of the bound and constraint violations.
If you specify relaxobjtype=2, the objective for the feasibility relaxation is to minimize
the weighted count of bound and constraint violations.
In all cases, the weights are taken from penalties$lb, penalties$ub and penalties$rhs.
You can provide the special penalty value Inf to indicate that the corresponding bound
or constraint cannot be relaxed.

minrelax: The minrelax argument is a boolean that controls the type of feasibility relax-
ation that is created. If minrelax=False, optimizing the returned model gives a solution
that minimizes the cost of the violation. If minrelax=True, optimizing the returned model
finds a solution that minimizes the original objective, but only from among those solutions
that minimize the cost of the violation. Note that gurobi_feasrelax must solve an op-
timization problem to find the minimum possible relaxation when minrelax=True, which
can be quite expensive.

penalties: The penalties argument is a list of lists, having the following optional named
components (default: all Inf):
lb Penalty for violating each lower bound.
ub Penalty for violating each upper bound.
rhs Penalty for violating each constraint.

669

To give an example, if a constraint with penalties.rhs value p is violated by 2.0, it would con-
tribute 2*p to the feasibility relaxation objective for relaxobjtype=0, 2*2*p for relaxobjtype=1,
and p for relaxobjtype=2.

env: The env list, when provided, allows you to use Gurobi Compute Server or Gurobi
Instant Cloud. See the env argument section for more information.

Return value:
A list containing two named components:
result$model, a list variable, as described in the model argument section.
result$feasobj, a scalar. If minrelax==true this is the relaxation problem objective value,
0.0 otherwise.

Example usage:

penalties <- list()
model <- gurobi_read(’stein9.mps’)
penalties$lb <- rep(1,length(model$lb))
penalties$ub <- rep(1,length(model$ub))
penalties$rhs <- rep(1,length(model$rhs))
feasrelaxresult <- gurobi_feasrelax(model, 0, False, penalties)

gurobi_relax()

gurobi_relax (model, env=NULL)

Create the relaxation of a MIP model. Transforms integer variables into continuous variables,
and removes SOS and general constraints.

Arguments:
model: The model list must contain a valid Gurobi model. See the model argument
section for more information.

env: The env list, when provided, allows you to use Gurobi Compute Server or Gurobi
Instant Cloud. See the env argument section for more information.

Return value:
A model list variable, as described in the model parameter section.

Example usage:

model <- gurobi_read(’stein9.mps’)
relaxed <- gurobi_relax(model)

670

8.3 Input/Output
gurobi_read()

gurobi_read (filename, env=NULL)

Reads a model from a file.
Arguments:

filename: Name of the file to read. Note that the type of the file is encoded in the file
name suffix. The filename suffix should be one of .mps, .rew, .lp, .rlp, .ilp, or .opb (see
the file formats section for details on Gurobi file formats). The files can be compressed,
so additional suffixes of .gz, .bz2, .zip, or .7z are accepted.

env: The env list, when provided, allows you to use Gurobi Compute Server or Gurobi
Instant Cloud. See the env argument section for more information.

Return value:
A model list variable, as described in the model section.

Example usage:

model <- gurobi_read(’stein9.mps’)
result <- gurobi(model)

gurobi_write()

gurobi_write (model, filename, env=NULL)

Writes a model to a file.
Arguments:

model: The model list must contain a valid Gurobi model. See the model argument
section for more information.

filename: Name of the file to write. Note that the type of the file is encoded in the file
name suffix. The filename suffix should be one of .mps, .rew, .lp, .rlp, or .ilp, to indicate
the desired file format (see the file formats section for details on Gurobi file formats). The
files can be compressed, so additional suffixes of .gz, .bz2, .zip, or .7z are accepted.

env: The env list, when provided, allows you to use Gurobi Compute Server or Gurobi
Instant Cloud. See the env argument section for more information.

Example usage:
model <- list ()
model$A <- matrix (c(1,2,3,1,1,0), nrow =2, byrow=T)
model$obj <- c(1 ,1 ,2)
model$ modelsense <- ’max ’
model$rhs <- c(4 ,1)
model$sense <- c(’<’, ’>’)
gurobi _write(model , ’mymodel .mps ’);
gurobi _write(model , ’mymodel .lp’);
gurobi _write(model , ’mymodel .mps.bz2 ’);

671

8.4 Installing the R package
To use our R interface, you’ll need to install the Gurobi package in your local R installation. The
R command for doing this is:

install.packages(’<R-package-file>’, repos=NULL)

The Gurobi R package file can be found in the <installdir>/R directory of your Gurobi in-
stallation (the default <installdir> for Gurobi 9.1.2 is /opt/gurobi912/linux64 for Linux,
c:\gurobi912\win64 for 64-bit Windows, and /Library/gurobi912/mac64 for Mac). You should
browse the <installdir>/R directory to find the exact name of the file for your platform (the Linux
package is in file gurobi_9.1-2_R_4.0.2.tar.gz, the Windows package is in file gurobi_9.1-2.zip,
and the Mac package is in file gurobi_9.1-2_R_4.0.2.tgz).

Depending on your local R environment you might need to install the R package slam. To do
this, you should issue the following command within R:

install.packages(’slam’)

You will need to be careful to make sure that the R binary and the Gurobi package you install
both use the same instruction set. For example, if you are using the 64-bit version of R, you’ll need to
install the 64-bit version of Gurobi, and the 64-bit Gurobi R package. This is particularly important
on Windows systems, where the error messages that result from instruction set mismatches can be
quite cryptic.

To run one of the R examples provided with the Gurobi distribution, you can use the source
command in R. For example, if you are running R from the Gurobi R examples directory, you can
say:

> source(’mip.R’)

If the Gurobi package was successfully installed, you should see the following output:

[1] ’Solution:’
[1] 3
[1] 1 0 1

672

Variables and Constraints and Objectives

The lowest-level building blocks for Gurobi models are variables, constraints, and objectives. While
each has a clean mathematical definition, linear and integer programming aren’t performed in exact
arithmetic, so computed results can sometimes deviate from these clean definitions. This section
discusses the use of and restrictions on these basic building blocks.

9.1 Variables
Decision variables capture the results of the optimization. In a feasible solution, the computed
values for the decision variables satisfy all of the model constraints. Some of these constraints
are associated with individual variables (e.g., variable bounds), while others capture relationships
between variables. We’ll first consider the different types of decision variables that can be added
to a Gurobi model, and the implicit and explicit constraints associated with these variable types.

Before starting, we should point out one important thing about the variables in a mathematical
programming model: their computed solution values will only satisfy bounds to tolerances, meaning
that a variable may violate its stated bounds. Mathematical programming is fundamentally built
on top of linear algebra and in particular on the numerical solution of systems of linear equations.
These linear systems are solved using finite-precision arithmetic, which means that small errors are
unavoidable. For some models, large errors are unavoidable too; we’ll return to that topic later in
this section.

The available variables types are continuous, general integer, binary, semi-continuous, and semi-
integer.
Continuous Variables

The simplest and least constrained of the available variable types is the continuous variable. This
variable can take any value between its lower and upper bound. In mathematical programming,
the convention is that variables are non-negative unless stated otherwise, so if you don’t explicitly
provide bounds for a variable, you should assume that the lower bound is 0 and the upper bound
is infinite.

The Gurobi APIs provides a symbolic constant to allow you to indicate that a bound is infinite
(GRB_INFINITY in C and C++, GRB.INFINITY in C#, Java, and Python). A variable can have an
infinite upper bound, an infinite lower bound (negative infinity), or both. A variable with infinite
upper and lower bounds is referred to as a free variable. Any bound larger than 1e30 is treated as
infinite.

As noted earlier, variables may violate their bounds by tolerances. In the case of variable
bounds, the relevant tolerance value is the FeasibilityTol. You can reduce the value of this tolerance
parameter, but due to numerical errors it may not be possible to achieve your desired accuracy.
General Integer Variables

General integer variables are more constrained than continuous variables. In addition to respecting
the specified lower and upper bounds, integer variables also take integral values.

673

Due to the limitations of finite-precision arithmetic, integer variables will often take values that
aren’t exactly integral. The magnitude of the allowed integrality violation is controlled by the
IntFeasTol parameter. You can tighten this parameter to reduce the magnitude of these integrality
violations, but the cost of solving the optimization problem may increase significantly as a result.

The fact that modern computers represent integer values using 32-bit values places some re-
strictions on the range of an integral variable. Specifically, the largest and smallest bounds that
can be placed on an integer variable are +/- 2,000,000,000. Furthermore, integer variables with
infinite bounds actually have these values as their implicit bounds. A solution is not considered
feasible unless all integer variables take values that satisfy these bounds.
Binary Variables

Binary variables are the most constrained variable type that can be added to your model. A binary
variable takes a value of either 0 or 1.

Again, due to the limitations of finite-precision arithmetic, binary variables will often take values
that aren’t exactly integral. The magnitude of the allowed integrality violation is controlled by the
IntFeasTol parameter.
Semi-Continuous and Semi-Integer Variables

You can also add semi-continuous or semi-integer variables to your model. A semi-continuous
variable has the property that it takes a value of 0, or a value between the specified lower and
upper bounds. A semi-integer variable adds the additional restriction that the variable also take
an integral value.

Again, these variables may violate these restrictions up to tolerances. In this case, the relevant
tolerance is IntFeasTol (even for semi-continuous variables).

9.2 Constraints
A constraint in Gurobi captures a restriction on the values that a set of variables may take. The
simplest example is a linear constraint, which states that a linear expression on a set of variables
take a value that is either less-than-or-equal, greater-than-or-equal, or equal to another linear
expression. Recall that Gurobi works in finite-precision arithmetic, so constraints are only satisfied
to tolerances. Tolerances can be tightened to reduce such violations, but there are limits to how
small the violations can be -- errors are inherent in floating-point arithmetic.

The available constraint types are linear, SOS, quadratic (both convex and non-convex), and
general.
Linear Constraints

A linear constraint allows you to restrict the value of a linear expression. For example, you may
require that any feasible solution satisfies the constraint 3x + 4y ≤ 5z. Note that the matrix-
oriented Gurobi APIs (C, MATLAB, and R) require the right-hand side of a linear constraint to be
a constant, while the object-oriented APIs (C++, Java, .NET, and Python) allow arbitrary linear
expressions on both sides of the comparator.

The computed solution should satisfy the stated constraint to within FeasibilityTol (although
it may not in cases of numerical ill-conditioning -- we’ll discuss this shortly).

Gurobi supports a limited set of comparators. Specifically, you can constrain an expression to
be less-than-or-equal, greater-than-or-equal, or equal another. We do not support strict less-than,

674

strict greater-than, or not-equal comparators. While these other comparators may seem appropriate
for mathematical programming, we exclude them to avoid potential confusion related to numerical
tolerances. Consider a simple example of a strict inequality constraint on a pair of continuous
variables: x > y. How large would x− y need to be in order to satisfy the constraint? Rather than
trying to embed a subtle and potentially confusing strategy for handling such constraints into the
solver, we’ve chosen not to support them instead.
SOS Constraints

A Special-Ordered Set, or SOS constraint, is a highly specialized constraint that places restrictions
on the values that variables in a given list can take. There are two types of SOS constraints. In
an SOS constraint of type 1 (an SOS1 constraint), at most one variable in the specified list is
allowed to take a non-zero value. In an SOS constraint of type 2 (an SOS2 constraint), at most
two variables in the specified, ordered list are allowed to take a non-zero value, and those non-zero
variables must be contiguous in the list. The variables in an SOS constraint can be continuous,
integer, or binary.

Again, tolerances play an important role in SOS constraints. Specifically, variables that take
values less than IntFeasTol (in absolute value) are considered to be zero for the purposes of deter-
mining whether an SOS constraint is satisfied.

An SOS constraint is described using a list of variables and a list of corresponding weights.
While the weights have historically had intuitive meanings associated with them, we simply use
them to order the list of variables. The weights should be unique. This is especially important for
an SOS2 constraint, which relies on the notion of contiguous variables. Since the variables in the
SOS are ordered by weight, contiguity becomes ambiguous when multiple variables have the same
weight.

It is often more efficient to capture SOS structure using linear constraints rather than SOS
constraints. The optimizer will often perform this conversion automatically. This is controlled with
two parameters: PreSOS1BigM and PreSOS2BigM. The conversion is done by adding constraints
of the form x <= Mb, where x is the variable that participates in the SOS constraint, b is a binary
variable, and M is an upper bound on the value of variable x. Large values of M can lead to
numerical issues, so these parameters control the maximum value of M that can be introduced by
this conversion. SOS constraints that would require a larger value aren’t converted.
Quadratic Constraints

A quadratic constraint allows you to restrict the value of a quadratic expression. For example,
you may require that any feasible solution satisfy the constraint 3x2 + 4y2 + 5z ≤ 10. Note that
the matrix-oriented Gurobi APIs (C, MATLAB, and R) require the right-hand side of a quadratic
constraint to be a constant, while the object-oriented APIs (C++, Java, .NET, and Python) allow
arbitrary quadratic expressions on both sides of the comparator.

The computed solution should satisfy the stated constraint to within FeasibilityTol. Quadratic
constraints are often much more challenging to satisfy than linear constraints, so tightening the
parameter may increase runtimes dramatically.

Gurobi can handle both convex and non-convex quadratic constraints. However, there are some
subtle and important differences in how the different constraint types are handled. The default
algorithms in Gurobi only accept a few forms of quadratic constraints that are known to have
convex feasible regions. Constraints of the following forms are always accepted:

• xTQx+ qTx ≤ b, where Q is Positive Semi-Definite (PSD)

675

• xTx ≤ y2, where x is a vector of variables, and y is a non-negative variable (a Second-Order
Cone constraint)

• xTx ≤ yz, where x is a vector of variables, and y and z are non-negative variables (a rotated
Second-Order Cone constraint)

To be more precise, a constraint will be accepted if presolve is able to transform it into one of these
forms. Note that if the quadratic terms each contain at least one binary variable, then presolve
will always be able to transform it.

If you add a constraint that can’t be transformed into one of these forms, then with default
settings you will get an error (GRB_ERROR_Q_NOT_PSD) when you try to solve the model. Quadratic
equality constraints are always non-convex; they will give a GRB_ERROR_QCP_EQUALITY_CONSTRAINT
error with default settings.

Why distinguish between quadratic constraints in this form and other types of quadratic con-
straints? Solving models with non-convex quadratic constraints is typically much more expensive.
To avoid accidentally solving a much harder problem than may have been intended, Gurobi rejects
such constrains by default. If you set the NonConvex parameter to 2, however, then Gurobi will
accept arbitrary quadratic constraints and attempt to solve the resulting model.

Note that other non-convex quadratic solvers often only find locally optimal solutions. The
algorithms in Gurobi explore the entire search space, so they provide a globally valid lower bound
on the optimal objective value, and given enough time they will find a globally optimal solution
(subject to tolerances).

We would like to note a subtle point here regarding terminology. A quadratic constraint that
involves only products of disjoint pairs of variables is often called a bilinear constraint, and a
model that contains bilinear constraints is often called a bilinear program. Bilinear constraints are
a special case of non-convex quadratic constraints, and the algorithms Gurobi uses to handle the
latter are also well suited to solving bilinear programming problems.

General Constraints

The previously-described constraints are typically handled directly by the underlying optimization
algorithms (but not always). Gurobi includes an additional set of constraints, which we collectively
refer to as general constraints. General constraints are mostly a convenience feature, designed
to allow you to define certain variable relationships easily without having to immerse yourself in
the often esoteric details of how to model these relationships in terms of the more fundamental
constraints of MIP. Capturing a single one of these general constraints can often require a large set
of linear and SOS constraints, plus a number of auxiliary decision variables. By supporting them
directly in the Gurobi API, we simplify the modeling process by performing the transformation to
a corresponding MIP formulation automatically and transparently during the solution process.

What sorts of variable relationships can be captured with general constraints? We think of
them as belonging to two types: function constraints and simple constraints. Function constraints
allow you to state a relationship y = f(x), where x and y are Gurobi decision variables and f()
is chosen from a predefined list of functions. Gurobi performs a piecewise-linear approximation of
that function within the domain of x. Simple general constraints allow you to state common but
more direct relationships between decision variables. The translation that goes on under the hood
for these is much simpler, and the result is an exact representation of the original constraint (not
an approximation).

676

Simple General Constraints

Gurobi supports the following simple general constraints, each with its own syntax and semantics:

• MAX constraint: The constraint r = max{x1, . . . , xk, c} states that the resultant variable
r should be equal to the maximum of the operand variables x1, . . . , xk and the constant c.
For example, a solution (r = 3, x1 = 2, x2 = 3, x3 = 0) would be feasible for the constraint
r = max{x1, x2, x3, 1.7} because 3 is indeed the maximum of 2, 3, 0, and 1.7.

• MIN constraint: Similar to a MAX constraint, the constraint r = min{x1, . . . , xk, c}
states that the resultant variable r should be equal to the minimum of the operand vari-
ables x1, . . . , xk and the constant c.

• ABS constraint: The constraint r = abs{x} states that the resultant variable r should be
equal to the absolute value of the operand variable x. For example, a solution (r = 3, x = −3)
would be feasible for the constraint r = abs{x}.

• AND constraint: The constraint r = and{x1, . . . , xk} states that the binary resultant
variable r should be equal 1 if and only if all of the binary operand variables x1, . . . , xk are
equal to 1. For example, a solution (r = 1, x1 = 1, x2 = 1, x3 = 1) would be feasible for the
constraint r = and{x1, x2, x3}. Note that declaring an AND constraint implicitly declares all
involved variables to be of binary type.

• OR constraint: Similar to an AND constraint, the constraint r = or{x1, . . . , xk} states that
the binary resultant variable r should be 1 if and only if at least one of the binary operand
variables x1, . . . , xk is equal to 1. Note that declaring an OR constraint implicitly declares
all involved variables to be of binary type.

• INDICATOR constraints: An indicator constraint y = f → aTx ≤ b states that if the
binary indicator variable y is equal to f in a given solution, where f ∈ {0, 1}, then the linear
constraint aTx ≤ b has to be satisfied. On the other hand, if y 6= f (i.e., y = 1− f) then the
linear constraint may be violated. Note that the sense of the linear constraint can also be =
or ≥; refer to this earlier section for a more detailed description of linear constraints. Note
also that declaring an INDICATOR constraint implicitly declares the indicator variable to be
of binary type.

• Piecewise-linear constraints: A piecewise-linear constraint y = f(x) states that the point
(x, y) must lie on the piecewise-linear function f() defined by a set of points (x1, y1), (x2, y2), ..., (xn, yn).
Refer to the description of piecewise-linear objectives for details of how piecewise-linear func-
tions are defined.

Note that adding any of these constraints to an otherwise continuous model will transform it into
a MIP

As stated above, each general constraint has an equivalent MIP formulation that consists of
linear and SOS constraints, and possibly auxiliary variables. Thus, you could always model such
constraints yourself without using a Gurobi general constraint. For example, the MAX constraint
r = max{x1, . . . , xk, c} can be modeled as follows:

677

r = xj + sj for all j = 1, . . . , k
r = c+ sk+1

z1 + . . .+ zk+1 = 1
SOS1(sj , zj) for all j = 1, . . . , k + 1

sj ≥ 0 for all j = 1, . . . , k + 1
zj ∈ {0, 1} for all j = 1, . . . , k + 1

The first two constraints state that r ≥ max{x1, . . . , xk, c}, i.e., that the resultant variable r has
to be at least as large as each of the operand variables xj and the constant c. This can be modeled
using inequalities, but we turned them into equations by introducing explicit continuous slack
variables sj ≥ 0, which we will reuse below.

Those slack variables and the remaining constraints model r ≤ max{x1, . . . , xk, c}, which is more
complicated. In addition to the explicit slacks, this requires the introduction of binary auxiliary
variables zj ∈ {0, 1}. The SOS1 constraints state that at most one of the two variables sj and zj
can be non-zero, which models the implication zj = 1 → sj = 0. Due to the third constraint, one
zj will be equal to 1 and thus at least one sj will be zero. Hence, r = xj for at least one j due to
the first constraint, or r = c due to the second constraint.

Tolerances play a role in general constraints, although as you might expect, the exact role
depends on the constraint type. Generally, violations in the resultant will be smaller than the
feasibility tolerance, and integrality violations in integer resultants will also satisfy the integrality
tolerance.

By most measures, general constraints are just a means of concisely capturing relationships
between variables while removing the burden of creating an equivalent MIP formulation. However,
general constraints have another potential advantage: Gurobi might be able to simplify the MIP
formulation if it can prove during presolve that the simplified version suffices for the correctness of
the model. For this reason, Gurobi might be able to produce a smaller or tighter representation
of the general constraint than you would get from the most general formulation. For example, it
might be the case that r ≤ max{x1, . . . , xk, c} is already implied by the other constraints in the
model, so that a simple set of inequalities

r ≥ xj for all j = 1, . . . , k
r ≥ c

to describe r ≥ max{x1, . . . , xk, c} suffices to model the relevant part of the MAX constraint.
Function Constraints

Gurobi supports the following function constraints, each with somewhat different syntax and se-
mantics (x and y below are Gurobi decision variables, and other terms are constants provided as
input when the constraint is added to the model):

• Polynomial: y = p0x
n + p1x

n−1 + ...+ pnx+ pn+1

• Natural exponential: y = exp(x) or y = ex

• Exponential: y = ax, where a > 0 is the base for the exponential function

• Natural logarithm: y = loge(x) or y = ln(x)

• Logarithm: y = loga(x), where a > 0 is the base for the logarithmic function

678

• Power: y = xa, where a >= 0

• Sine: y = sin(x)

• Cosine: y = cos(x)

• Tangent: y = tan(x)

As noted earlier, Gurobi will automatically add a piecewise-linear approximation of the func-
tion to the model. You face a fundamental cost-versus-accuracy tradeoff when performing such
an approximation, though: adding more pieces produces smaller approximation errors, but also
increases the cost of solving the problem. The tradeoff can be complex. Gurobi provides a set of
three attributes that help to navigate this tradeoff: FuncPieces, FuncPieceLength, FuncPieceError.
They are used as follows:

• If you would like to choose the number of pieces to use for the approximation, set the Func-
Pieces attribute to the desired value. All pieces will have equal width. This approach allows
you to control the size of the approximation.

• If you would like to choose the width of each piece, set the FuncPieces attribute to a special
value of 1 and set the FuncPieceLength attribute equal to the desired width of each piece. This
approach provides some control over both the size and the error of the approximation. While
this may appear to be a minor variation of the first option, note that presolve may tighten
the domain of x, often substantially, which can make it difficult to predict the relationship
between the width of each piece and the number of pieces.

• If you would like to set the maximum error you are willing to tolerate in the approximation,
set the FuncPieces attribute to a special value of -1 and set the FuncPieceError attribute
equal to the maximum absolute approximation you are willing to tolerate. Gurobi will choose
pieces, typically of different sizes, to achieve that error bound. Note that the number of pieces
required may be quite large if you set a tight error tolerance. You can control the maximum
relative error rather than the absolute error by setting the FuncPieces attribute to -2 instead
of -1.

These are attributes on the general constraints, so you can choose different values for each individual
constraint.

The other relevant attribute is FuncPieceRatio, which controls whether the approximation is
an underestimate of the function (0.0), an overestimate (1.0), or somewhere in between (any value
strictly between 0.0 and 1.0). You can also choose the special value of -1, which will choose points
that are on the original function.

Consider the following simple example:

679

Pu1

Pl1

Pu2

Pl2

Pu3

Pl3

1 2 x

1

2

3

4

y

The goal is to find an approximation of the polynomial y = x2. We’ve set FuncPieces to 1 and
FuncPieceLength to 1.0, so we’re performing an approximation with fixed-width pieces of width
1.0. The domain of x is [0, 2], so the approximation has two pieces. The figure shows 6 points:
Pu1(0, 0), Pu2(1, 1), Pu3(2, 4), and Pl1(0,−0.25), Pl2(1, 0.75), Pl3(2, 3.75). If FuncPieceRatio is set
to 0.0, the approximation would be built from the points below the function (Pl1, Pl2, and Pl3).
Similarly, if it is set to 1.0, the approximation would be built from the points above the function
(Pu1, Pu2, and Pu3). A value of 0.6 would use weighted combinations of the points: 0.6 times Pui
plus 0.4 times Pli. In this case, the line segments would be built from the points (0,−0.1), (1, 0.9),
and (2, 3.9). If FuncPieceRatio is set to −1, meaning that the approximation would be built from
points that are on the original function, in this case the upper points (Pu1, Pu2, and Pu3) fit the
bill. This will always be the case for a convex function.

Recall that you can set FuncPieces to −1 to control the maximum absolute error. In this case,
choosing a FuncPieceError value of 0.25 would give the piecewise approximation shown in the
figure, since the distance between the upper and lower curves is always 0.25. A smaller error value
would of course lead to more pieces. We should add that piece widths will typically be non-uniform
when limiting the maximum approximation error. The approximation algorithms we use try to
limit the number of pieces needed to meet the error targets, which often requires more refinement
in some portions of the domain than in others.

Note that the approximations are guaranteed to be under- and over-estimates in all cases except
for polynomials of degree greater than 5. Finding the roots of higher-degree polynomials, which
would be required to guarantee this property, is quite difficult.

If you wish to experiment with different approaches to approximating a set of functions, it is

680

often convenient to be able to change the approach for all functions at once. We provide a set
of parameters with the same names as the attributes to make it easier to do this: FuncPieces,
FuncPieceLength, FuncPieceError, and FuncPieceRatio. If you set the FuncPieces attribute on a
function constraint to 0, then the approximation approach for that constraint will be determined
by the parameter settings instead.

For some of the supported functions, modest x values can lead to enormous y values (and vice-
versa). This can cause numerical issues when solving the resulting piecewise-linear MIP model. To
avoid such issues, we limit the range of any x or y that participates in a function constraint to
[-1e+6, 1e+6]. The parameter FuncMaxVal allows you to change these limits, but we recommend
that you proceed with caution.

We should point out that PWL approximations can sometimes cause unexpected results, in-
cluding sub-optimal solutions or even infeasible conclusions on feasible models. Consider a simple
example with two constraints: y = 2x− 1 and y = x2. Clearly (x, y) = (1, 1) is a feasible solution,
but a piecewise-linear approximation could introduce breakpoints at x = 0.9 and x = 1.1. The
resulting approximation gives a y value of 1.01 at x = 1, which is sufficiently far from the actual
function value that Gurobi will not consider that a valid solution and declare the model infeasible,
since there are no other solutions to the constraints. Reducing the maximum approximation error
(by setting FuncPieces to -1 and FuncPieceError to a much smaller value) would help, but this isn’t
always the best way to address the problem, since tighter error tolerances can substantially increase
the number of pieces in the approximation and thus the cost. We recommend the following approach
when you encounter unexpected results. For inequalities, you should ask for an approximation that
always overestimates or underestimates the function (depending on the sense of the constraint), to
ensure that your approximation will always satisfy the constraint. The FuncPieceRatio parameter
allows you to do this. For equalities, if you have a sense of where your solution is likely to lie, one
option for managing the size of the approximation is to introduce additional variables to capture
your function in different ranges, and then perform approximations with different levels of accuracy
on these different pieces.

While users could perform piecewise-linear approximations themselves, there are several advan-
tages to asking Gurobi to do it instead. First, Gurobi can often reduce the domains of variables,
by using bound strengthening in presolve, or by exploiting repetition in periodic functions like sine
or cosine. Smaller domains means fewer pieces to achieve the same accuracy. Gurobi also provides
many options to make experimentation easier (for error control, piece length, etc.). These options
can be quite difficult to implement and maintain.

9.3 Objectives
Every optimization model has an objective function, which is the function on the decision variables
that you wish to minimize or maximize. The objective is meant to capture your goals in solving
the problem. Given a set of feasible solutions, the objective tells the solver which is preferred.

Most optimization problems have multiple optimal solutions, plus many solutions whose ob-
jectives are within a small gap from the optimal value. The solution that is returned by Gurobi
depends on the type of problem you are solving. The simple rule is that Gurobi returns a single
optimal solution for continuous models (LP, QP, and QCP), and a sequence of improving solutions
for discrete models (MIP, MIQP, and MIQCP).

The Gurobi algorithms work on solving a model until they find a solution that is optimal to

681

within the specified tolerances. For the simplex algorithms (including barrier with crossover), the
relevant tolerance is the OptimalityTol. For the barrier algorithm (without crossover), the relevant
tolerances are the BarConvTol or BarQCPConvTol (depending on the problem type). You can
relax these tolerances, but note that it is rare for this to significantly improve solution times. The
simplex and barrier algorithms both return a single optimal solution.

For discrete models, while you can ask the MIP solver to find a solution with the best possible
objective value, it is more common to stop when the solution objective is within a specified gap
from the optimal value. This optimality gap is controlled by the MIPGap parameter, and the
default value is 0.01%.

The MIP solver typically finds multiple sub-optimal solutions on the way to eventually finding
an optimal solution. These intermediate solutions can be queried once the optimization is complete
(using the Xn attribute). You can use the Solution Pool feature to take a more systematic approach
to finding multiple solutions. This feature allows you to indicate how many solutions you would
like, to specify the largest gap to the optimal value you are willing to accept, etc.

We should add that it is possible to specify a pure feasibility problem, where the sole goal
is to find a solution that satisfies the constraints. You can think of a feasibility problem as an
optimization problem with a constant objective function.

The available objective types are linear, piecewise-linear, quadratic (both convex and non-
convex), and multi-objective. While the property of having multiple objectives may appear to be
orthogonal to the types of the objectives, Gurobi only supports multi-objective models where all
objectives are linear.

Linear Objectives

The simplest and most common objective function is linear - minimizing or maximizing a linear
function on the decision variables (e.g., 3x + 4y + 2). Linear objectives can be specified in a few
ways. The first is by providing an objective term when the decision variable is added to the model
(typically through the addVar method). The second is by setting the Obj attribute on the variable.
The third and most convenient approach, available in the object-oriented interfaces, is through the
setObjective method (in C++, Java, .NET, or Python). This method accepts a linear expression
object as its argument.

A model with a linear objective, only linear constraints, and only continuous variables is a
Linear Program (LP). It can be solved using the simplex or barrier algorithms.

Piecewise-Linear Objectives

A useful variant of a linear objective is a piecewise-linear objective, where the objective for a single
variable is captured in a set of linear pieces. For example, suppose we want to define the objective
value f(x) for variable x as follows:

682

(1, 1)

(3, 2)

(5, 4)

x[0] x[1] x[2]

y[0]

y[1]

y[2]

The vertices of the function occur at the points (1, 1), (3, 2) and (5, 4), so we define f(1) = 1,
f(3) = 2 and f(5) = 4, Other objective values are linearly interpolated between neighboring
points. The first pair and last pair of points each define a ray, so values outside the specified x
values are extrapolated from these points. Thus, in our example, f(−1) = 0 and f(6) = 5.

More formally, a piecewise-linear function is defined by a set of n points:

x = [x1, . . . , xn], y = [y1, . . . , yn]

These define the following piecewise-linear function:

f(v) =

y1 + y2−y1

x2−x1
(v − x1), if v ≤ x1,

yi + yi+1−yi

xi+1−xi
(v − xi), if v ≥ xi and v ≤ xi+1,

yn + yn−yn−1
xn−xn−1

(v − xn), if v ≥ xn.

We also allow special cases, such as jumps and single points, which are quite useful to define the
fixed charges or the penalties. A jump at x = xi means that the left piece and the right piece don’t
intersect at x = xi, i.e. we have (xi−1, yi−1), (xi, yi), (xi+1, yi+1), (xi+2, yi+2) with xi = xi+1 and
yi 6= yi+1. So for the left piece, i.e. xi−1 ≤ x < xi, the line segment between points (xi−1, yi−1) and
(xi, yi) defines y, for the right piece, i.e. xi ≤ x < xi+2, the line segment between points (xi+1, yi+1)
and (xi+2, yi+2) defines y. Since we must allow some tolerance for numeric computation, it means
that at x = xi, y can take the value of either yi or yi+1. A single point at x = xi means that both
left and right pieces extend to x = xi, but both have different y values than yi. It can be described
by the five points (xi−2, yi−2), (xi−1, yi−1), (xi, yi), (xi+1, yi+1), (xi+2, yi+2) with xi−1 = xi = xi+1
and yi 6= yi−1 and yi 6= yi+1. Note that yi−1 and yi+1 can be equal or different. Because of the
tolerance, it means that at x = xi, y can take the value of yi−1, yi or yi+1. Here below is an example
with a jump and a single point.

683

(−1, 0)

(1, 1)

(1, 2) (3, 2)

(3, 0)

(5, 4)

−1 0 1 2 3 4 5 6

1

2

3

4

5

The above piecewise function for variable x are defined by 7 points (−1, 0), (1, 1), (1, 2), (3, 2), (3, 0), (3, 2)
and (5, 4). It has a jump at x = 1 from (1, 1) to (1, 2) and a single point (3, 0). Note that both left
and right points have the same x coordinate and for this example the two points are the same.

Note that a piecewise-linear objective can change the type of a model. Specifically, including
a non-convex piecewise-linear objective function in a continuous model will transform that model
into a MIP. This can significantly increase the cost of solving the model.

How do you determine whether your piecewise-linear objective is convex? A convex function
has the property that you can’t obtain a better objective value by interpolating between two points
on the function. In the figure below, you will note that all convex combinations of points on the
piecewise-linear function are in the shaded region.

Stated another way, successive pieces will have non-decreasing slopes in a convex piecewise-linear
objective (assuming you are minimizing).

In contrast, in a non-convex piecewise-linear function you can get a better value by interpolating
between points. In the figure below, the value of f(1) for the piecewise-linear function is worse
than the value obtained by interpolation.

684

Piecewise-linear objectives are defined on variables using a special method (in C, C++, Java,
.NET, or Python). Each variable can have its own piecewise-linear objective function, and each
function requires a separate call to this method.

A variable can’t have both a linear and a piecewise-linear objective term. Setting a piecewise-
linear objective for a variable will set the Obj attribute on that variable to 0. Similarly, setting the
Obj attribute will delete the piecewise-linear objective on that variable.

We should point out that it is fairly easy to specify a piecewise-linear function on a variable using
a few extra variables and simple linear objective terms. The advantages of using the piecewise-linear
API methods are twofold. The first is convenience - specifying the function directly leads to simpler
and more readable code. The second is that Gurobi includes a piecewise-linear simplex algorithm.
If you provide a model that contains only linear constraints, only continuous variables, and only
linear or convex piecewise-linear objective terms, then this specialized simplex algorithm will be
used to solve the model. If your piecewise-linear function contains a large number of segments, the
specialized algorithm will be much faster than the standard simplex solver.
Quadratic Objectives

Your optimization objective can also contain quadratic terms (e.g., 3x2 + 4y2 + 2xy+ 2x+ 3). You
specify quadratic objectives in the object-oriented interfaces by building quadratic expressions and
then calling setObjective (C++, Java, .NET, or Python). In C, you input your quadratic terms
using GRBaddqpterms.

There are four distinct algorithms that could be used to solve a model with a quadratic objective.
The appropriate one depends on a few specific properties of the objective and the rest of the model.

• Continuous QP If your quadratic objective is convex and your model only contains linear
constraints and continuous variables, then your model is a quadratic program (QP) and can
be solved using either the simplex or barrier algorithms. QP simplex will return an optimal
basic solution. Gurobi does not have a QP crossover, so QP barrier will return an interior
solution.

• Discrete QP with Convex Relaxation If your quadratic objective is convex but the model
contains discrete elements (integer variables, SOS constraints, general constraints, etc.), then

685

your model is a mixed integer quadratic program (MIQP) and is solved using the MIP solver.
Since MIP relies heavily on simplex bases, the root relaxation must be solved using the primal
or dual simplex algorithm.

• Discrete QP with Non-Convex Relaxation If your quadratic objective is not convex,
then the model will be solved using the MIP solver, even if your model has no explicit discrete
elements. However, in this release you need to take action for that to happen. Specifically,
you need to set the NonConvex parameter to 2. With default settings, a non-convex quadratic
objective leads to a GRB_ERROR_Q_NOT_PSD error.

These properties are checked on the presolved model. As is always the case, presolve will try to
simplify the model. In this context, it will try to transform a non-convex MIQP into an equivalent
convex MIQP. This simplification will always succeed if each quadratic term contains at least one
binary variable.

How can you determine whether your quadratic objective is convex? As was noted earlier, the
crucial property for convexity is that interpolation between any two points on the function never
puts you below the function (assuming minimization). In this figure, all points on a line segment
between any two points on the parabola are always in the shaded region.

How does this translate to multiple variables? For a quadratic function to be convex, the associated
Q matrix must be Positive Semi-Definite (PSD).

Multiple Objectives

You can also specify multiple (linear) objectives for your model, and Gurobi provides tools that allow
you explore the tradeoffs between them. Refer to the Multiple Objectives section for additional
details.

686

9.4 Tolerances and Ill Conditioning -- A Caveat
As noted at several places in this section, finite-precision arithmetic limits the precision of the
solutions Gurobi computes. This limitation is managed through numerical tolerances in most
cases; we treat a solution as satisfying a constraint if the violation is smaller than the corresponding
tolerance. The default tolerances are chosen to be sufficiently large so that numerical errors aren’t
an issue for most models.

Unfortunately, some models suffer from severe ill conditioning, which can greatly complicate
the search for a solution. This can show itself in a few ways. Ill conditioning can severely hurt
performance, and it can lead to solutions whose constraint violations are larger than the tolerances.

Ill conditioning is a measure of the amount of error that can result when solving linear systems
of equations. As noted earlier, linear and mixed-integer programming are built on top of linear
solves, so errors in solving linear systems directly lead to errors in LP and MIP solutions. Serious
problems arise when the error in solving a linear system is comparable to the desired tolerance. If
you want to solve a linear programming problem to the default feasibility tolerance of 1e − 6, for
example, and if your linear system solves produce errors that are also roughly 1e−6, then you have
no way of knowing whether your current solution is truly feasible. This can lead to oscillations, as
your solution bounces between feasible and infeasible due to nothing more than numerical error,
which can make it extremely difficult to achieve forward progress towards an optimal solution.

When solving linear and quadratic programming problems, we recommend that you check final
primal and dual constraint violations. Duality theory states that, if your solution is primal feasible,
dual feasible, and complementary, then you have an optimal solution. Complementarity is auto-
matically enforced by the simplex method, so achieving primal and dual feasibility (to tolerances)
assures that the solution is optimal (to tolerances).

When solving a MIP model (which includes any model that contains discrete or non-convex
features, such as non-convex objectives, general constraints, semi-continuous variables, etc.), there
is unfortunately no simple method available to check the optimality of the result. While we work
hard to identify and manage the negative effects of ill conditioning, we are unable to provide a
mathematical proof that the solution returned is truly optimal.

For additional information on numerical issues, please refer to the Gurobi Guidelines for Nu-
merical Issues Section of this manual.

687

Environments

An environment is a multi-purpose data structure in Gurobi. It is typically the first Gurobi object
you create and the last one you destroy. While the workings of environments are actually quite
simple, the breadth of uses can sometimes cause confusion. This section lays out the different usage
scenarios to make this clearer.

At the highest level, environments provide three basic functions: (i) to capture a set of parameter
settings, (ii) to delineate a (single-threaded) Gurobi session, and (iii) to hold a Gurobi license.
Things only get interesting once you consider the many different ways these capabilities are used
throughout the product:

• Configuration parameters: Environments allow you to configure your session (whether you
will run locally or on a Compute Server or on the Instant Cloud, your login credentials, etc.).

• Algorithmic parameters: Environments enable you to modify algorithmic parameters, which
influence how the solver solves your model.

• Concurrent environments: When using a concurrent algorithm, concurrent environments al-
low you to control the algorithmic parameters used in each independent solve.

• Multi-objective environments: When solving a multi-objective model, multi-objective envi-
ronments allow you to control the algorithmic parameters used for each objective.

• Session boundaries: Environments indicate when your program starts and stops using Gurobi.

10.1 Session boundaries
One of the main purposes of an environment is to indicate when your program will start to use
Gurobi, and when it is done. When Gurobi is running on your own machine, creating an environ-
ment will obtain a license, and disposing of the environment will release that license. When you
are a client of a Gurobi Compute Server, starting an environment will start a job on the server (or
enter the queue if the server is fully occupied). Disposing of the environment will end that job,
allowing the next job in the queue to start. On Gurobi Instant Cloud, creating an environment
will launch a cloud instance (if it hasn’t been launched already). Disposing of the environment will
end that session, which may result in the cloud instance being shut down (depending on the policy
you’ve set in your Instant Cloud configuration).

If your program repeatedly creates, solves, and destroys optimization models, we strongly rec-
ommend that you do so within a single Gurobi environment. Creating a Gurobi environment incurs
overhead, ranging anywhere from a quick local license check all the way to spinning up a machine
on the cloud. By reusing a single environment, you avoid paying this overhead multiple times.

We also recommend that you dispose of your environment as soon as your program is done using
Gurobi. Doing so releases all resources associated with that session, which in many cases can make
those resources available to other users. You should pay particular attention to this topic when

688

using programming languages that perform garbage-collection. While it is true that environments
will be disposed of eventually by automated garbage-collection, that will often happen much earlier
if you dispose of them explicitly.

The actual steps for disposing of an environment will depend on the API you are using:

Python: Call Model.dispose() on all Model objects, Env.dispose() on any Env objects you created,
or disposeDefaultEnv() if you used the default environment instead. For example:
Clean up model and environment
model. dispose ()
env. dispose ()
gp. disposeDefaultEnv ()

Java: Call GRBModel.dispose() on all GRBModel objects, then call GRBEnv.dispose() on the
GRBEnv object. For example:

// Clean up model and environment
model. dispose ()
env. dispose ()

.NET: Call GRBModel.Dispose() on all GRBModel objects, then call GRBEnv.Dispose() on the
GRBEnv object.

C++: Call the delete operator on all GRBModel objects, and then on the GRBEnv object.

C: Call GRBfreemodel() for each model, then call GRBfreeenv() for the Gurobi environment. For
example:

/* Clean up model and environment */
GRBfreemodel (model);
GRBfreeenv (env);

Note that the boundaries established by an environment are for a single thread. Gurobi envi-
ronments are not thread-safe, so you can’t have more than one thread of control within a single
environment. You can however have a single program that launches multiple threads, each with its
own environment.

In Python you can take advantage of context managers for environment and model objects.
Using them will guarantee that these objects are automatically disposed of. Refer to Env class
documentation for more information. A typical use pattern is also shown in the example mip1_-
remote.py.

10.2 Configuration parameters
When you start a Gurobi session, you often have to provides details about your configuration. You
may need to indicate whether you want to use a license on your local machine, a license from a
Token Server, or perhaps you want to offload your computation to a Compute Server or to Gurobi
Instant Cloud. In the case of a Token Server or a Compute Server, you have to provide the name
of the server. For Compute Server and Instant Cloud, you also need to provide login credentials.

In many situations, the configuration information you need is already stored in your license file
(gurobi.lic) or in your environment file (gurobi.env). These files are read automatically, so you

689

can simply create a standard Gurobi environment object (using GRBloadenv in C, or through the
appropriate GRBEnv constructor in the object-oriented interfaces).

What if you need to provide configuration information from your application at runtime instead?
You can use an empty environment to split environment creation into a few steps (as opposed to
the standard, single-step approach mentioned above). In the first step, you would create an empty
environment object (using GRBemptyenv in C, or through the appropriate GRBEnv constructor in
the object-oriented interfaces). You would then set configuration parameters on this environment
using the standard parameter API. Finally, you would start the environment (using GRBstartenv
in C, or using the env.start() method in the object-oriented interfaces), which will use the
configuration parameters you just set.
Empty environment example

To give a simple example, if you want your Python program to offload the optimization compu-
tation to a Compute Server named server1, you could say:
import gurobipy as gp
from gurobipy import GRB

Set up environment
env = gp.Env(empty=True)
env. setParam (’ComputeServer ’, ’server1 :61000 ’)
env. setParam (’ServerPassword ’, ’passwd ’)
env.start ()

Load model and optimize
model = gp.read(’misc07 .mps ’, env=env)
model. optimize ()

An equivalent Java program would look like this:
import gurobi .*;
...

// Set up environment
GRBenv env = new GRBEnv (true);
env.set(GRB. StringParam . ComputeServer , " server1 :61000 ");
env.set(GRB. StringParam . ServerPassword , " passwd ");
env.start ();

// Load model and optimize
GRBModel model = new GRBModel (env , " misc07 .mps");
model. optimize ()

An equivalent C program would look like this:
include " gurobi_c .h"
int main(void) {

GRBenv *env = NULL;
GRBmodel *model = NULL;
int error = 0;

/* Set up environment */
error = GRBemptyenv (& env);
if (error) goto QUIT;
error = GRBsetstrparam (GRB_STR_PAR_COMPUTESERVER , " server1 :61000 ");
if (error) goto QUIT;

690

error = GRBsetstrparam (GRB_STR_PAR_SERVERPASSWORD , " passwd ");
if (error) goto QUIT;
error = GRBstartenv (env);
if (error) goto QUIT;

/* Load model and optimize */
error = GRBreadmodel (env , " misc07 .mps", &model);
if (error) goto QUIT;
error = GRBoptimize (model);
if (error) goto QUIT;

This example uses the ComputeServer parameter to connect to a Compute Server. To give a few
more examples of configuration parameters, you can use the CloudAccessID and CloudSecretKey
parameters to provide your credentials in order to launch an Instant Cloud instance. To connect
to a token server, you would use the TokenServer parameter. The full list of Gurobi parameters
can be found here.

Configuration parameters must be set before you start the Gurobi environment. Changes have
no effect once the environment has been started.

In Python you can also provide such configuration parameters directly as a dict argument
to the environment constructor, without creating an empty environment first. Please refer to the
Env() documentation for an example.

10.3 Algorithmic parameters
Environments can also be used to set algorithmic parameters - parameters that control the be-
havior of the optimization solver. To give a few examples, the TimeLimit parameter indicates the
maximum allowed runtime for any solve, while the Method parameter chooses the algorithm used
to solve continuous optimization models.

Having said that, we actually recommend that you set algorithmic parameters on the model
rather than on the environment. The object-oriented APIs all include model.set methods that
enable you to do so. What’s the difference between setting parameters on the environment versus
on the model? Parameter values are copied from the environment when the model is created, so
changes to parameter values in the environment have no effect on models that have already been
created. This is a frequent source of confusion.

Please see the Parameter Examples section for examples on how parameters are set.

10.4 Concurrent environments
One algorithmic option available in Gurobi is concurrent optimization, where multiple independent
solves are performed in parallel and Gurobi takes care of collecting and combining the results.
Concurrent optimization can be quite powerful; it is actually the default approach for solving
linear programming models.

The power of concurrent optimization comes from the fact that different approaches to solving
a model may have different performance characteristics, and performing them in parallel allows
you to stop when the first one finishes. All of our concurrent schemes have default choices for
determining the strategy that each independent solve uses. However, it is also possible for you
to pick different strategies. This is done through concurrent environments. By creating two or

691

more concurrent environments for a model, and setting parameters on these environments, you can
control exactly what each concurrent solve does.

Concurrent environments are created via API routines (in C, C++, Java, .NET, or Python).
You set parameters on these environments as you would with any other environment, but in this
case they only affect one of the several independent solves.

To give a simple example, in Python you could do the following:
Create concurrent environments
env0 = model. getConcurrentEnv (0)
env1 = model. getConcurrentEnv (1)

Set parameters on concurrent environments
env0. setParam (’MIPFocus ’, 1)
env1. setParam (’MIPFocus ’, 2)

Perform (concurrent) optimization
model. optimize ()

This would launch two concurrent solves on your model, one with the MIPFocus parameter set to
1 and the other with it set to 2.

Users of our command-line interface can set concurrent optimization parameters with .prm files
using the ConcurrentSettings parameter.

10.5 Multi-objective environments
When solving a multi-objective model, the solution process typically proceeds in phases, where
each phase solves for one objective. The standard algorithmic parameters influence the strategy
used to solve the overall multi-objective model. However, in some cases you may want finer-grain
control over the strategies used in each phase. The solver enables this through multi-objective
environments.

Multi-objective environments are created via API routines (in C, C++, Java, .NET, or Python).
You set parameters on these environments as you would with any other environment, but in this
case they only affect one of the several objective solves.

To give a simple example, in Python you could do the following:
Create multi - objective environments
env0 = model. getMultiobjEnv (0)
env1 = model. getMultiobjEnv (1)

Set parameters on multi - objective environments
env0. setParam (’Method ’, 2)
env1. setParam (’Method ’, 1)
env1. setParam (’Presolve ’, 0)

Perform multi - objective optimization
model. optimize ()

This would use the barrier solver (Method=2) for the first objective, and the dual simplex solver
(Method=1) with no presolve (Presolve=0) for the second. Note that you don’t need a multi-
objective environment for each objective - only for those where you want parameters to take different
values from those of the model itself.

692

Attributes

The primary mechanism for querying and modifying properties of a Gurobi model is through the
attribute interface. A variety of different attributes are available. Some are only populated at
certain times (e.g., those related to the solution of a model), while others are available at all times
(e.g., the number of variables in the model). Attributes can be associated with variables (e.g., lower
bounds), constraints (e.g., the right-hand side), SOSs (e.g., IIS membership), or with the model as
a whole (e.g., the objective value for the current solution).

The following tables list the full set of Gurobi attributes. The attributes have been grouped
by type: model attributes take scalar values, while variable, linear constraint, SOS constraint,
quadratic constraint, and general constraint attributes contain one entry per variable or constraint
in the model. The APIs provide methods to query attribute values for individual constraints or
variables, or to query their values for arrays of constraints or variables (refer to our Attribute
Examples section for examples). Array queries are generally more efficient.

Note that the attributes that provide solution quality information have been split off into a
separate table at the end of this section. These attributes are also associated with the model as a
whole.

Some solution attributes require information that is only computed by certain Gurobi algo-
rithms. Such cases are noted in the detailed attribute descriptions that follow. For example, the
VBasis and CBasis attributes can only be queried when a simplex basis is available (a basis is
available when a continuous model has been solved using primal simplex, dual simplex, or barrier
with crossover). Sensitivity information (SAObjLow, SAObjUp, etc.) is also only available for basic
solutions.

693

Model attributes:
These attributes provide information about the overall model (as opposed to information about

individual variables or constraints in the model).

Attribute name Description
NumVars Number of variables
NumConstrs Number of linear constraints
NumSOS Number of SOS constraints
NumQConstrs Number of quadratic constraints
NumGenConstrs Number of general constraints
NumNZs Number of non-zero coefficients in the constraint matrix
DNumNZs Number of non-zero coefficients in the constraint matrix (in double format)
NumQNZs Number of non-zero quadratic objective terms
NumQCNZs Number of non-zero terms in quadratic constraints
NumIntVars Number of integer variables
NumBinVars Number of binary variables
NumPWLObjVars Number of variables with piecewise-linear objective functions
ModelName Model name
ModelSense Model sense (minimization or maximization)
ObjCon Constant offset for objective function
Fingerprint Model fingerprint
ObjVal Objective value for current solution
ObjBound Best available objective bound (lower bound for minimization, upper bound

for maximization)
ObjBoundC Best available objective bound, without rounding (lower bound for mini-

mization, upper bound for maximization)
PoolObjBound Bound on best objective for solutions not in pool (lower bound for minimiza-

tion, upper bound for maximization)
PoolObjVal Objective value of alternatives solutions stored during the optimization pro-

cess
MIPGap Current relative MIP optimality gap
Runtime Runtime for most recent optimization
Status Current optimization status
SolCount Number of stored solutions
IterCount Number of simplex iterations performed in most recent optimization
BarIterCount Number of barrier iterations performed in most recent optimization
NodeCount Number of branch-and-cut nodes explored in most recent optimization
IsMIP Indicates whether the model is a MIP
IsQP Indicates whether the model is a QP/MIQP
IsQCP Indicates whether the model is a QCP/MIQCP
IsMultiObj Indicates whether the model has multiple objectives
IISMinimal Indicates whether the current IIS is minimal
MaxCoeff Maximum constraint matrix coefficient (in absolute value)
MinCoeff Minimum (non-zero) constraint matrix coefficient (in absolute value)
MaxBound Maximum finite variable bound
MinBound Minimum finite variable bound

694

MaxObjCoeff Maximum linear objective coefficient (in absolute value)
MinObjCoeff Minimum (non-zero) linear objective coefficient (in absolute value)
MaxRHS Maximum constraint right-hand side (in absolute value)
MinRHS Minimum (non-zero) constraint right-hand side (in absolute value)
MaxQCCoeff Maximum quadratic constraint matrix coefficient of quadratic part (in ab-

solute value)
MinQCCoeff Minimum (non-zero) quadratic constraint matrix coefficient of quadratic

part (in absolute value)
MaxQCLCoeff Maximum quadratic constraint matrix coefficient in linear part (in absolute

value)
MinQCLCoeff Minimum (non-zero) quadratic constraint matrix coefficient in linear part

(in absolute value)
MaxQCRHS Maximum quadratic constraint right-hand side (in absolute value)
MinQCRHS Minimum (non-zero) quadratic constraint right-hand side (in absolute value)
MaxQObjCoeff Maximum quadratic objective coefficient (in absolute value)
MinQObjCoeff Minimum (non-zero) quadratic objective coefficient (in absolute value)
Kappa Estimated basis condition number
KappaExact Exact basis condition number
FarkasProof Magnitude of infeasibility violation in Farkas infeasibility proof
TuneResultCount Number of improved parameter sets found by tuning tool
NumStart Number of MIP starts
LicenseExpiration License expiration date
Server For Compute Server, name of server

Variable attributes:
These attributes provide information that is associated with specific variables.

Attribute name Description
LB Lower bound
UB Upper bound
Obj Linear objective coefficient
VType Variable type (continuous, binary, integer, etc.)
VarName Variable name
VTag Variable tag
X Value in the current solution
Xn Value in a sub-optimal MIP solution
RC Reduced cost
BarX Value in the best barrier iterate (before crossover)
Start MIP start value (for constructing an initial MIP solution)
VarHintVal MIP hint value
VarHintPri MIP hint priority
BranchPriority Branching priority
Partition Variable partition
VBasis Basis status
PStart Simplex start vector
IISLB Indicates whether the lower bound participates in the IIS

695

IISUB Indicates whether the upper bound participates in the IIS
PWLObjCvx Indicates whether the variable has a convex piecewise-linear objective
SAObjLow Objective coefficient sensitivity information
SAObjUp Objective coefficient sensitivity information
SALBLow Lower bound sensitivity information
SALBUp Lower bound sensitivity information
SAUBLow Upper bound sensitivity information
SAUBUp Upper bound sensitivity information
UnbdRay Unbounded ray

Linear constraint attributes:
These attributes provide information that is associated with specific linear constraints.

Attribute name Description
Sense Constraint sense (’<’, ’>’, or ’=’)
RHS Right-hand side value
ConstrName Constraint name
CTag Constraint tag
Pi Dual value (also known as the shadow price)
Slack Slack in the current solution
CBasis Basis status
DStart Simplex start vector
Lazy Determines whether a constraint is treated as a lazy constraint
IISConstr Indicates whether the constraint participates in the IIS
SARHSLow Right-hand side sensitivity information
SARHSUp Right-hand side sensitivity information
FarkasDual Farkas infeasibility proof

SOS attributes:
These attributes provide information that is associated with specific Special-Ordered Set (SOS)

constraints.
Attribute name Description
IISSOS Indicates whether the SOS constraint participates in the IIS

Quadratic constraint attributes:
These attributes provide information that is associated with specific quadratic constraints.

Attribute name Description
QCSense Constraint sense (’<’, ’>’, or ’=’)
QCRHS Right-hand side
QCName Quadratic constraint name
QCPi Dual value
QCSlack Slack in the current solution
QCTag Quadratic constraint tag
IISQConstr Indicates whether the quadratic constraint participates in the IIS

696

General constraint attributes:
These attributes provide information that is associated with specific general constraints. Those

starting with "Func" are only for function constraints.
Attribute name Description
FuncPieceError Error allowed for PWL translation
FuncPieceLength Piece length for PWL translation
FuncPieceRatio Controls whether to under- or over-estimate function values in PWL approximation
FuncPieces Sets strategy for PWL function approximation
GenConstrType Type of general constraint
GenConstrName General constraint name
IISGenConstr Indicates whether the general constraint participates in the IIS

Solution quality attributes:

Attribute name Description
BoundVio Maximum (unscaled) bound violation
BoundSVio Maximum (scaled) bound violation
BoundVioIndex Index of variable with the largest (unscaled) bound violation
BoundSVioIndex Index of variable with the largest (scaled) bound violation
BoundVioSum Sum of (unscaled) bound violations
BoundSVioSum Sum of (scaled) bound violations
ConstrVio Maximum (unscaled) constraint violation
ConstrSVio Maximum (scaled) constraint violation
ConstrVioIndex Index of constraint with the largest (unscaled) violation
ConstrSVioIndex Index of constraint with the largest (scaled) violation
ConstrVioSum Sum of (unscaled) constraint violations
ConstrSVioSum Sum of (scaled) constraint violations
ConstrResidual Maximum (unscaled) primal constraint error
ConstrSResidual Maximum (scaled) primal constraint error
ConstrResidualIndex Index of constraint with the largest (unscaled) primal constraint error
ConstrSResidualIndex Index of constraint with the largest (scaled) primal constraint error
ConstrResidualSum Sum of (unscaled) primal constraint errors
ConstrSResidualSum Sum of (scaled) primal constraint errors
DualVio Maximum (unscaled) reduced cost violation
DualSVio Maximum (scaled) reduced cost violation
DualVioIndex Index of variable with the largest (unscaled) reduced cost violation
DualSVioIndex Index of variable with the largest (scaled) reduced cost violation
DualVioSum Sum of (unscaled) reduced cost violations
DualSVioSum Sum of (scaled) reduced cost violations
DualResidual Maximum (unscaled) dual constraint error
DualSResidual Maximum (scaled) dual constraint error
DualResidualIndex Index of variable with the largest (unscaled) dual constraint error
DualSResidualIndex Index of variable with the largest (scaled) dual constraint error
DualResidualSum Sum of (unscaled) dual constraint errors
DualSResidualSum Sum of (scaled) dual constraint errors

697

ComplVio Maximum complementarity violation
ComplVioIndex Index of variable with the largest complementarity violation
ComplVioSum Sum of complementarity violations
IntVio Maximum integrality violation
IntVioIndex Index of variable with the largest integrality violation
IntVioSum Sum of integrality violations

Multi-objective attributes:

Attribute name Description
ObjN Objectives of multi-objectives
ObjNCon Constant terms of multi-objectives
ObjNPriority Priorities of multi-objectives
ObjNWeight Weights of multi-objectives
ObjNRelTol Relative tolerances of multi-objectives
ObjNAbsTol Absolute tolerances of multi-objectives
ObjNVal Objective value of multi-objectives solutions
ObjNName Names of multi-objectives
NumObj Number of multi-objectives

698

Multi-scenario attributes:

Attribute name Description
ScenNLB Lower bound changes of current scenario in multi-scenario model
ScenNUB Upper bound changes of current scenario in multi-scenario model
ScenNObj Objective coefficient changes of current scenario in multi-scenario model
ScenNRHS Right-hand side changes of current scenario in multi-scenario model
ScenNName Name of current scenario in multi-scenario model
ScenNObjBound Objective bound of current scenario in multi-scenario model
ScenNObjVal Objective value for current solution of current scenario in multi-scenario model
ScenNX Value in the current solution of current scenario in multi-scenario model
NumScenarios Number of scenarios

Batch attributes:

Attribute name Description
BatchErrorCode Last error code received from the Cluster Manager
BatchErrorMessage Last error message received from the Cluster Manager
BatchID ID of the remote batch
BatchStatus Status of the batch

11.1 Model Attributes
These are model attributes, meaning that they are associated with the overall model (as opposed
to being associated with a particular variable or constraint of the model). You should use one of
the various get routines to retrieve the value of an attribute. These are described at the beginning
of this section). For the object-oriented interfaces, model attributes are retrieved by invoking the
get method on the model object itself. For attributes that can be modified directly by the user,
you can use one of the various set methods.

Attempting to query an attribute that is not available will produce an error. In C, the attribute
query routine will return a GRB_ERROR_DATA_NOT_AVAILABLE error code. The object-oriented in-
terfaces will throw an exception.

NumConstrs

Type: int
Modifiable: No

The number of linear constraints in the model.
For examples of how to query or modify attributes, refer to our Attribute Examples.

NumVars

Type: int
Modifiable: No

The number of decision variables in the model.
For examples of how to query or modify attributes, refer to our Attribute Examples.

699

NumSOS

Type: int
Modifiable: No

The number of Special Ordered Set (SOS) constraints in the model.
For examples of how to query or modify attributes, refer to our Attribute Examples.

NumQConstrs

Type: int
Modifiable: No

The number of quadratic constraints in the model.
For examples of how to query or modify attributes, refer to our Attribute Examples.

NumGenConstrs

Type: int
Modifiable: No

The number of general constraints in the model.
For examples of how to query or modify attributes, refer to our Attribute Examples.

NumNZs

Type: int
Modifiable: No

The number of non-zero coefficients in the linear constraints of the model. For models with
more than 2 billion non-zero coefficients use DNumNZs.

For examples of how to query or modify attributes, refer to our Attribute Examples.

DNumNZs

Type: double
Modifiable: No

The number of non-zero coefficients in the linear constraints of the model. This attribute is
provided in double precision format to accurately count the number of non-zeros in models that
contain more than 2 billion non-zero coefficients.

For examples of how to query or modify attributes, refer to our Attribute Examples.

NumQNZs

Type: int
Modifiable: No

The number of terms in the lower triangle of the Q matrix in the quadratic objective.
For examples of how to query or modify attributes, refer to our Attribute Examples.

700

NumQCNZs

Type: int
Modifiable: No

The number of non-zero coefficients in the quadratic constraints.
For examples of how to query or modify attributes, refer to our Attribute Examples.

NumIntVars

Type: int
Modifiable: No

The number of integer variables in the model. This includes both binary variables and general
integer variables.

For examples of how to query or modify attributes, refer to our Attribute Examples.

NumBinVars

Type: int
Modifiable: No

The number of binary variables in the model.
For examples of how to query or modify attributes, refer to our Attribute Examples.

NumPWLObjVars

Type: int
Modifiable: No

The number of variables in the model with piecewise-linear objective functions. You can query
the function for a specific variable using the appropriate getPWLObj method for your language (in
C, C++, C#, Java, and Python).

For examples of how to query or modify attributes, refer to our Attribute Examples.

ModelName

Type: string
Modifiable: Yes

The name of the model. The name has no effect on Gurobi algorithms. It is output in the
Gurobi log file when a model is solved, and when a model is written to a file.

For examples of how to query or modify attributes, refer to our Attribute Examples.

ModelSense

Type: int
Modifiable: Yes

Optimization sense. The default 1 value indicates that the objective is to minimize the objective.
Setting this attribute to -1 changes the sense to maximization.

For examples of how to query or modify attributes, refer to our Attribute Examples.

701

ObjCon

Type: double
Modifiable: Yes

A constant value that is added into the model objective. The default value is 0.
For examples of how to query or modify attributes, refer to our Attribute Examples.

Fingerprint

Type: int
Modifiable: No

A hash value computed on model data and attributes that can influence the optimization
process. The intent is that models that differ in any meaningful way will have different fingerprints
(almost always).

For examples of how to query or modify attributes, refer to our Attribute Examples.

ObjVal

Type: double
Modifiable: No

The objective value for the current solution. If the model was solved to optimality, then this
attribute gives the optimal objective value.

For examples of how to query or modify attributes, refer to our Attribute Examples.

ObjBound

Type: double
Modifiable: No

The best known bound on the optimal objective. When solving a MIP model, the algorithm
maintains both a lower bound and an upper bound on the optimal objective value. For a minimiza-
tion model, the upper bound is the objective of the best known feasible solution, while the lower
bound gives a bound on the best possible objective.

In contrast to ObjBoundC, this attribute takes advantage of objective integrality information
to round to a tighter bound. For example, if the objective is known to take an integral value and
the current best bound is 1.5, ObjBound will return 2.0 while ObjBoundC will return 1.5.

For examples of how to query or modify attributes, refer to our Attribute Examples.

ObjBoundC

Type: double
Modifiable: No

The best known bound on the optimal objective. When solving a MIP model, the algorithm
maintains both a lower bound and an upper bound on the optimal objective value. For a minimiza-
tion model, the upper bound is the objective of the best known feasible solution, while the lower
bound gives a bound on the best possible objective.

702

In contrast to ObjBound, this attribute does not take advantage of objective integrality infor-
mation to round to a tighter bound. For example, if the objective is known to take an integral
value and the current best bound is 1.5, ObjBound will return 2.0 while ObjBoundC will return 1.5.

For examples of how to query or modify attributes, refer to our Attribute Examples.

PoolObjBound

Type: double
Modifiable: No

Bound on the objective of undiscovered MIP solutions. The MIP solver stores solutions that it
finds during the MIP search, but it only provides quality guarantees for those whose objective is
at least as good as PoolObjBound. Specifically, further exploration of the MIP search tree will not
find solutions whose objective is better than PoolObjBound.

The difference between PoolObjBound and ObjBound is that the former gives an objective bound
for undiscovered solutions, while the latter gives a bound for any solution. Note that PoolObjBound
and ObjBound can only have different values if parameter PoolSearchMode is set to 2.

Please consult the section on Solution Pools for a more detailed discussion of this topic.
For examples of how to query or modify attributes, refer to our Attribute Examples.

PoolObjVal

Type: double
Modifiable: No

This attribute is used to query the objective value of the k-th solution stored in the pool of
feasible solutions found so far for the problem. You set k using the SolutionNumber parameter.

The number of stored solutions can be queried using the SolCount attribute.
Please consult the section on Solution Pools for a more detailed discussion of this topic.
For examples of how to query or modify attributes, refer to our Attribute Examples.

MIPGap

Type: double
Modifiable: No

Current relative MIP optimality gap; computed as |ObjBound − ObjV al|/|ObjV al| (where
ObjBound and ObjVal are the MIP objective bound and incumbent solution objective, respectively.
Returns GRB_INFINITY when an incumbent solution has not yet been found, when no objective
bound is available, or when the current incumbent objective is 0.

For examples of how to query or modify attributes, refer to our Attribute Examples.

Runtime

Type: double
Modifiable: No

Runtime for the most recent optimization (in seconds). Note that all times reported by the
Gurobi Optimizer are wall-clock times.

For examples of how to query or modify attributes, refer to our Attribute Examples.

703

Status

Type: int
Modifiable: No

Current optimization status for the model. Status values are described in the Status Code
section.

For examples of how to query or modify attributes, refer to our Attribute Examples.

SolCount

Type: int
Modifiable: No

Number of stored solutions from the most recent optimization.
For examples of how to query or modify attributes, refer to our Attribute Examples.

IterCount

Type: double
Modifiable: No

Number of simplex iterations performed during the most recent optimization.
For examples of how to query or modify attributes, refer to our Attribute Examples.

BarIterCount

Type: int
Modifiable: No

Number of barrier iterations performed during the most recent optimization.
For examples of how to query or modify attributes, refer to our Attribute Examples.

NodeCount

Type: double
Modifiable: No

Number of branch-and-cut nodes explored in the most recent optimization.
For examples of how to query or modify attributes, refer to our Attribute Examples.

IsMIP

Type: int
Modifiable: No

Indicates whether the model is a MIP. Note that any discrete elements make the model a MIP.
Discrete elements include binary, integer, semi-continuous, semi-integer variables, SOS constraints,
and general constraints. In addition, models having multiple objectives or multiple scenarios are
considered as MIP models, even when all variables are continuous and all constraints are linear.

For examples of how to query or modify attributes, refer to our Attribute Examples.

704

IsQP

Type: int
Modifiable: No

Indicates whether the model is a quadratic programming problem. Note that a model with
both a quadratic objective and quadratic constraints is classified as a QCP, not a QP.

For examples of how to query or modify attributes, refer to our Attribute Examples.

IsQCP

Type: int
Modifiable: No

Indicates whether the model has quadratic constraints.
For examples of how to query or modify attributes, refer to our Attribute Examples.

IsMultiObj

Type: int
Modifiable: No

Indicates whether the model has multiple objectives.
Note that the case where the model has a single objective (NumObj = 1) is slightly ambiguous.

If you used setObjectiveN to set your objective, or if you set any of the multi-objective attributes
(e.g., ObjNPriority), then the model is considered to be a multi-objective model. Otherwise, it is
not.

To reset a multi-objective model back to a single objective model, you should set the NumObj
attribute to 0, call model update, and then set a new single objective.

For examples of how to query or modify attributes, refer to our Attribute Examples.

IISMinimal

Type: int
Modifiable: No

Indicates whether the current Irreducible Inconsistent Subsystem (IIS) is minimal. This at-
tribute is only available after you have computed an IIS on an infeasible model. It will normally
take value 1, but it may take value 0 if the IIS computation was stopped early (e.g., due to a time
limit or user interrupt).

For examples of how to query or modify attributes, refer to our Attribute Examples.

MaxCoeff

Type: double
Modifiable: No

Maximum matrix coefficient (in absolute value) in the linear constraint matrix.
For examples of how to query or modify attributes, refer to our Attribute Examples.

705

MinCoeff

Type: double
Modifiable: No

Minimum non-zero matrix coefficient (in absolute value) in the linear constraint matrix.
For examples of how to query or modify attributes, refer to our Attribute Examples.

MaxBound

Type: double
Modifiable: No

Maximum (finite) variable bound.
For examples of how to query or modify attributes, refer to our Attribute Examples.

MinBound

Type: double
Modifiable: No

Minimum (non-zero) variable bound.
For examples of how to query or modify attributes, refer to our Attribute Examples.

MaxObjCoeff

Type: double
Modifiable: No

Maximum linear objective coefficient (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

MinObjCoeff

Type: double
Modifiable: No

Minimum (non-zero) linear objective coefficient (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

MaxRHS

Type: double
Modifiable: No

Maximum (finite) linear constraint right-hand side value (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

MinRHS

Type: double
Modifiable: No

Minimum (non-zero) linear constraint right-hand side value (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

706

MaxQCCoeff

Type: double
Modifiable: No

Maximum coefficient in the quadratic part of all quadratic constraint matrices (in absolute
value).

For examples of how to query or modify attributes, refer to our Attribute Examples.

MinQCCoeff

Type: double
Modifiable: No

Minimum (non-zero) coefficient in the quadratic part of all quadratic constraint matrices (in
absolute value).

For examples of how to query or modify attributes, refer to our Attribute Examples.

MaxQCLCoeff

Type: double
Modifiable: No

Maximum coefficient in the linear part of all quadratic constraint matrices (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

MinQCLCoeff

Type: double
Modifiable: No

Minimum (non-zero) coefficient in the linear part of all quadratic constraint matrices (in absolute
value).

For examples of how to query or modify attributes, refer to our Attribute Examples.

MaxQCRHS

Type: double
Modifiable: No

Maximum (finite) quadratic constraint right-hand side value (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

MinQCRHS

Type: double
Modifiable: No

Minimum (non-zero) quadratic constraint right-hand side value (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

707

MaxQObjCoeff

Type: double
Modifiable: No

Maximum coefficient of the quadratic terms in the objective (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

MinQObjCoeff

Type: double
Modifiable: No

Minimum (non-zero) coefficient of the quadratic terms in the objective (in absolute value).
For examples of how to query or modify attributes, refer to our Attribute Examples.

Kappa

Type: double
Modifiable: No

Estimated condition number for the current LP basis matrix. Only available for basic solutions.
For examples of how to query or modify attributes, refer to our Attribute Examples.

KappaExact

Type: double
Modifiable: No

Exact condition number for the current LP basis matrix. Only available for basic solutions.
The exact condition number is much more expensive to compute than the estimate that you get
from the Kappa attribute. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

FarkasProof

Type: double
Modifiable: No

Together, attributes FarkasDual and FarkasProof provide a certificate of infeasibility for the
given problem. Specifically, they can be used to form the following inequality from the original
constraints that is trivially infeasible:

āx = λtAx ≤ λtb = −β +
∑

j:āj<0
ājUj +

∑
j:āj>0

ājLj ,

where β > 0, Lj is the lower bound of variable xj , Uj is the upper bound of variable xj , λi ≥ 0 if
the i-th constraint has a ≤ sense, λi ≤ 0 if the i-th constraint has a ≥ sense, āj ≥ 0 if Uj =∞, and
āj ≤ 0 if Lj = −∞. This constraint can not be satisfied for any β > 0. The FarkasProof attribute
provides β, and the FarkasDual attributes provide λ multipliers for the original constraints.

This attribute is only available when parameter InfUnbdInfo is set to 1.
For examples of how to query or modify attributes, refer to our Attribute Examples.

708

TuneResultCount

Type: int
Modifiable: No

After the tuning tool has been run, this attribute reports the number of parameter sets that
were stored. This value will be zero if no improving parameter sets were found, and its upper
bound is determined by the TuneResults parameter.

For examples of how to query or modify attributes, refer to our Attribute Examples.

NumStart

Type: int
Modifiable: Yes

Number of MIP starts in the model. Decreasing this attribute will discard existing MIP starts.
Increasing it will create new MIP starts (initialized to undefined).

You can use the StartNumber parameter to query or modify start values for different MIP
starts, or to append a new one. The value of StartNumber should always be less than NumStart.

For examples of how to query or modify attributes, refer to our Attribute Examples.

LicenseExpiration

Type: int
Modifiable: No

License expiration date. The format is YYYYMMDD, so for example if the license currently in
use expired on July 20, 2018, the result would be 20180720. If the license has no expiration date,
the result will be 99999999.

This attribute is available for node licenses and for clients of a Gurobi Compute Server. Unfor-
tunately, this attribute isn’t available for clients of a Gurobi Token Server.

For examples of how to query or modify attributes, refer to our Attribute Examples.

Server

Type: string
Modifiable: No

If you are running on a Compute Server, this attribute provides the name of the Compute
Server where the current job is running.

For examples of how to query or modify attributes, refer to our Attribute Examples.

11.2 Variable Attributes
These are variable attributes, meaning that they are associated with specific variables in the model.
You should use one of the various get routines to retrieve the value of an attribute. These are
described at the beginning of this section). For the object-oriented interfaces, variable attributes
are retrieved by invoking the get method on a variable object. For attributes that can be modified
directly by the user, you can use one of the various set methods.

709

Attempting to query an attribute that is not available will produce an error. In C, the attribute
query routine will return a GRB_ERROR_DATA_NOT_AVAILABLE error code. The object-oriented in-
terfaces will throw an exception.

LB

Type: double
Modifiable: Yes

Variable lower bound. Note that any value less than -1e20 is treated as negative infinity.
For examples of how to query or modify attributes, refer to our Attribute Examples.

UB

Type: double
Modifiable: Yes

Variable upper bound. Note that any value greater than 1e20 is treated as infinite.
For examples of how to query or modify attributes, refer to our Attribute Examples.

Obj

Type: double
Modifiable: Yes

Linear objective coefficient. In our object-oriented interfaces, you typically use the setObjective
method to set the objective, but this attribute provides an alternative for setting or modifying linear
objective terms.

Note that this attribute interacts with our piecewise-linear objective feature. If you set a
piecewise-linear objective function for a variable, that will automatically set the Obj attribute to
zero. Similarly, if you set the Obj attribute for a variable, that will automatically delete any
previously specified piecewise-linear objective.

For examples of how to query or modify attributes, refer to our Attribute Examples.

VarName

Type: string
Modifiable: Yes

Variable name.
For examples of how to query or modify attributes, refer to our Attribute Examples.

VTag

Type: string
Modifiable: Yes

Tag for variables.
If you will be retrieving the solution to your model in JSON format, you should define a tag for

every variable that you plan to retrieve solution information for. Each variable tag must be unique,
and only tagged variables will appear in the JSON solution string. Tags must consist of printable

710

US-ASCII characters. Using extended characters or escaped characters will result in an error. The
maximum supported length for a tag is 10240 characters.

For examples of how to query or modify attributes, refer to our Attribute Examples.

VType

Type: char
Modifiable: Yes

Variable type (’C’ for continuous, ’B’ for binary, ’I’ for integer, ’S’ for semi-continuous, or
’N’ for semi-integer). Binary variables must be either 0 or 1. Integer variables can take any integer
value between the specified lower and upper bounds. Semi-continuous variables can take any value
between the specified lower and upper bounds, or a value of zero. Semi-integer variables can take
any integer value between the specified lower and upper bounds, or a value of zero.

Refer to this section for more information on variable types.
For examples of how to query or modify attributes, refer to our Attribute Examples.

X

Type: double
Modifiable: No

Variable value in the current solution.
For examples of how to query or modify attributes, refer to our Attribute Examples.

Xn

Type: double
Modifiable: No

The variable value in a sub-optimal MIP solution. Use parameter SolutionNumber to indi-
cate which alternate solution to retrieve. Solutions are sorted in order of worsening objective
value. Thus, when SolutionNumber is 1, Xn returns the second-best solution found. When
SolutionNumber is equal to its default value of 0, querying attribute Xn is equivalent to query-
ing attribute X.

The number of sub-optimal solutions found during the MIP search will depend on the values of
a few parameters. The most important of these are PoolSolutions, PoolSearchMode, and PoolGap.
Please consult the section on Solution Pools for a more detailed discussion of this topic.

For examples of how to query or modify attributes, refer to our Attribute Examples.

RC

Type: double
Modifiable: No

The reduced cost in the current solution. Only available for convex, continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

711

BarX

Type: double
Modifiable: No

The variable value in the best barrier iterate (before crossover). Only available when the barrier
algorithm was selected.

For examples of how to query or modify attributes, refer to our Attribute Examples.

Start

Type: double
Modifiable: Yes

The current MIP start vector. The MIP solver will attempt to build an initial solution from this
vector when it is available. Note that the start can be partially populated -- the MIP solver will
attempt to fill in values for missing start values. If you wish to leave the start value for a variable
undefined, you can either avoid setting the Start attribute for that variable, or you can set it to
a special undefined value (GRB_UNDEFINED in C and C++, or GRB.UNDEFINED in Java, .NET, and
Python).

If the Gurobi MIP solver log indicates that your MIP start didn’t produce a new incumbent
solution, note that there can be multiple explanations. One possibility is that your MIP start is
infeasible. Another, more common possibility is that one of the Gurobi heuristics found a solution
that is as good as the solution produced by the MIP start, so the MIP start solution was cut off.
Finally, if you specified a partial MIP start, it is possible that the limited MIP exploration done
on this partial start was insufficient to find a new incumbent solution. You can try setting the
StartNodeLimit parameter to a larger value if you want Gurobi to work harder to try to complete
the partial start.

If you solve a sequence of models, where one is built by modifying the previous one, and if you
don’t provide a MIP start, then Gurobi will try to construct one automatically from the solution
of the previous model. If you don’t want it to try this, you should reset the model before starting
the subsequent solve. If you provided a MIP start but would prefer to use the previous solution as
the start instead, you should clear your start (by setting the Start attribute to undefined for all
variables).

If you have multiple start vectors, you can provide them to Gurobi by using the Start attribute
in combination with the NumStart attribute and the StartNumber parameter. Specifically, use the
NumStart attribute to indicate how many start vectors you will supply. Then set the StartNumber
parameter to a value between 0 and NumStart-1 to indicate which start you are supplying. For
each value of StartNumber, populate the Start attribute to supply that start. Gurobi will use all
of the provided starts. As an alternative, you can append new MIP start vectors to your model
by setting the StartNumber parameter to -1. In this case, whenever you read a MIP start, or use
a function to set a MIP start value for a set of variables, a new MIP start will be created, the
parameter NumStart will be increased, and any unspecified variable will be left as undefined.

If you want to diagnose an infeasible MIP start, you can try fixing the variables in the model to
their values in your MIP start (by setting their lower and upper bound attributes). If the resulting
MIP model is infeasible, you can then compute an IIS on this model to get additional information
that should help to identify the cause of the infeasibility.

Only affects MIP models.

712

For examples of how to query or modify attributes, refer to our Attribute Examples.

VarHintVal

Type: double
Modifiable: Yes

A set of user hints. If you know that a variable is likely to take a particular value in high quality
solutions of a MIP model, you can provide that value as a hint. You can also (optionally) provide
information about your level of confidence in a hint with the VarHintPri attribute.

The Gurobi MIP solver will use these variable hints in a number of different ways. Hints will
affect the heuristics that Gurobi uses to find feasible solutions, and the branching decisions that
Gurobi makes to explore the MIP search tree. In general, high quality hints should produce high
quality MIP solutions faster. In contrast, low quality hints will lead to some wasted effort, but
shouldn’t lead to dramatic performance degradations.

Variables hints and MIP starts are similar in concept, but they behave in very different ways.
If you specify a MIP start, the Gurobi MIP solver will try to build a single feasible solution from
the provided set of variable values. If you know a solution, you should use a MIP start to provide it
to the solver. In contrast, variable hints provide guidance to the MIP solver that affects the entire
solution process. If you have a general sense of the likely values for variables, you should provide
them through variable hints.

If you wish to leave the hint value for a variable undefined, you can either avoid setting the
VarHintVal attribute for that variable, or you can set it to a special undefined value (GRB_UNDEFINED
in C and C++, GRB.UNDEFINED in Java, .NET, and Python, NA in R or nan in Matlab).

Note that deleting variables from your model will cause several attributes to be discarded
(variable hints and branch priorities). If you’d like them to persist, your program will need to
repopulate them after deleting the variables and making a subsequent model update call.

Only affects MIP models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

VarHintPri

Type: int
Modifiable: Yes

Priorities on user hints. After providing variable hints through the VarHintVal attribute, you
can optionally also provide hint priorities to give an indication of your level of confidence in your
hints.

Hint priorities are relative. If you are more confident in the hint value for one variable than for
another, you simply need to set a larger priority value for the more solid hint. The default hint
priority for a variable is 0.

Please refer to the VarHintVal discussion for more details on the role of variable hints.
Only affects MIP models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

713

BranchPriority

Type: int
Modifiable: Yes

Variable branching priority. The value of this attribute is used as the primary criterion for
selecting a fractional variable for branching during the MIP search. Variables with larger values
always take priority over those with smaller values. Ties are broken using the standard branch
variable selection criteria. The default variable branch priority value is zero.

Note that deleting variables from your model will cause several attributes to be discarded
(variable hints and branch priorities). If you’d like them to persist, your program will need to
repopulate them after deleting the variables and making a subsequent model update call.

Only affects MIP models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

Partition

Type: int
Modifiable: Yes

Variable partition. The MIP solver can perform a solution improvement heuristic using user-
provided partition information. The provided partition number can be positive, which indicates
that the variable should be included when the correspondingly numbered sub-MIP is solved, 0
which indicates that the variable should be included in every sub-MIP, or -1 which indicates that
the variable should not be included in any sub-MIP. Variables that are not included in the sub-MIP
are fixed to their values in the current incumbent solution. By default, all variables start with a
value of -1.

To give an example, imagine you are solving a model with 400 variables and you set the partition
attribute to -1 for variables 0-99, 0 for variables 100-199, 1 for variables 200-299, and 2 for variables
300-399. The heuristic would solve two sub-MIP models: sub-MIP 1 would fix variables 0-99 and
300-399 to their values in the incumbent and solve for the rest, while sub-MIP 2 would fix variables
0-99 and 200-299.

Use the PartitionPlace parameter to control where the partition heuristic runs.
Only affects MIP models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

VBasis

Type: int
Modifiable: Yes

The status of a given variable in the current basis. Possible values are 0 (basic), -1 (non-basic
at lower bound), -2 (non-basic at upper bound), and -3 (super-basic). Note that, if you wish to
specify an advanced starting basis, you must set basis status information for all constraints and
variables in the model. Only available for basic solutions.

Note that if you provide a valid starting extreme point, either through PStart, DStart, or
through VBasis, CBasis, then LP presolve will be disabled. For models where presolve greatly
reduces the problem size, this might hurt performance.

For examples of how to query or modify attributes, refer to our Attribute Examples.

714

PStart

Type: double
Modifiable: Yes

The current simplex start vector. If you set PStart values for every variable in the model and
DStart values for every constraint, then simplex will use those values to compute a warm start
basis. If you’d like to retract a previously specified start, set any PStart value to GRB_UNDEFINED.

Note that any model modifications made after setting PStart (adding variables or constraints,
changing coefficients, etc.) will discard the start. You should only set this attribute after you are
done modifying your model.

Note also that you’ll get much better performance if you warm start your linear program using
a simplex basis (using VBasis and CBasis). The PStart attribute should only be used in situations
where you don’t have a basis.

If you’d like to provide a feasible starting solution for a MIP model, you should input it using
the Start attribute.

Only affects LP models; it will be ignored for QP, QCP, or MIP models.
Note that if you provide a valid starting extreme point, either through PStart, DStart, or

through VBasis, CBasis, then LP presolve will be disabled. For models where presolve greatly
reduces the problem size, this might hurt performance.

For examples of how to query or modify attributes, refer to our Attribute Examples.

IISLB

Type: int
Modifiable: No

For an infeasible model, indicates whether the lower bound participates in the computed Irre-
ducible Inconsistent Subsystem (IIS). Note that the bounds for a binary variable are considered to
be implicit in the variable type and will never participate in an IIS.

Only available after you have computed an IIS.
For examples of how to query or modify attributes, refer to our Attribute Examples.

IISUB

Type: int
Modifiable: No

For an infeasible model, indicates whether the upper bound participates in the computed Irre-
ducible Inconsistent Subsystem (IIS). Note that the bounds for a binary variable are considered to
be implicit in the variable type and will never participate in an IIS.

Only available after you have computed an IIS.
For examples of how to query or modify attributes, refer to our Attribute Examples.

PWLObjCvx

Type: int
Modifiable: No

715

Indicates whether a variable has a convex piecewise-linear objective. Returns 0 if the piecewise-
linear objective function on the variable is non-convex. Returns 1 if the function is convex, or if
the objective function on the variable is linear.

This attribute is useful for isolating the particular variable that caused a continuous model with
a piecewise-linear objective function to become a MIP.

For examples of how to query or modify attributes, refer to our Attribute Examples.

SAObjLow

Type: double
Modifiable: No

Objective coefficient sensitivity information: smallest objective value at which the current op-
timal basis would remain optimal. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

SAObjUp

Type: double
Modifiable: No

Objective coefficient sensitivity information: largest objective value at which the current optimal
basis would remain optimal. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

SALBLow

Type: double
Modifiable: No

Lower bound sensitivity information: smallest lower bound value at which the current optimal
basis would remain optimal. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

SALBUp

Type: double
Modifiable: No

Lower bound sensitivity information: largest lower bound value at which the current optimal
basis would remain optimal. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

SAUBLow

Type: double
Modifiable: No

Upper bound sensitivity information: smallest upper bound value at which the current optimal
basis would remain optimal. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

716

SAUBUp

Type: double
Modifiable: No

Upper bound sensitivity information: largest upper bound value at which the current optimal
basis would remain optimal. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

UnbdRay

Type: double
Modifiable: No

Unbounded ray (for unbounded linear models only). Provides a vector that, when added to
any feasible solution, yields a new solution that is also feasible but improves the objective. Only
available when parameter InfUnbdInfo is set to 1.

For examples of how to query or modify attributes, refer to our Attribute Examples.

11.3 Linear Constraint Attributes
These are linear constraint attributes, meaning that they are associated with specific linear con-
straints in the model. You should use one of the various get routines to retrieve the value of an
attribute. These are described at the beginning of this section). For the object-oriented interfaces,
linear constraint attributes are retrieved by invoking the get method on a constraint object. For
attributes that can be modified directly by the user, you can use one of the various set methods.

Attempting to query an attribute that is not available will produce an error. In C, the attribute
query routine will return a GRB_ERROR_DATA_NOT_AVAILABLE error code. The object-oriented in-
terfaces will throw an exception.

Sense

Type: char
Modifiable: Yes

Constraint sense (’<’, ’>’, or ’=’).
For examples of how to query or modify attributes, refer to our Attribute Examples.

RHS

Type: double
Modifiable: Yes

Constraint right-hand side.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrName

Type: string
Modifiable: Yes

Constraint name.

717

For examples of how to query or modify attributes, refer to our Attribute Examples.

CTag

Type: string
Modifiable: Yes

Tag for constraints.
If you will be retrieving the solution to your model in JSON format, you should define a tag for

every constraint that you plan to retrieve solution information for. Each constraint tag must be
unique, and only tagged constraints will appear in the JSON solution string. Tags must consist of
printable US-ASCII characters. Using extended characters or escaped characters will result in an
error. The maximum supported length for a tag is 10240 characters.

Note that constraint tags are only allowed for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

Pi

Type: double
Modifiable: No

The constraint dual value in the current solution (also known as the shadow price).
Given a linear programming problem

minimize c′x
subject to Ax ≥ b

x ≥ 0

and a corresponding dual problem

maximize b′y
subject to A′y ≤ c

y ≥ 0

the Pi attribute returns y.
Of course, not all models fit this canonical form. In general, dual values have the following

properties:

• Dual values for ≥ constraints are ≥ 0.

• Dual values for ≤ constraints are ≤ 0.

• Dual values for = constraints are unconstrained.

For models with a maximization sense, the senses of the dual values are reversed: the dual is ≥ 0
for a ≤ constraint and ≤ 0 for a ≥ constraint.

Note that constraint dual values for linear constraints of QCP models are only available when
the QCPDual parameter is set to 1. To query the duals of the quadratic constraints in a QCP
model, see QCPi.

Only available for convex, continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

718

Slack

Type: double
Modifiable: No

The constraint slack in the current solution.
For examples of how to query or modify attributes, refer to our Attribute Examples.

CBasis

Type: int
Modifiable: Yes

The status of a given linear constraint in the current basis. Possible values are 0 (basic) or -1
(non-basic). A constraint is basic when its slack variable is in the simplex basis. Note that, if you
wish to specify an advanced starting basis, you must set basis status information for all constraints
and variables in the model. Only available for basic solutions.

Note that if you provide a valid starting extreme point, either through PStart, DStart, or
through VBasis, CBasis, then LP presolve will be disabled. For models where presolve greatly
reduces the problem size, this might hurt performance.

For examples of how to query or modify attributes, refer to our Attribute Examples.

DStart

Type: double
Modifiable: Yes

The current simplex start vector. If you set DStart values for every linear constraint in the
model and PStart values for every variable, then simplex will use those values to compute a
warm start basis. If you’d like to retract a previously specified start, set any DStart value to
GRB_UNDEFINED.

Note that any model modifications made after setting DStart (adding variables or constraints,
changing coefficients, etc.) will discard the start. You should only set this attribute after you are
done modifying your model.

Note also that you’ll get much better performance if you warm start your linear program from
a simplex basis (using VBasis and CBasis). The DStart attribute should only be used in situations
where you don’t have a basis.

If you’d like to provide a feasible starting solution for a MIP model, you should input it using
the Start attribute.

Only affects LP models; it will be ignored for QP, QCP, or MIP models.
Note that if you provide a valid starting extreme point, either through PStart, DStart, or

through VBasis, CBasis, then LP presolve will be disabled. For models where presolve greatly
reduces the problem size, this might hurt performance.

For examples of how to query or modify attributes, refer to our Attribute Examples.

Lazy

Type: int
Modifiable: Yes

Determines whether a linear constraint is treated as a lazy constraint or a user cut.

719

At the beginning of the MIP solution process, any constraint whose Lazy attribute is set to 1, 2,
or 3 (the default value is 0) is treated as a lazy constraint; it is removed from the model and placed
in the lazy constraint pool. Lazy constraints remain inactive until a feasible solution is found, at
which point the solution is checked against the lazy constraint pool. If the solution violates any lazy
constraints, the solution is discarded and one or more of the violated lazy constraints are pulled
into the active model.

Larger values for this attribute cause the constraint to be pulled into the model more aggres-
sively. With a value of 1, the constraint can be used to cut off a feasible solution, but it won’t
necessarily be pulled in if another lazy constraint also cuts off the solution. With a value of 2, all
lazy constraints that are violated by a feasible solution will be pulled into the model. With a value
of 3, lazy constraints that cut off the relaxation solution at the root node are also pulled in.

Any constraint whose Lazy attribute is set to -1 is treated as a user cut; it is removed from the
model and placed in the user cut pool. User cuts may be added to the model at any node in the
branch-and-cut search tree to cut off relaxation solutions.

The main difference between user cuts and lazy constraints is that that the former are not
allowed to cut off integer-feasible solutions. In other words, they are redundant for the MIP model,
and the solver is free to decide whether or not to use them to cut off relaxation solutions. The
hope is that adding them speeds up the overall solution process. Lazy constraints have no such
restrictions. They are essential to the model, and the solver is forced to apply them whenever a
solution would otherwise not satisfy them.

Note that deleting constraints from your model will cause this attribute to be discarded. If
you’d like it to persist, your program will need to repopulate it after deleting the constraints and
making a subsequent model update call.

Note that no corresponding attribute is available for other constraint types (quadratic, SOS, or
general constraints). This attribute only affects MIP models.

For examples of how to query or modify attributes, refer to our Attribute Examples.

IISConstr

Type: int
Modifiable: No

For an infeasible model, indicates whether the linear constraint participates in the computed
Irreducible Inconsistent Subsystem (IIS). Only available after you have computed an IIS.

For examples of how to query or modify attributes, refer to our Attribute Examples.

SARHSLow

Type: double
Modifiable: No

Right-hand side sensitivity information: smallest right-hand side value at which the current
optimal basis would remain optimal. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

720

SARHSUp

Type: double
Modifiable: No

Right-hand side sensitivity information: largest right-hand side value at which the current
optimal basis would remain optimal. Only available for basic solutions.

For examples of how to query or modify attributes, refer to our Attribute Examples.

FarkasDual

Type: double
Modifiable: No

Together, attributes FarkasDual and FarkasProof provide a certificate of infeasibility for the
given problem. Specifically, they can be used to form the following inequality from the original
constraints that is trivially infeasible:

āx = λtAx ≤ λtb = −β +
∑

j:āj<0
ājUj +

∑
j:āj>0

ājLj ,

where β > 0, Lj is the lower bound of variable xj , Uj is the upper bound of variable xj , λi ≥ 0 if
the i-th constraint has a ≤ sense, λi ≤ 0 if the i-th constraint has a ≥ sense, āj ≥ 0 if Uj =∞, and
āj ≤ 0 if Lj = −∞. This constraint can not be satisfied for any β > 0. The FarkasProof attribute
provides β, and the FarkasDual attributes provide λ multipliers for the original constraints.

This attribute is only available when parameter InfUnbdInfo is set to 1.
For examples of how to query or modify attributes, refer to our Attribute Examples.

11.4 SOS Attributes
These are SOS attributes, meaning that they are associated with specific special-ordered set con-
straints in the model. You should use one of the various get routines to retrieve the value of an
attribute. These are described at the beginning of this section). For the object-oriented interfaces,
SOS attributes are retrieved by invoking the get method on an SOS object. For attributes that
can be modified directly by the user, you can use one of the various set methods.

Attempting to query an attribute that is not available will produce an error. In C, the attribute
query routine will return a GRB_ERROR_DATA_NOT_AVAILABLE error code. The object-oriented in-
terfaces will throw an exception.

IISSOS

Type: int
Modifiable: No

For an infeasible model, indicates whether the SOS constraint participates in the computed
Irreducible Inconsistent Subsystem (IIS). Only available after you have computed an IIS.

For examples of how to query or modify attributes, refer to our Attribute Examples.

721

11.5 Quadratic Constraint Attributes
These are quadratic constraint attributes, meaning that they are associated with specific quadratic
constraints in the model. You should use one of the various get routines to retrieve the value of an
attribute. These are described at the beginning of this section). For the object-oriented interfaces,
quadratic constraint attributes are retrieved by invoking the get method on a constraint object.
For attributes that can be modified directly by the user, you can use one of the various setmethods.

Attempting to query an attribute that is not available will produce an error. In C, the attribute
query routine will return a GRB_ERROR_DATA_NOT_AVAILABLE error code. The object-oriented in-
terfaces will throw an exception.

QCSense

Type: char
Modifiable: Yes

Quadratic constraint sense (’<’, ’>’, or ’=’).
For examples of how to query or modify attributes, refer to our Attribute Examples.

QCRHS

Type: double
Modifiable: Yes

Quadratic constraint right-hand side.
For examples of how to query or modify attributes, refer to our Attribute Examples.

QCName

Type: string
Modifiable: Yes

Quadratic constraint name.
For examples of how to query or modify attributes, refer to our Attribute Examples.

QCPi

Type: double
Modifiable: No

The constraint dual value in the current solution. Note that quadratic constraint dual values
are only available when the QCPDual parameter is set to 1.

Only available for convex, continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

QCSlack

Type: double
Modifiable: No

The constraint slack in the current solution.
For examples of how to query or modify attributes, refer to our Attribute Examples.

722

QCTag

Type: string
Modifiable: Yes

Tag for quadratic constraints.
If you will be retrieving the solution to your model in JSON format, you should define a tag

for every quadratic constraint that you plan to retrieve solution information for. Each quadratic
constraint tag must be unique, and only tagged quadratic constraints will appear in the JSON
solution string. Tags must consist of printable US-ASCII characters. Using extended characters
or escaped characters will result in an error. The maximum supported length for a tag is 10240
characters.

Note that quadratic constraint tags are only allowed for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

IISQConstr

Type: int
Modifiable: No

For an infeasible model, indicates whether the quadratic constraint participates in the computed
Irreducible Inconsistent Subsystem (IIS). Only available after you have computed an IIS.

For examples of how to query or modify attributes, refer to our Attribute Examples.

11.6 General Constraint Attributes
These are general constraint attributes, meaning that they are associated with specific general
constraints in the model. If the attribute name contains string "GenConstr", then it is for all types
of general constraints. If it starts with string "Func", then it is only for function constraints.

You should use one of the various get routines to retrieve the value of an attribute. These are
described at the beginning of this section). For the object-oriented interfaces, general constraint
attributes are retrieved by invoking the get method on a constraint object. For attributes that can
be modified directly by the user, you can use one of the various set methods.

Attempting to query an attribute that is not available will produce an error. In C, the attribute
query routine will return a GRB_ERROR_DATA_NOT_AVAILABLE error code. The object-oriented in-
terfaces will throw an exception.

FuncPieceError

Type: double
Modifiable: Yes

If the FuncPieces attribute is set to value −1 or −2, this attribute provides the maximum
allowed error (absolute for −1, relative for −2) in the piecewise-linear approximation.

For examples of how to query or modify attributes, refer to our Attribute Examples.

FuncPieceLength

Type: double
Modifiable: Yes

723

If the FuncPieces attribute is set to value 1, this attribute provides the length of each piece of
the piecewise-linear approximation.

For examples of how to query or modify attributes, refer to our Attribute Examples.

FuncPieceRatio

Type: double
Modifiable: Yes

This attribute controls whether the piecewise-linear approximation of a function constraint is an
underestimate of the function, an overestimate, or somewhere in between. A value of 0.0 will always
underestimate, while a value of 1.0 will always overestimate. A value in between will interpolate
between the underestimate and the overestimate. A special value of -1 chooses points that are on
the original function.

See the discussion of function constraints for more information.
For examples of how to query or modify attributes, refer to our Attribute Examples.

FuncPieces

Type: int
Modifiable: Yes

This attribute sets the strategy used for performing a piecewise-linear approximation of a func-
tion constraint. There are a few options:

• FuncPieces = 0: Ignore the attribute settings for this function constraint and use the
parameter settings (FuncPieces, etc.) instead.

• FuncPieces >= 2: Sets the number of pieces; pieces are equal width.

• FuncPieces = 1: Uses a fixed width for each piece; the actual width is provided in the
FuncPieceLength attribute.

• FuncPieces = -1: Bounds the absolute error of the approximation; the error bound is
provided in the FuncPieceError attribute.

• FuncPieces = -2: Bounds the relative error of the approximation; the error bound is
provided in the FuncPieceError attribute.

See the discussion of function constraints for more information.
For examples of how to query or modify attributes, refer to our Attribute Examples.

GenConstrType

Type: int
Modifiable: No

General constraint type.
The language APIs contain enums that allows you to map the integer constraint type to a more

meaningful name. In C, you’ll find GRB_GENCONSTR_MAX, GRB_GENCONSTR_MIN, etc. In the OO
interfaces, you’ll find GRB.GENCONSTR_MAX, GRB.GENCONSTR_MIN, etc.

For examples of how to query or modify attributes, refer to our Attribute Examples.

724

GenConstrName

Type: string
Modifiable: Yes

General constraint name.
For examples of how to query or modify attributes, refer to our Attribute Examples.

IISGenConstr

Type: int
Modifiable: No

For an infeasible model, indicates whether the general constraint participates in the computed
Irreducible Inconsistent Subsystem (IIS). Only available after you have computed an IIS.

For examples of how to query or modify attributes, refer to our Attribute Examples.

11.7 Quality Attributes
These are solution quality attributes. They are associated with the overall model. You should use
one of the various get routines to retrieve the value of an attribute. These are described at the
beginning of this section). For the object-oriented interfaces, quality attributes are retrieved by
invoking the get method on a constraint object. For attributes that can be modified directly by
the user, you can use one of the various set methods.

Attempting to query an attribute that is not available will produce an error. In C, the attribute
query routine will return a GRB_ERROR_DATA_NOT_AVAILABLE error code. The object-oriented in-
terfaces will throw an exception.

BoundVio

Type: double
Modifiable: No

Maximum (unscaled) bound violation.
Available for all model types.
For examples of how to query or modify attributes, refer to our Attribute Examples.

BoundSVio

Type: double
Modifiable: No

Maximum (scaled) bound violation.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

BoundVioIndex

Type: int
Modifiable: No

Index of variable with the largest (unscaled) bound violation.

725

Available for all model types.
For examples of how to query or modify attributes, refer to our Attribute Examples.

BoundSVioIndex

Type: int
Modifiable: No

Index of variable with the largest (scaled) bound violation.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

BoundVioSum

Type: double
Modifiable: No

Sum of (unscaled) bound violations.
Available for all model types.
For examples of how to query or modify attributes, refer to our Attribute Examples.

BoundSVioSum

Type: double
Modifiable: No

Sum of (scaled) bound violations.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrVio

Type: double
Modifiable: No

Reporting constraint violations for the simplex solver is actually more complex than it may ap-
pear, due to the treatment of slacks on linear inequality constraints. The simplex solver introduces
explicit non-negative slack variables inside the algorithm. Thus, for example, aTx ≤ b becomes
aTx+s = b. In this formulation, constraint errors can show up in two places: (i) as bound violations
on the computed slack variable values, and (ii) as differences between aTx + s and b. We report
the former as ConstrVio and the latter as ConstrResidual.

For MIP models, the maximum violation of the constraints, including linear, quadratic, SOS
and general constraints, is reported in ConstrVio.

Available for all model types.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrSVio

Type: double
Modifiable: No

Maximum (scaled) slack bound violation.

726

Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrVioIndex

Type: int
Modifiable: No

Index of linear constraint with the largest (unscaled) slack bound violation for continuous linear
models solved by simplex.

For MIP or other situations, it is for all the constraints. The constraint order is linear, quadratic,
SOS and general. Assume there are l linear, q quadratic, s SOS and g general constraints and the
index i is between l + q + s and l + q + s+ g, then the general constraint with index i− l − q − s
has the biggest violation.

Available for all model types.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrSVioIndex

Type: int
Modifiable: No

Index of linear constraint with the largest (scaled) slack bound violation.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrVioSum

Type: double
Modifiable: No

Sum of (unscaled) slack bound violations.
Available for all model types.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrSVioSum

Type: double
Modifiable: No

Sum of (scaled) slack bound violations.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrResidual

Type: double
Modifiable: No

Reporting constraint violations for the simplex solver is actually more complex than it may ap-
pear, due to the treatment of slacks on linear inequality constraints. The simplex solver introduces
explicit non-negative slack variables inside the algorithm. Thus, for example, aTx ≤ b becomes

727

aTx+s = b. In this formulation, constraint errors can show up in two places: (i) as bound violations
on the computed slack variable values, and (ii) as differences between aTx + s and b. We report
the former as ConstrVio and the latter as ConstrResidual.

Only available for continuous models. For MIP models, constraint violations are reported in
ConstrVio.

For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrSResidual

Type: double
Modifiable: No

Maximum (scaled) primal constraint error.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrResidualIndex

Type: int
Modifiable: No

Index of linear constraint with the largest (unscaled) constraint error.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrSResidualIndex

Type: int
Modifiable: No

Index of linear constraint with the largest (scaled) constraint error.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrResidualSum

Type: double
Modifiable: No

Sum of (unscaled) linear constraint violations.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ConstrSResidualSum

Type: double
Modifiable: No

Sum of (scaled) linear constraint violations.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

728

DualVio

Type: double
Modifiable: No

Reporting dual constraint violations for the simplex solver is actually more complex than it may
appear, due to the treatment of reduced costs for bounded variables. The simplex solver introduces
explicit non-negative reduced-cost variables inside the algorithm. Thus, aT y ≥ c becomes aT y−z =
c (where y is the dual vector and z is the reduced cost). In this formulation, errors can show up
in two places: (i) as bound violations on the computed reduced-cost variable values, and (ii) as
differences between aT y−z and c. We report the former as DualVio and the latter as DualResidual.

DualVio reports the maximum (unscaled) reduced-cost bound violation.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

DualSVio

Type: double
Modifiable: No

Maximum (scaled) reduced cost violation.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

DualVioIndex

Type: int
Modifiable: No

Index of variable with the largest (unscaled) reduced cost violation. Note that the result may
be larger than the number of variables in the model, which indicates that a constraint slack is the
variable with the largest violation. Subtract the variable count from the result to get the index of
the corresponding constraint.

Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

DualSVioIndex

Type: int
Modifiable: No

Index of variable with the largest (scaled) reduced cost violation. Note that the result may be
larger than the number of variables in the model, which indicates that a constraint slack is the
variable with the largest violation. Subtract the variable count from the result to get the index of
the corresponding constraint.

Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

729

DualVioSum

Type: double
Modifiable: No

Sum of (unscaled) reduced cost violations.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

DualSVioSum

Type: double
Modifiable: No

Sum of (scaled) reduced cost violations.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

DualResidual

Type: double
Modifiable: No

Reporting dual constraint violations for the simplex solver is actually more complex than it may
appear, due to the treatment of reduced costs for bounded variables. The simplex solver introduces
explicit non-negative reduced-cost variables inside the algorithm. Thus, aT y ≥ c becomes aT y−z =
c (where y is the dual vector and z is the reduced cost). In this formulation, errors can show up
in two places: (i) as bound violations on the computed reduced-cost variable values, and (ii) as
differences between aT y−z and c. We report the former as DualVio and the latter as DualResidual.

DualResidual reports the maximum (unscaled) dual constraint error.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

DualSResidual

Type: double
Modifiable: No

Maximum (scaled) dual constraint error.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

DualResidualIndex

Type: int
Modifiable: No

Index of variable with the largest (unscaled) dual constraint error.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

730

DualSResidualIndex

Type: int
Modifiable: No

Index of variable with the largest (scaled) dual constraint error.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

DualResidualSum

Type: double
Modifiable: No

Sum of (unscaled) dual constraint errors.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

DualSResidualSum

Type: double
Modifiable: No

Sum of (scaled) dual constraint errors.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ComplVio

Type: double
Modifiable: No

Maximum complementarity violation. In an optimal solution, the product of the value of
a variable and its reduced cost must be zero. This isn’t always strictly true for interior point
solutions. This attribute returns the maximum complementarity violation for any variable.

Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ComplVioIndex

Type: int
Modifiable: No

Index of variable with the largest complementarity violation.
Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ComplVioSum

Type: double
Modifiable: No

Sum of complementarity violation.

731

Only available for continuous models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

IntVio

Type: double
Modifiable: No

A MIP solver won’t always assign strictly integral values to integer variables. This attribute
returns the largest distance between the computed value of any integer variable and the nearest
integer.

Only available for MIP models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

IntVioIndex

Type: int
Modifiable: No

Index of variable with the largest integrality violation.
Only available for MIP models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

IntVioSum

Type: double
Modifiable: No

Sum of integrality violations.
Only available for MIP models.
For examples of how to query or modify attributes, refer to our Attribute Examples.

11.8 Multi-objective Attributes
These are the attributes for setting and querying multiple objectives (refer to this section for
additional information on multi-objective optimization).

ObjN

Type: double
Modifiable: Yes

When the model has multiple objectives, this attribute is used to query or modify objective
coefficients for objective n. You set n using the ObjNumber parameter. Note that when ObjNumber
is equal to 0, ObjN is equivalent to Obj.

The number of objectives in the model can be queried (or modified) using the NumObj attribute.
Please refer to the discussion of Multiple Objectives for more information on the use of alter-

native objectives.
For examples of how to query or modify attributes, refer to our Attribute Examples.

732

ObjNCon

Type: double
Modifiable: Yes

When the model has multiple objectives, this attribute is used to query or modify the constant
term for objective n. You set n using the ObjNumber parameter. Note that when ObjNumber is
equal to 0, ObjNCon is equivalent to ObjCon.

The number of objectives in the model can be queried (or modified) using the NumObj attribute.
Please refer to the discussion of Multiple Objectives for more information on the use of alter-

native objectives.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ObjNPriority

Type: int
Modifiable: Yes

This attribute is used to query or modify the priority of objective n when doing hierarchical
multi-objective optimization. You set n using the ObjNumber parameter.

The default priority for an objective is 0.
The number of objectives in the model can be queried (or modified) using the NumObj attribute.
Please refer to the discussion of Multiple Objectives for more information on the use of alter-

native objectives.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ObjNWeight

Type: double
Modifiable: Yes

This attribute is used to query or modify the weight of objective n when doing blended multi-
objective optimization. You set n using the ObjNumber parameter.

The default weight for an objective is 1.0.
The number of objectives in the model can be queried (or modified) using the NumObj attribute.
Please refer to the discussion of Multiple Objectives for more information on the use of alter-

native objectives.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ObjNRelTol

Type: double
Modifiable: Yes

This attribute is used to set the allowable degradation for objective n when doing hierarchical
multi-objective optimization for MIP models. You set n using the ObjNumber parameter.

Hierarchical multi-objective MIP optimization will optimize for the different objectives in the
model one at a time, in priority order. If it achieves objective value z when it optimizes for this
objective, then subsequent steps are allowed to degrade this value by at most ObjNRelTol*|z|.

Objective degradations are handled differently for multi-objective LP models. The allowable
degradation is controlled strictly using the ObjNAbsTol.

733

The default relative tolerance for an objective is 0.
The number of objectives in the model can be queried (or modified) using the NumObj attribute.
Please refer to the discussion of Multiple Objectives for more information on the use of alter-

native objectives.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ObjNAbsTol

Type: double
Modifiable: Yes

This attribute is used to set the allowable degradation for objective n when doing hierarchical
multi-objective optimization. You set n using the ObjNumber parameter.

Hierarchical multi-objective MIP optimization will optimize for the different objectives in the
model one at a time, in priority order. If it achieves objective value z when it optimizes for this
objective, then subsequent steps are allowed to degrade this value by at most ObjNAbsTol.

Objective degradations are handled differently for multi-objective LP models. For LP models,
solution quality for higher-priority objectives is maintained by fixing some variables to their values
in previous optimal solutions. These fixings are decided using variable reduced costs. The value of
the ObjNAbsTol parameter indicates the amount by which a fixed variable’s reduced cost is allowed
to violate dual feasibility. The value of the related ObjNRelTol attribute is ignored.

The default absolute tolerance for an objective is 1e-6.
The number of objectives in the model can be queried (or modified) using the NumObj attribute.
Please refer to the discussion of Multiple Objectives for more information on the use of alter-

native objectives.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ObjNVal

Type: double
Modifiable: No

This attribute is used to query the objective value obtained for objective n by the k-th solution
stored in the pool of feasible solutions found so far for the problem. You set n using the ObjNumber
parameter, while you set k using the SolutionNumber parameter.

The number of objectives in the model can be queried (or modified) using the NumObj attribute;
while the number of stored solutions can be queried using the SolCount attribute.

Please refer to the discussion of Multiple Objectives for more information on the use of alter-
native objectives.

For examples of how to query or modify attributes, refer to our Attribute Examples.

ObjNName

Type: string
Modifiable: Yes

When the model has multiple objectives, this attribute is used to query or modify the name for
objective n. You set n using the ObjNumber parameter.

The number of objectives in the model can be queried (or modified) using the NumObj attribute.

734

Please refer to the discussion of Multiple Objectives for more information on the use of alter-
native objectives.

For examples of how to query or modify attributes, refer to our Attribute Examples.

NumObj

Type: int
Modifiable: Yes

Number of objectives in the model. If you modify this attribute, it will change the number of
objectives in the model. Decreasing it will discard existing objectives. Increasing it will create new
objectives (initialized to 0). Setting it to 0 will create a model with no objective (i.e., a feasibility
model). If you want to switch from a multi-objective model to a single-objective model you also
need to set NumObj to 0 and call model update before installing a new single objective.

You can use the ObjNumber parameter, in conjunction with multi-objective attributes (ObjN,
ObjNName, etc.), to query or modify attributes for different objectives. The value of ObjNumber
should always be less than NumObj.

Please refer to the discussion of Multiple Objectives for more information on the use of alter-
native objectives.

For examples of how to query or modify attributes, refer to our Attribute Examples.

11.9 Multi-Scenario Attributes
These are the attributes for setting and querying multiple scenarios (refer to this section for addi-
tional information on multi-scenario optimization).

ScenNLB

Type: double
Modifiable: Yes

When the model has multiple scenarios, this attribute is used to query or modify changes of the
variable lower bounds in scenario n w.r.t. the base model. You set n using the ScenarioNumber
parameter.

If an element of this array attribute is set to the undefined value (GRB_UNDEFINED in C and
C++, or GRB.UNDEFINED in Java, .NET, and Python), it means that the corresponding value in
the scenario is identical to the one in the base model.

The number of scenarios in the model can be queried (or modified) using the NumScenarios
attribute.

Please refer to the Multiple Scenarios discussion for more information.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ScenNUB

Type: double
Modifiable: Yes

735

When the model has multiple scenarios, this attribute is used to query or modify changes of the
variable upper bounds in scenario n w.r.t. the base model. You set n using the ScenarioNumber
parameter.

If an element of this array attribute is set to the undefined value (GRB_UNDEFINED in C and
C++, or GRB.UNDEFINED in Java, .NET, and Python), it means that the corresponding value in
the scenario is identical to the one in the base model.

The number of scenarios in the model can be queried (or modified) using the NumScenarios
attribute.

Please refer to the Multiple Scenarios discussion for more information.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ScenNObj

Type: double
Modifiable: Yes

When the model has multiple scenarios, this attribute is used to query or modify changes
of the variable objective coefficients in scenario n w.r.t. the base model. You set n using the
ScenarioNumber parameter.

If an element of this array attribute is set to the undefined value (GRB_UNDEFINED in C and
C++, or GRB.UNDEFINED in Java, .NET, and Python), it means that the corresponding value in
the scenario is identical to the one in the base model.

The number of scenarios in the model can be queried (or modified) using the NumScenarios
attribute.

Please refer to the Multiple Scenarios discussion for more information.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ScenNRHS

Type: double
Modifiable: Yes

When the model has multiple scenarios, this attribute is used to query or modify changes of
the linear constraint right-hand sides in scenario n w.r.t. the base model. You set n using the
ScenarioNumber parameter.

If an element of this array attribute is set to the undefined value (GRB_UNDEFINED in C and
C++, or GRB.UNDEFINED in Java, .NET, and Python), it means that the corresponding value in
the scenario is identical to the one in the base model.

The number of scenarios in the model can be queried (or modified) using the NumScenarios
attribute.

Please refer to the Multiple Scenarios discussion for more information.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ScenNName

Type: string
Modifiable: Yes

736

When the model has multiple scenarios, this attribute is used to query or modify the name for
scenario n. You set n using the ScenarioNumber parameter.

The number of scenarios in the model can be queried (or modified) using the NumScenarios
attribute.

Please refer to the Multiple Scenarios discussion for more information.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ScenNObjBound

Type: double
Modifiable: No

When the model has multiple scenarios, this attribute is used to query the objective bound for
scenario n. You set n using the ScenarioNumber parameter.

The number of scenarios in the model can be queried (or modified) using the NumScenarios
attribute.

Please refer to the Multiple Scenarios discussion for more information.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ScenNObjVal

Type: double
Modifiable: No

When the model has multiple scenarios, this attribute is used to query the objective value of
the current solution for scenario n. You set n using the ScenarioNumber parameter. If no solution
is available, this returns GRB_INFINITY (for a minimization objective).

The number of scenarios in the model can be queried (or modified) using the NumScenarios
attribute.

Please refer to the Multiple Scenarios discussion for more information.
For examples of how to query or modify attributes, refer to our Attribute Examples.

ScenNX

Type: double
Modifiable: No

When the model has multiple scenarios, this attribute is used to query the variable value in the
current solution of scenario n. You set n using the ScenarioNumber parameter.

The number of scenarios in the model can be queried (or modified) using the NumScenarios
attribute.

Please refer to the Multiple Scenarios discussion for more information.
For examples of how to query or modify attributes, refer to our Attribute Examples.

NumScenarios

Type: int
Modifiable: Yes

Number of scenarios in the model. Modifying this attribute changes the number: decreasing
it discards existing scenarios; increasing it creates new scenarios (initialized to have no changes

737

w.r.t. the base model); setting it to 0 discards all scenarios so that the base model is no longer a
multi-scenario model.

You can use the ScenarioNumber parameter, in conjunction with multi-scenario attributes
(ScenNLB, ScenNUB, ScenNObj, ScenNRHS, ScenNName, etc.), to query or modify attributes
for different scenarios. The value of ScenarioNumber should always be less than NumScenarios.

Please refer to the Multiple Scenarios discussion for more information.
For examples of how to query or modify attributes, refer to our Attribute Examples.

11.10 Batch Attributes
BatchErrorCode

Type: int
Modifiable: No

Retrieve the last error code received from the Cluster Manager associated with this batch. A
non-zero value indicates that a problem occurred. Refer to the Error Code table for a list of possible
return values. Details on the error can be obtained by querying BatchErrorMessage.

Note that all Batch attributes are cached locally, and are only updated when you create a
client-side batch object or when you explicitly update this cache (by calling the appropriate update
function - GRBupdatebatch for C, update for Python, etc.).

For examples of how to query or modify attributes, refer to our Attribute Examples.

BatchErrorMessage

Type: string
Modifiable: No

Retrieve the last error message received from the Cluster Manager associated with this batch.
The related error code can be queried through the BatchErrorCode attribute.

Note that all Batch attributes are cached locally, and are only updated when you create a
client-side batch object or when you explicitly update this cache (by calling the appropriate update
function - GRBupdatebatch for C, update for Python, etc.).

For examples of how to query or modify attributes, refer to our Attribute Examples.

BatchID

Type: string
Modifiable: No

The ID for the batch. Please refer to the Batch Optimization section for more details.
Note that all Batch attributes are cached locally, and are only updated when you create a

client-side batch object or when you explicitly update this cache (by calling the appropriate update
function - GRBupdatebatch for C, update for Python, etc.).

For examples of how to query or modify attributes, refer to our Attribute Examples.

BatchStatus

Type: int
Modifiable: No

738

Current status for the batch request. Status values are described in the Status Code section.
Note that all Batch attributes are cached locally, and are only updated when you create a

client-side batch object or when you explicitly update this cache (by calling the appropriate update
function - GRBupdatebatch for C, update for Python, etc.).

For examples of how to query or modify attributes, refer to our Attribute Examples.

11.11 Attribute Examples
Gurobi attribute handling is designed to be orthogonal, meaning that you only need to use a small
number of routines to work with a large number attributes. In particular:

• The names and meanings of the various Gurobi attributes remain constant across the different
programming language APIs, although some decoration is required in each language.

• Given the type of an attribute (double, integer, etc.) and the programming language you
wish to use it from, you simply need to identify the appropriate routine for that attribute
type in that language in order to query or modify that attribute.

Consider the LB attribute, which captures the lower bound on a variable. You would refer to
this attribute as follows in the different Gurobi APIs:

Language Attribute
C GRB_DBL_ATTR_LB
C++ GRB_DoubleAttr_LB
Java GRB.DoubleAttr.LB
.NET GRB.DoubleAttr.LB, or just var.LB
Python GRB.Attr.LB, or just var.lb

To query the value of this attribute for an individual variable in the different APIs, you would
do the following:

Language Attribute Query Example
C GRBgetdblattrelement(model, GRB_DBL_ATTR_LB, var_index, &value);
C++ var.get(GRB_DoubleAttr_LB)
Java var.get(GRB.DoubleAttr.LB)
.NET var.Get(GRB.DoubleAttr.LB), or just var.LB
Python var.getAttr(GRB.Attr.LB), or just var.lb

Our APIs also include routines for querying attribute values for multiple variables or constraints
at once, which is more efficient.

Attributes are referred to using a set of enum types in C++, Java, and .NET (one enum for
double-valued attributes, one for int-valued attributes, etc.). In C and Python, the names listed
above are simply constants that take string values. For example, GRB_DBL_ATTR_LB is defined in
the C layer as:

#define GRB_DBL_ATTR_LB "LB"

In C and Python, you have the option of using the strings directly when calling attribute methods.
If you wish to do so, note that character case and underscores are ignored. Thus, MIN_COEFF and
MinCoeff are equivalent.

739

One important point to note about attributes modification is that it is done in a lazy fashion.
Modifications don’t actually affect the model until the next request to either update or optimize
the model (GRBupdatemodel or GRBoptimize in C).

Refer to the following sections for more detailed examples of how to query or modify attributes
from our various APIs:

• C

• C++

• C#

• Java

• Python

• Visual Basic

You can also also browse our Examples to get a better sense of how to use our attribute interface.

C Attribute Examples

Consider the case where you have a Gurobi model m. You can retrieve the number of variables in
the model by querying the NumVars model attribute. This is an integer-valued, scalar attribute,
so you use GRBgetintattr:

int cols;
error = GRBgetintattr(m, GRB_INT_ATTR_NUMVARS, &cols);

You can also use the name of the attribute directly:

int cols;
error = GRBgetintattr(m, "NumVars", &cols);

(Note that attribute capitalization doesn’t matter in the C interface, so you could also use "numVars"
or "numvars").

If you’ve performed optimization on the model, the optimal objective value can be obtained
by querying the ObjVal model attribute. This is a double-valued, scalar attribute, so you use
GRBgetdblattr:

double objval;
error = GRBgetdblattr(m, GRB_DBL_ATTR_OBJVAL, &objval);

If you’d like to query the value that a variable takes in the computed solution, you can query
the X variable attribute. This is a double-valued, vector attribute, so you have a few options for
querying the associated values. You can retrieve the value for a single variable using GRBgetdblat-
trelement:

double x0;
error = GRBgetdblattrelement(m, GRB_DBL_ATTR_X, 0, &x0);

740

https://www.gurobi.com/documentation/9.1/examples/index.html

(we query the solution value for variable 0 in this example). You can also query attribute values
for multiple variables using GRBgetdblattrarray or GRBgetdblattrlist:

double x[];
error = GRBgetdblattrarray(m, GRB_DBL_ATTR_X, 0, cols, x);

The former routine retrieves a contiguous set of values (cols values, starting from index 0 in our
example). The latter allows you to provide a list of indices, and it returns the values for the
corresponding entries.

For each attribute query routine, there’s an analogous set routine. To set the upper bound of
a variable, for example, you would use GRBsetdblattrelement:

error = GRBsetdblattrelement(m, GRB_DBL_ATTR_UB, 0, 0.0);

(In this example, we’ve set the upper bound for variable 0 to 0). You can set attribute values for
multiple variables in a single call using GRBsetdblattrarray or GRBsetdblattrlist.

C++ Attribute Examples

Consider the case where you have a Gurobi model m. You can retrieve the number of variables in
the model by querying the NumVars model attribute using the get method:

cols = m.get(GRB_IntAttr_NumVars);

If you’ve performed optimization on the model, the optimal objective value can be obtained by
querying the ObjVal model attribute:

obj = m.get(GRB_DoubleAttr_ObjVal);

If you’d like to query the value that a variable takes in the computed solution, you can query
the X attribute for the corresponding variable object:

vars = m.getVars()
for (int j = 0; j < cols; j++)
xj = vars[j].get(GRB_DoubleAttr_X)

You can also query the value of X for multiple variables in a single get call on the model m:

double xvals[] = m.get(GRB_DoubleAttr_X, m.GetVars()))

For each attribute query method, there’s an analogous set routine. To set the upper bound of
a variable, for example:

v = m.getVars()[0]
v.set(GRB_DoubleAttr_UB, 0)

(In this example, we’ve set the upper bound for the first variable in the model to 0).

741

C# Attribute Examples
Consider the case where you have a Gurobi model m. You can retrieve the number of variables in
the model by querying the NumVars model attribute (which is implemented as a .NET property):

cols = m.NumVars;

If you’ve performed optimization on the model, the optimal objective value can be obtained by
querying the ObjVal model attribute:

obj = m.ObjVal;

If you’d like to query the value that a variable takes in the computed solution, you can query
the X attribute for the corresponding variable object:

vars = m.GetVars()
for (int j = 0; j < cols; j++)
xj = vars[j].X

You can also query the value of X for multiple variables in a single call using the Get method on
the model m:

double[] xvals = m.Get(GRB.DoubleAttr.X, m.GetVars()))

For each attribute query method, there’s an analogous Set routine. To set the upper bound of
a variable, for example:

v = m.GetVars()[0]
v.UB = 0

(In this example, we’ve set the upper bound for the first variable in the model to 0).

Java Attribute Examples
Consider the case where you have a Gurobi model m. You can retrieve the number of variables in
the model by querying the NumVars model attribute using the get method:

cols = m.get(GRB.IntAttr.NumVars);

If you’ve performed optimization on the model, the optimal objective value can be obtained by
querying the ObjVal model attribute:

obj = m.get(GRB.DoubleAttr.ObjVal);

If you’d like to query the value that a variable takes in the computed solution, you can query
the X attribute for the corresponding variable object:

vars = m.getVars()
for (int j = 0; j < cols; j++)
xj = vars[j].get(GRB.DoubleAttr.X)

You can also query the value of X for multiple variables in a single get call on the model m:

742

double[] xvals = m.get(GRB.DoubleAttr.X, m.getVars()))

For each attribute query method, there’s an analogous set routine. To set the upper bound of
a variable, for example:

v = m.getVars()[0]
v.set(GRB.DoubleAttr.UB, 0)

(In this example, we’ve set the upper bound for the first variable in the model to 0).

Python Attribute Examples

Consider the case where you have a Gurobi model m. You can retrieve the number of variables in
the model by querying the NumVars model attribute:

print(m.numVars)

(Note that attribute capitalization doesn’t matter in the Python interface, so you could also query
m.NumVars or m.numvars).

If you’ve performed optimization on the model, the optimal objective value can be obtained by
querying the ObjVal model attribute:

print(m.objVal)

If you’d like to query the value that a variable takes in the computed solution, you can query
the X attribute for the corresponding variable object:

for v in m.getVars():
print(v.x)

You can also query the value of X for multiple variables in a single getAttr call on the model m:

print(m.getAttr(GRB.Attr.X, m.getVars()))

For each attribute query method, there’s an analogous set routine. To set the upper bound of
a variable, for example:

v = m.getVars()[0]
v.ub = 0

(In this example, we’ve set the upper bound for the first variable in the model to 0).

Visual Basic Attribute Examples

Consider the case where you have a Gurobi model m. You can retrieve the number of variables in
the model by querying the NumVars model attribute (which is implemented as a .NET property):

cols = m.NumVars;

If you’ve performed optimization on the model, the optimal objective value can be obtained by
querying the ObjVal model attribute:

743

obj = m.ObjVal;

If you’d like to query the value that a variable takes in the computed solution, you can query
the X attribute for the corresponding variable object:

vars = m.GetVars()
For j As Integer = 0 To cols - 1
xj = vars[j].X

You can also query the value of X for multiple variables in a single call using the Get method on
the model m:

xvals = m.Get(GRB.DoubleAttr.X, m.GetVars()))

For each attribute query method, there’s an analogous Set routine. To set the upper bound of
a variable, for example:

v = m.GetVars()[0]
v.UB = 0

(In this example, we’ve set the upper bound for the first variable in the model to 0).

744

Parameters

Parameters control the operation of the Gurobi solvers. They must be modified before the opti-
mization begins. While you should feel free to experiment with different parameter settings, we
recommend that you leave parameters at their default settings unless you find a compelling reason
not to. For a discussion of when you might want to change parameter values, refer to our Parameter
Guidelines.

The various Gurobi APIs all provide routines for querying and modifying parameter values.
Refer to our Parameter Examples for additional information.

Some of the parameters below are used to configure a client program for use with a Compute
Server, a Gurobi Instant Cloud instance, or a token server. Refer to our discussion of empty
environments for details.
Available Gurobi Parameters

Termination: These parameters affect the termination of the algorithms. If the algorithm exceeds
any of these limits, it will terminate and report a non-optimal termination status (see the Status
Code section for further details). Note that the algorithm won’t necessarily stop the moment it
hits the specified limit. The termination check may occur well after the limit has been exceeded.

Parameter name Purpose
BarIterLimit Barrier iteration limit
BestBdStop Best objective bound to stop
BestObjStop Best objective value to stop
Cutoff Objective cutoff
IterationLimit Simplex iteration limit
NodeLimit MIP node limit
SolutionLimit MIP feasible solution limit
TimeLimit Time limit

Tolerances: These parameters control the allowable feasibility or optimality violations.

Parameter name Purpose
BarConvTol Barrier convergence tolerance
BarQCPConvTol Barrier QCP convergence tolerance
FeasibilityTol Primal feasibility tolerance
IntFeasTol Integer feasibility tolerance
MarkowitzTol Threshold pivoting tolerance
MIPGap Relative MIP optimality gap
MIPGapAbs Absolute MIP optimality gap
OptimalityTol Dual feasibility tolerance

745

PSDTol Positive semi-definite tolerance

Simplex: These parameters control the operation of the simplex algorithms.

Parameter name Purpose
InfUnbdInfo Generate additional info for infeasible/unbounded mod-

els
NormAdjust Simplex pricing norm
ObjScale Objective scaling
PerturbValue Simplex perturbation magnitude
Quad Quad precision computation in simplex
ScaleFlag Model scaling
Sifting Sifting within dual simplex
SiftMethod LP method used to solve sifting sub-problems
SimplexPricing Simplex variable pricing strategy

Barrier: These parameters control the operation of the barrier solver.

Parameter name Purpose
BarCorrectors Central correction limit
BarHomogeneous Barrier homogeneous algorithm
BarOrder Barrier ordering algorithm
Crossover Barrier crossover strategy
CrossoverBasis Crossover initial basis construction strategy
QCPDual Compute dual variables for QCP models

MIP: These parameters control the operation of the MIP algorithms.

Parameter name Purpose
BranchDir Branch direction preference
ConcurrentJobs Enables distributed concurrent solver
ConcurrentMIP Enables concurrent MIP solver
ConcurrentSettings Create concurrent environments from a list of .prm files
DegenMoves Degenerate simplex moves
Disconnected Disconnected component strategy
DistributedMIPJobs Enables the distributed MIP solver
Heuristics Turn MIP heuristics up or down
ImproveStartGap Trigger solution improvement
ImproveStartNodes Trigger solution improvement
ImproveStartTime Trigger solution improvement
LazyConstraints Programs that add lazy constraints must set this param-

eter
MinRelNodes Minimum relaxation heuristic control

746

MIPFocus Set the focus of the MIP solver
MIQCPMethod Method used to solve MIQCP models
NodefileDir Directory for MIP node files
NodefileStart Memory threshold for writing MIP tree nodes to disk
NodeMethod Method used to solve MIP node relaxations
NonConvex Control how to deal with non-convex quadratic programs
NoRelHeurTime Limits the amount of time (in seconds) spent in the

NoRel heuristic
NoRelHeurWork Limits the amount of work performed by the NoRel

heuristic
PartitionPlace Controls when the partition heuristic runs
PumpPasses Feasibility pump heuristic control
RINS RINS heuristic
SolFiles Location to store intermediate solution files
SolutionNumber Sub-optimal MIP solution retrieval
StartNodeLimit Node limit for MIP start sub-MIP
StartNumber Set index of MIP start
SubMIPNodes Nodes explored by sub-MIP heuristics
Symmetry MIP symmetry detection
VarBranch Branch variable selection strategy
ZeroObjNodes Zero objective heuristic control

747

Presolve: These parameters control the operation of the presolve algorithms.

Parameter name Purpose
AggFill Allowed fill during presolve aggregation
Aggregate Presolve aggregation control
DualReductions Disables dual reductions in presolve
PreCrush Allows presolve to translate constraints on the original

model to equivalent constraints on the presolved model
PreDepRow Presolve dependent row reduction
PreDual Presolve dualization
PreMIQCPForm Format of presolved MIQCP model
PrePasses Presolve pass limit
PreQLinearize Presolve Q matrix linearization
Presolve Presolve level
PreSOS1BigM Controls SOS1 conversion to binary form
PreSOS2BigM Controls SOS2 conversion to binary form
PreSparsify Presolve sparsify reduction

Tuning: These parameters control the operation of the parameter tuning tool.

Parameter name Purpose
TuneBaseSettings Comma-separated list of base parameter settings
TuneCleanup Enables a tuning cleanup phase
TuneCriterion Specify tuning criterion
TuneJobs Enables distributed tuning
TuneOutput Tuning output level
TuneResults Number of improved parameter sets returned
TuneTimeLimit Time limit for tuning
TuneTrials Perform multiple runs on each parameter set to limit the

effect of random noise

Multiple Solutions: These parameters allow you to modify the behavior of the MIP search in
order to find more than one solution to a MIP model.

Parameter name Purpose
PoolGap Relative gap for solutions in pool
PoolGapAbs Absolute gap for solutions in pool
PoolSearchMode Choose the approach used to find additional solutions
PoolSolutions Number of solutions to keep in pool

MIP Cuts: These parameters affect the generation of MIP cutting planes. In all cases, a value of
-1 corresponds to an automatic setting, which allows the solver to determine the appropriate level
of aggressiveness in the cut generation. Unless otherwise noted, settings of 0, 1, and 2 correspond
to no cut generation, conservative cut generation, or aggressive cut generation, respectively. The
Cuts parameter provides global cut control, affecting the generation of all cuts. This parameter
also has a setting of 3, which corresponds to very aggressive cut generation. The other parameters

748

override the global Cuts parameter (so setting Cuts to 2 and CliqueCuts to 0 would generate all
cut types aggressively, except clique cuts which would not be generated at all).

Parameter name Purpose
BQPCuts BQP cut generation
Cuts Global cut generation control
CliqueCuts Clique cut generation
CoverCuts Cover cut generation
CutAggPasses Constraint aggregation passes performed during cut gen-

eration
CutPasses Root cutting plane pass limit
FlowCoverCuts Flow cover cut generation
FlowPathCuts Flow path cut generation
GomoryPasses Root Gomory cut pass limit
GUBCoverCuts GUB cover cut generation
ImpliedCuts Implied bound cut generation
InfProofCuts Infeasibility proof cut generation
MIPSepCuts MIP separation cut generation
MIRCuts MIR cut generation
ModKCuts Mod-k cut generation
NetworkCuts Network cut generation
ProjImpliedCuts Projected implied bound cut generation
PSDCuts PSD cut generation
RelaxLiftCuts Relax-and-lift cut generation
RLTCuts RLT cut generation
StrongCGCuts Strong-CG cut generation
SubMIPCuts Sub-MIP cut generation
ZeroHalfCuts Zero-half cut generation

Distributed algorithms: Parameters that are used to control our distributed parallel algorithms
(distributed MIP, distributed concurrent, and distributed tuning).

Parameter name Purpose
WorkerPassword Password for distributed worker cluster
WorkerPool Distributed worker cluster

Cloud: Parameters that are used to launch Gurobi Instant Cloud instances.
Parameter name Purpose
CloudAccessID Access ID for Gurobi Instant Cloud
CloudHost Host for the Gurobi Cloud entry point
CloudSecretKey Secret Key for Gurobi Instant Cloud
CloudPool Cloud pool to use for Gurobi Instant Cloud instance

Compute Server: Parameters that are used to configure and launch Gurobi Compute Server jobs.
You will normally set these in your license file, but you have the option of setting them through

749

these parameters instead (by first constructing an empty environment). Refer to the Gurobi Remote
Services Reference Manual for more information.

Parameter name Purpose
ComputeServer Name of a node in the Remote Services cluster.
ServerPassword Client password for Remote Services cluster (or token

server).
ServerTimeout Network timeout interval
CSPriority Job priority for Remote Services job
CSQueueTimeout Queue timeout for new jobs
CSRouter Router node for Remote Services cluster
CSGroup Group placement request for cluster
CSTLSInsecure Use insecure mode in Transport Layer Security (TLS)
CSIdleTimeout Idle time before Compute Server kills a job
JobID Job ID of current job

Cluster Manager: Parameters that are used to configure and launch Gurobi Cluster Manager.
You will normally set these in your license file, but you have the option of setting them through
these parameters instead (by first constructing an empty environment). Refer to the Gurobi Remote
Services Reference Manual for more information.

Parameter name Purpose
CSAPIAccessID Access ID for Gurobi Cluster Manager
CSAPISecret Secret key for Gurobi Cluster Manager
CSAppName Application name of the batches or jobs
CSAuthToken Token used internally for authentication
CSBatchMode Controls Batch-Mode optimization
CSClientLog Turns logging on or off
CSManager URL for the Cluster Manager
UserName User name to use when connecting to the Cluster Man-

ager

Token server: Parameters that are used to launch jobs that check out tokens from a token server.
You will normally set these in your license file, but you have the option of setting them through
these parameters instead (by first constructing an empty environment).

Parameter name Purpose
ServerPassword Client password for token server (or Remote Services

cluster).
TokenServer Name of your token server.
TSPort Token server port number.

Other: Other parameters.

Parameter name Purpose
DisplayInterval Frequency at which log lines are printed
FeasRelaxBigM Big-M value for feasibility relaxations
FuncPieceError Error allowed for PWL translation of function constraint

750

https://www.gurobi.com/documentation/9.1/remoteservices/remoteservices.html
https://www.gurobi.com/documentation/9.1/remoteservices/remoteservices.html
https://www.gurobi.com/documentation/9.1/remoteservices/remoteservices.html
https://www.gurobi.com/documentation/9.1/remoteservices/remoteservices.html

FuncPieceLength Piece length for PWL translation of function constraint
FuncPieceRatio Controls whether to under- or over-estimate function val-

ues in PWL approximation
FuncPieces Sets strategy for PWL function approximation
FuncMaxVal Maximum value for x and y variables in function con-

straints
IgnoreNames Indicates whether to ignore names provided by users
IISMethod IIS method
InputFile File to be read before optimization commences
IntegralityFocus Set the integrality focus
JSONSolDetail Controls the level of detail stored in generated JSON

solution
LogFile Log file name
LogToConsole Console logging
Method Algorithm used to solve continuous models
MultiObjMethod Warm-start method to solve for subsequent objectives
MultiObjPre Initial presolve on multi-objective models
MultiObjSettings Create multi-objective settings from a list of .prm files
NumericFocus Set the numerical focus
ObjNumber Set index of multi-objectives
OutputFlag Solver output control
Record Enable API call recording
ResultFile Result file written upon completion of optimization
ScenarioNumber Set index of scenario in multi-scenario models
Seed Modify the random number seed
Threads Number of parallel threads to use
UpdateMode Change the behavior of lazy updates

751

12.1 Parameter Guidelines
This section provides a brief discussion of the roles of the various Gurobi parameters when solving
continuous or MIP models, with some indication of their relative importance.

Note that you also have the option of using the Parameter Tuning Tool to tune parameters. We
recommend that you browse this section, though, even if you use the tuning tool, to get a better
understanding of the roles of the various parameters.

Continuous Models

If you wish to use Gurobi parameters to tune performance on continuous models, we offer the
following guidelines.
Choosing the method for LP or QP

The most important parameter when solving an LP or QP is Method. The default setting (-1) uses
the concurrent optimizer for an LP, and the parallel barrier solver for a QP. While the default is
usually a good choice, you may want to choose a different method in a few situations.

If memory is tight, you should consider using the dual simplex method (Method=1) instead of
the default. The default will invoke the barrier method, which can take a lot more memory than
dual. In addition, the default for LP will try multiple algorithms simultaneously, and each requires
a copy of the original model. By selecting dual simplex, you will only use one copy of the model.

Another scenario where you should change the default is when you must get the exact same
optimal basis each time. For LP models, the default concurrent solver invokes multiple algorithms
simultaneously on multi-core systems, returning the optimal basis from the one that finishes first. In
rare cases, one algorithm may complete first in one run, while another completes first in another.
This can potentially lead to different alternate optimal solutions. Selecting any other method,
including the deterministic concurrent solver, will avoid this possibility. Note, however, that the
deterministic concurrent solver can be significantly slower than the default concurrent solver.

Finally, if you are confronted with a difficult LP model, you should experiment with the different
method options. While the default is rarely significantly slower than the best choice, you may find
that one option is consistently faster or more robust for your models. There are no simple rules for
predicting which method will work best for a particular family of models.

If you are solving QCP or SOCP models, note that the barrier algorithm is your only option.
Parallel solution

Among the remaining parameters that affect continuous models, the only one that you would
typically want to adjust is Threads, which controls the number of threads used for the concurrent
and parallel barrier algorithms. By default, concurrent and barrier will use all available cores in
your machine (up to 32). Note that the simplex solvers can only use one thread, so this parameter
has no effect on them.

If you would like to experiment with different strategies than the default ones when solving an
LP model using the concurrent optimizer, we provide methods in C, C++, Java, .NET, and Python
that allow you to create and configure concurrent environments.
Infeasible or unbounded models

If you are confronted with an infeasible or unbounded LP, additional details can be obtained when
you set the InfUnbdInfo parameter. For an unbounded model, setting this parameter allows you to

752

retrieve an unbounded ray (using the UnbdRay attribute). For an infeasible model, setting this pa-
rameter allows you to retrieve a Farkas infeasibility proof (using the FarkasDual and FarkasProof
attributes).

For the barrier algorithm, you should set the BarHomogeneous parameter to 1 whenever you
have a model that you suspect is infeasible or unbounded. This algorithm is better at diagnosing
infeasibility or unboundedness.
Special structure

If you wish to solve an LP model that has many more variables than constraints, you may want
to try the sifting algorithm. Sifting is actually implemented within our dual simplex solver, so to
select sifting, set the Method parameter to 1 (to select dual), and then set the Sifting parameter
to a positive value. You can use the SiftMethod parameter to choose the algorithm that is used to
solve the sub-problems that arise within the sifting algorithm. In general, sifting is only effective
when the ratio between variables and constraints is extremely large (100 to 1 or more). Note that
the default Sifting setting allows the Gurobi Optimizer to select sifting automatically when a
problem has the appropriate structure, so you won’t typically need to select it manually.
Additional parameters

The ScaleFlag parameter can be used to modify the scaling performed on the model. The de-
fault scaling value (-1) is usually the most effective choice, but turning off scaling entirely (0) can
sometimes reduce constraint violations on the original model. Choosing a different scaling option
(1, 2, or 3) can sometimes improve performance for particularly numerically difficult models. The
ObjScale parameter allows you to scale just the objective. Objective scaling can be useful when
the objective contains extremely large values, but it can also lead to large dual violations in the
original, unscaled model, so it should be used sparingly.

The SimplexPricing parameter determines the method used to choose a simplex pivot. The
default is usually the best choice. The NormAdjust parameter allows you to choose alternate
simplex pricing norms. Again, the default is usually best. The Quad parameter allows you to
force the simplex solver to use (or not use) quad precision. While quad precision can help for
numerically difficult models, the default setting will typically recognize such cases automatically.
The PerturbValue parameter allows you to adjust the magnitude of the simplex perturbation (used
to overcome degeneracy). Again, the default value is typically effective.

Other Gurobi parameters control the details of the barrier solver. The BarConvTol and Bar-
QCPConvTol parameters allow you to adjust barrier termination. While you can ask for more
precision than the default, you will typically run into the limitations of double-precision arithmetic
quite quickly. This parameter is typically used to indicate that you are willing to settle for a less
accurate answer than the defaults would give. The BarCorrectors parameter allows you to adjust
the number of central corrections applied in each barrier iteration. More corrections generally lead
to more forward progress in each iteration, but at a cost of more expensive iterations. The BarOrder
parameter allows you to choose the barrier ordering method. The default approach typically works
well, but you can manually choose the less expensive Approximate Minimum Degree ordering option
(BarOrder=0) if you find that ordering is taking too long.

MIP Models
While default settings generally work well, MIP models will often benefit from parameter tuning.
We offer the following guidelines, but we also encourage you to experiment.

753

Most Important Parameters

The two most important Gurobi settings when solving a MIP model are probably the Threads and
MIPFocus parameters. The Threads parameter controls the number of threads used by the parallel
MIP solver. The default is to use all cores in the machine (up to 32). If you wish to leave some
available for other activities, adjust this parameter accordingly.

The MIPFocus parameter allows you to modify your high-level solution strategy, depending
on your goals. By default, the Gurobi MIP solver strikes a balance between finding new feasible
solutions and proving that the current solution is optimal. If you are more interested in good quality
feasible solutions, you can select MIPFocus=1. If you believe the solver is having no trouble finding
the optimal solution, and wish to focus more attention on proving optimality, select MIPFocus=2.
If the best objective bound is moving very slowly (or not at all), you may want to try MIPFocus=3
to focus on the bound.
Solution Improvement

The ImproveStartTime and ImproveStartGap parameters can also be used to modify your high-
level solution strategy, but in a different way. These parameters allow you to give up on proving
optimality at a certain point in the search, and instead focus all attention on finding better feasible
solutions from that point onward. The ImproveStartTime parameter allows you to make this
transition after the specified time has elapsed, while the ImproveStartGap parameter makes the
transition when the specified optimality gap has been achieved.
Termination

Another important set of Gurobi parameters affect solver termination. If the solver is unable to
find a proven optimal solution within the desired time, you will need to indicate how to limit the
search. The simplest option is to limit runtime using the TimeLimit parameter. Another common
termination choice for MIP models is to set the MIPGap parameter. This parameter allows you to
indicate that optimization should stop when the relative gap between the best known solution and
the best known bound on the solution objective is less than the specified value. You can terminate
when the absolute gap is below a desired threshold using the MIPGapAbs parameter. You can also
terminate based strictly on the current lower or upper bound using the BestBdStop or BestObjStop
parameters. Other termination options include NodeLimit, IterationLimit, SolutionLimit, and
Cutoff. The first three indicate that optimization should terminate when the number of branch-
and-bound nodes, the total number of simplex iterations, or the number of discovered feasible
integer solutions exceeds the specified value, respectively. The Cutoff parameter indicates that
the solver should only consider solutions whose objective values are better than the specified value,
and should terminate if no such solutions are found.
Reducing Memory Usage

If you find that the Gurobi optimizer exhausts memory when solving a MIP, you should modify the
NodefileStart parameter. When the amount of memory used to store nodes (measured in GBytes)
exceeds the specified parameter value, nodes are written to disk. We recommend a setting of 0.5,
but you may wish to choose a different value, depending on the memory available in your machine.
By default, nodes are written to the current working directory. The NodefileDir parameter can
be used to choose a different location.

If you still exhaust memory after setting the NodefileStart parameter to a small value, you
should try limiting the thread count. Each thread in parallel MIP requires a copy of the model,

754

as well as several other large data structures. Reducing the Threads parameter can sometimes
significantly reduce memory usage.
Speeding Up The Root Relaxation

The root relaxation in a MIP model can sometimes be quite expensive to solve. If you find that a lot
of time is spent here, consider using the Method parameter to select a different continuous algorithm
for the root. For example, Method=2 would select the parallel barrier algorithm at the root, and
Method=3 would select the concurrent solver. Note that you can choose a different algorithm for
the MIP node relaxations using the NodeMethod parameter, but it is rarely beneficial to change
this from the default (dual simplex).
Difficult Relaxations

If you find that the solver is having trouble solving the root relaxation even after you have tried
the recommendations above, or is spending an inordinate amount of time at the root node, you
should try the NoRel heuristic (controlled by the NoRelHeurTime and NoRelHeurWork parameters).
This heuristic attempts to find high-quality solutions without ever solving the MIP relaxation. It
can often be quite effective, although of course it won’t provide good lower bounds on the optimal
objective.
Heuristics

A few Gurobi parameters control internal MIP strategies. The Heuristics parameter controls
the fraction of runtime spent on feasibility heuristics. Increasing the parameter can lead to more
and better feasible solutions, but it will also reduce the rate of progress in the best bound. The
SubMIPNodes parameter controls the number of nodes explored in some of the more sophisticated
local search heuristics inside the Gurobi solver. You can increase this if you are having trouble
finding good feasible solutions. The MinRelNodes, PumpPasses, and ZeroObjNodes parameters
control a set of expensive heuristics whose goal is to find a feasible solution. All are invoked at the
end of the MIP root node and usually only if no feasible solution has been found already. Try these
if you are having trouble finding any feasible solutions.
Cutting Planes

The Gurobi MIP solver employs a wide range of cutting plane strategies. The aggressiveness of
these strategies can be controlled at a coarse level through the Cuts parameter, and at a finer
grain through a further set of cuts parameters (e.g., FlowCoverCuts, MIRCuts, etc.). Each cut
parameter can be set to Aggressive (2), Conservative (1), Automatic (-1), or None (0). The more
specific parameters override the more general, so for example setting MIRCuts to None (0) while
also setting Cuts to Aggressive (2) would aggressively generate all cut types, except MIR cuts which
would not be generated at all. Very easy models can sometimes benefit from turning cuts off, while
extremely difficult models can benefit from turning them to their Aggressive setting.
Presolve

Presolve behavior can be modified with a set of parameters. The Presolve parameter sets the
aggressiveness level of presolve. Options are Aggressive (2), Conservative (1), Automatic (-1), or
None (0). More aggressive application of presolve takes more time, but can sometimes lead to a
significantly tighter model. The PrePasses provides finer-grain control of presolve. It limits the
number of passes presolve performs. Setting it to a small value (e.g., 3) can reduce presolve runtime.
The Aggregate parameter controls whether presolve performs constraint aggregation. Aggregation

755

typically leads to a smaller formulation, but in rare cases it can introduce numerical issues. The
AggFill parameter controls aggregation at a finer grain. It controls how much fill is tolerated in
the constraint matrix from a single variable aggregation. The PreSparsify parameter enables an
algorithm that can sometimes significantly reduce the number of non-zero values in the constraint
matrix.

Coping with Integrality Violations

The MIP solver can sometimes exploit tolerances on integer variables to violate the intent of a
constraint. The best-known example of this is probably trickle flows, where trivial integrality
violations on fixed-charge (binary) variables can lead to solutions that allow significant flows down
closed edges. The IntegralityFocus parameter allows you to tell the solver to take a much stricter
approach to integrality (at a small performance penalty).

Additional Parameters

The Symmetry parameter controls symmetry detection. The default value usually works well. The
VarBranch parameter controls the branching variable selection strategy within the branch-and-
bound process. Variable selection can have a significant impact on overall time to solution, but the
default strategy is usually the best choice.

Tolerances

The Gurobi solver includes a set of numerical tolerance parameters. These rarely require adjust-
ment, and are included for advanced users who are having trouble with the numerical properties of
their models. The FeasibilityTol, IntFeasTol, MarkowitzTol, and OptimalityTol parameters
allow you to adjust the primal feasibility tolerance, the integer feasibility tolerance, the Markowitz
tolerance for simplex basis factorization, and the dual feasibility tolerance, respectively.

12.2 Parameter Descriptions

AggFill

Presolve aggregation fill level
Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

Controls the amount of fill allowed during presolve aggregation. Larger values generally lead to
presolved models with fewer rows and columns, but with more constraint matrix non-zeros.

The default value chooses automatically, and usually works well.
One important note about integer-valued parameters: while the maximum value that can be

stored in a signed integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an
integer parameter to a value larger than this maximum will produce an error.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

756

Aggregate

Presolve aggregation
Type: int
Default value: 1
Minimum value: 0
Maximum value: 1

Enables or disables aggregation in presolve. In rare instances, aggregation can lead to an
accumulation of numerical errors. Turning it off can sometimes improve solution accuracy.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

BarConvTol

Barrier convergence tolerance
Type: double
Default value: 1e-8
Minimum value: 0.0
Maximum value: 1.0

The barrier solver terminates when the relative difference between the primal and dual objective
values is less than the specified tolerance (with a GRB_OPTIMAL status). Tightening this tolerance
often produces a more accurate solution, which can sometimes reduce the time spent in crossover.
Loosening it causes the barrier algorithm to terminate with a less accurate solution, which can be
useful when barrier is making very slow progress in later iterations.

Note: Barrier only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

BarCorrectors

Barrier central corrections
Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

Limits the number of central corrections performed in each barrier iteration. The default value
chooses automatically, depending on problem characteristics. The automatic strategy generally
works well, although it is often possible to obtain higher performance on a specific model by
selecting a value manually.

One important note about integer-valued parameters: while the maximum value that can be
stored in a signed integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an

757

integer parameter to a value larger than this maximum will produce an error.
Note: Barrier only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

BarHomogeneous

Barrier homogeneous algorithm
Type: int
Default value: -1
Minimum value: -1
Maximum value: 1

Determines whether to use the homogeneous barrier algorithm. At the default setting (-1), it
is only used when barrier solves a node relaxation for a MIP model. Setting the parameter to 0
turns it off, and setting it to 1 forces it on. The homogeneous algorithm is useful for recognizing
infeasibility or unboundedness. It is a bit slower than the default algorithm.

Note: Barrier only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

BarIterLimit

Barrier iteration limit
Type: int
Default value: 1000
Minimum value: 0
Maximum value: MAXINT

Limits the number of barrier iterations performed. This parameter is rarely used. If you would
like barrier to terminate early, it is almost always better to use the BarConvTol parameter instead.

Optimization returns with an ITERATION_LIMIT status if the limit is exceeded (see the Status
Code section for further details).

Note: Barrier only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

BarOrder

Barrier ordering algorithm

758

Type: int
Default value: -1
Minimum value: -1
Maximum value: 1

Chooses the barrier sparse matrix fill-reducing algorithm. A value of 0 chooses Approximate
Minimum Degree ordering, while a value of 1 chooses Nested Dissection ordering. The default value
of -1 chooses automatically. You should only modify this parameter if you notice that the barrier
ordering phase is consuming a significant fraction of the overall barrier runtime.

Note: Barrier only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

BarQCPConvTol

Barrier convergence tolerance for QCP models
Type: double
Default value: 1e-6
Minimum value: 0.0
Maximum value: 1.0

When solving a QCP model, the barrier solver terminates when the relative difference between
the primal and dual objective values is less than the specified tolerance (with a GRB_OPTIMAL status).
Tightening this tolerance may lead to a more accurate solution, but it may also lead to a failure to
converge.

Note: Barrier only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

BestBdStop

Objective bound to stop optimization
Type: double
Default value: Infinity
Minimum value: -Infinity
Maximum value: Infinity

Terminates as soon as the engine determines that the best bound on the objective value is at
least as good as the specified value. Optimization returns with an USER_OBJ_LIMIT status in this
case.

Note that you should always include a small tolerance in this value. Without this, a bound that
satisfies the intended termination criterion may not actually lead to termination due to numerical
round-off in the bound.

759

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

BestObjStop

Objective value to stop optimization
Type: double
Default value: -Infinity
Minimum value: -Infinity
Maximum value: Infinity

Terminate as soon as the engine finds a feasible solution whose objective value is at least as
good as the specified value. Optimization returns with an USER_OBJ_LIMIT status in this case.

Note that you should always include a small tolerance in this value. Without this, a solution that
satisfies the intended termination criterion may not actually lead to termination due to numerical
round-off in the objective.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

BQPCuts

BQP cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls Boolean Quadric Polytope (BQP) cut generation. Use 0 to disable these cuts, 1
for moderate cut generation, or 2 for aggressive cut generation. The default -1 value chooses
automatically. Overrides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

BranchDir

Preferred branch direction

760

Type: int
Default value: 0
Minimum value: -1
Maximum value: 1

Determines which child node is explored first in the branch-and-cut search. The default value
chooses automatically. A value of -1 will always explore the down branch first, while a value of 1
will always explore the up branch first.

Changing the value of this parameter rarely produces a significant benefit.
Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

CliqueCuts

Clique cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls clique cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or
2 for aggressive cut generation. The default -1 value choose automatically. Overrides the Cuts
parameter.

We have observed that setting this parameter to its aggressive setting can produce a significant
benefit for some large set partitioning models.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

CloudAccessID

Access ID for Gurobi Instant Cloud
Type: string
Default value: ""

Set this parameter to the Access ID for your Instant Cloud license when launching a new
instance. You can retrieve this string from your account on the Gurobi Instant Cloud Manager
website.

You must set this parameter through either a gurobi.lic file (using CLOUDACCESSID=id) or an
empty environment. Changing the parameter after your environment has been created will have
no effect.

761

https://cloud.gurobi.com

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

CloudHost

Host for the Gurobi Cloud entry point
Type: string
Default value: ""

Set this parameter to the host name of the Gurobi Cloud entry point. Currently cloud.gurobi.com.
You must set this parameter through either a gurobi.lic file (using CLOUDHOST=host) or an

empty environment. Changing the parameter after your environment has been started will result
in an error.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

CloudSecretKey

Secret Key for Gurobi Instant Cloud
Type: string
Default value: ""

Set this parameter to the Secret Key for your Instant Cloud license when launching a new
instance. You can retrieve this string from your account on the Gurobi Instant Cloud Manager
website.

You must set this parameter through either a gurobi.lic file (using CLOUDSECRETKEY=key) or
an empty environment. Changing the parameter after your environment has been created will have
no effect.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

CloudPool

Cloud pool to use for Gurobi Instant Cloud instance
Type: string
Default value: ""

Set this parameter to the name of the cloud pool you would like to use for your new Instant
Cloud instance. You can browse your existing cloud pools or create new ones from your account
on the Gurobi Instant Cloud Manager website.

You must set this parameter through either a gurobi.lic file (using CLOUDPOOL=pool) or an
empty environment. Changing the parameter after your environment has been created will have
no effect.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

762

https://cloud.gurobi.com
https://cloud.gurobi.com

ComputeServer
Name of a node in the Remote Services cluster
Type: string
Default value: ""

Set this parameter to the name of a node in the Remote Services cluster where you’d like
your Compute Server job to run. You can refer to the server using its name or its IP address. If
you are using a non-default port, the server name should be followed by the port number (e.g.,
server1:61000).

You will also need to set the ServerPassword parameter to supply the client password for the
specified cluster.

You can provide a comma-separated list of nodes to increase robustness. If the first node in the
list doesn’t respond, the second will be tried, etc.

Refer to the Gurobi Remote Services Reference Manual for more information on starting Com-
pute Server jobs.

You must set this parameter through either a gurobi.lic file (using COMPUTESERVER=server)
or an empty environment. Changing the parameter after your environment has been created will
have no effect.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

ConcurrentJobs
Distributed concurrent optimizer job count
Type: int
Default value: 0
Minimum value: 0
Maximum value: MAXINT

Enables distributed concurrent optimization, which can be used to solve LP or MIP models on
multiple machines. A value of n causes the solver to create n independent models, using different
parameter settings for each. Each of these models is sent to a distributed worker for processing.
Optimization terminates when the first solve completes. Use the ComputeServer parameter to
indicate the name of the cluster where you would like your distributed concurrent job to run (or
use WorkerPool if your client machine will act as manager and you just need a pool of workers).

By default, Gurobi chooses the parameter settings used for each independent solve automati-
cally. You can create concurrent environments to choose your own parameter settings (refer to the
concurrent optimization section for details). The intent of concurrent MIP solving is to introduce
additional diversity into the MIP search. By bringing the resources of multiple machines to bear
on a single model, this approach can sometimes solve models much faster than a single machine.

The distributed concurrent solver produces a slightly different log from the standard solver, and
provides different callbacks as well. Please refer to the Distributed Algorithms section of the
Gurobi Remote Services Reference Manual for additional details.

One important note about integer-valued parameters: while the maximum value that can be
stored in a signed integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an

763

https://www.gurobi.com/documentation/9.1/remoteservices/remoteservices.html
https://www.gurobi.com/documentation/9.1/remoteservices/remoteservices.html

integer parameter to a value larger than this maximum will produce an error.
For examples of how to query or modify parameter values from our different APIs, refer to our

Parameter Examples.

ConcurrentMIP
Enables the concurrent MIP solver
Type: int
Default value: 1
Minimum value: 1
Maximum value: MAXINT

This parameter enables the concurrent MIP solver. When the parameter is set to value n, the
MIP solver performs n independent MIP solves in parallel, with different parameter settings for
each. Optimization terminates when the first solve completes.

By default, Gurobi chooses the parameter settings used for each independent solve automati-
cally. You can create concurrent environments to choose your own parameter settings (refer to the
concurrent optimization section for details). The intent of concurrent MIP solving is to introduce
additional diversity into the MIP search. This approach can sometimes solve models much faster
than applying all available threads to a single MIP solve, especially on very large parallel machines.

The concurrent MIP solver divides available threads evenly among the independent solves. For
example, if you have 6 threads available and you set ConcurrentMIP to 2, the concurrent MIP
solver will allocate 3 threads to each independent solve. Note that the number of independent
solves launched will not exceed the number of available threads.

The concurrent MIP solver produces a slightly different log from the standard MIP solver,
and provides different callbacks as well. Please refer to the concurrent optimizer discussion for
additional details.

Concurrent MIP is not deterministic. If runtimes for different independent solves are very
similar, and if the model has multiple optimal solutions, you may get slightly different results from
multiple runs on the same model.

One important note about integer-valued parameters: while the maximum value that can be
stored in a signed integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an
integer parameter to a value larger than this maximum will produce an error.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

ConcurrentSettings
Create concurrent environments from a list of .prm files
Type: string
Default value: ""

This command-line only parameter allows you to specify a comma-separated list of .prm files
that are used to set parameters for the different instances in a concurrent MIP run.

764

To give an example, you could create two .prm files with the following contents...
s0.prm:

MIPFocus 0

s1.prm:

MIPFocus 1

Issuing the command gurobi_cl ConcurrentSettings=s0.prm,s1.prm model.mps would in-
voke the concurrent MIP solver, using parameter setting MIPFocus=0 in one of the two concurrent
solves and MIPFocus=1 in the other.

Note that if you want to run concurrent MIP on multiple machines, you must also set the
ConcurrentJobs parameter. The command for running distributed concurrent optimization using
the two example parameter files on two machines would be

> gurobi_cl ConcurrentJobs=2 ConcurrentSettings=s0.prm,s1.prm model.mps

Note: Command-line only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

CoverCuts

Cover cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls cover cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or
2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts
parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

Crossover

Barrier crossover strategy
Type: int
Default value: -1
Minimum value: -1
Maximum value: 4

765

Determines the crossover strategy used to transform the interior solution produced by barrier
into a basic solution (note that crossover is not available for QP or QCP models). Crossover consists
of three phases: (i) a primal push phase, where primal variables are pushed to bounds, (ii) a dual
push phase, where dual variables are pushed to bounds, and (iii) a cleanup phase, where simplex is
used to remove any primal or dual infeasibilities that remain after the push phases are complete.
The order of the first two phases and the algorithm used for the third phase are both controlled by
the Crossover parameter:

Parameter value First push Second push Cleanup
0 Disabled Disabled Disabled
1 Dual Primal Primal
2 Dual Primal Dual
3 Primal Dual Primal
4 Primal Dual Dual

The default value of -1 chooses the strategy automatically. Use value 0 to disable crossover;
this setting returns the interior solution computed by barrier.

Note: Barrier only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

CrossoverBasis

Crossover basis construction strategy
Type: int
Default value: 0
Minimum value: 0
Maximum value: 1

Determines the initial basis construction strategy for crossover. The default value (0) chooses
an initial basis quickly. A value of 1 can take much longer, but often produces a more numerically
stable start basis.

Note: Barrier only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

CSAPIAccessID

Access ID for Gurobi Cluster Manager
Type: string
Default value: ""

A unique identifier used to authenticate an application on a Gurobi Cluster Manager.
You can provide either an access ID and a secret key, or a username and password, to authen-

ticate your connection to a Cluster Manager.

766

You must set this parameter through either a gurobi.lic file (using CSAPIACCESSID=YOUR_API_ID)
or an empty environment. Changing the parameter after your environment has been started will
result in an error.

Note: Cluster Manager only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

CSAPISecret

Secret key for Gurobi Cluster Manager
Type: string
Default value: ""

The secret password associated with an API access ID.
You can provide either an access ID and a secret key, or a username and password, to authen-

ticate your connection to a Cluster Manager.
You must set this parameter through either a gurobi.lic file (using CSAPISECRET=YOUR_API_SECRET_KEY)

or an empty environment. Changing the parameter after your environment has been started will
result in an error.

Note: Cluster Manager only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

CSAppName

Application name of the batches or jobs
Type: string
Default value: ""

The application name which will be sent to the server to track which application is submitting
the batches or jobs.

Note: Cluster Manager only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

CSAuthToken

JSON Web Token for accessing the Cluster Manager
Type: string
Default value: ""

767

When a client authenticates with a Cluster Manager using a username and password, a signed
token is returned by the server to be used in further calls or command-line operations. It is used
internally.

Note: Cluster Manager only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

CSBatchMode

Controls Batch-Mode optimization
Type: int
Default value: 0
Minimum value: 0
Maximum value: 1

When set to 1, enable the local creation of models, and later submit batch-optimization jobs
to the Cluster Manager. See the Batch Optimization section for more details. Note that if
CSBatchMode is enabled, only batch-optimization calls are allowed.

You must set this parameter through either a gurobi.lic file (using CSBATCHMODE=1) or an
empty environment. Changing the parameter after your environment has been started will result
in an error.

Note: Cluster Manager only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

CSClientLog

Turns logging on or off
Type: int
Default value: 0
Minimum value: 0
Maximum value: 3

Turns logging on or off for Compute Server. Options are off (0), only error messages (1),
information and error messages (2), or (3) verbose, information, and error messages.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

CSGroup

Group placement request for cluster
Type: string
Default value: ""

768

Specifies one or more groups of cluster nodes to control the placement of the job. The list is
a comma-separated string of group names, with optionally a priority for a group. For example,
specifying group1:10,group2:50 means that the job will run on machines of group1 or group2,
and if the job is queued, it will have priority 10 on group1 and 50 on group2. Note that if the
group is not specified, the job may run on any node. If there are no nodes in the cluster having
the specified groups, the job will be rejected.

Refer to the Gurobi Remote Services Reference Manual for more information on starting Com-
pute Server jobs and in particular to Gurobi Remote Services cluster Grouping for more information
on grouping cluster nodes.

You must set this parameter through either a license file (using GROUP=name) or an empty
environment. Changing the parameter after your environment has been created will have no effect.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

CSIdleTimeout
Idle time before Compute Server kills a job
Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

This parameter allows you to set a limit on how long a Compute Server job can sit idle before
the server kills the job (in seconds). A job is considered idle if the server is not currently performing
an optimization and the client has not issued any additional commands.

The default value will allow a job to sit idle indefinitely in all but a few circumstances. The
first exception is the Gurobi Instant Cloud, where the default setting will automatically impose a
30 minute idle time limit (1800 seconds). If you are using an Instant Cloud pool, the actual value
will be the maximum between this parameter value and the idle timeout defined by the pool.

The second exception is any program that uses the Gurobi Python interface (including the
Gurobi Interactive Shell). Such programs will also get a 30 minute idle time limit by default.

You must set this parameter through either a gurobi.lic file (using IDLETIMEOUT=n) or an
empty environment. Changing the parameter after your environment has been created will have
no effect.

Refer to the Gurobi Remote Services Reference Manual for more information on starting Com-
pute Server jobs.

One important note about integer-valued parameters: while the maximum value that can be
stored in a signed integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an
integer parameter to a value larger than this maximum will produce an error.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

CSManager
URL of the Cluster Manager for the Remote Services cluster

769

https://www.gurobi.com/documentation/9.1/remoteservices/remoteservices.html
../remoteservices/grouping.html
https://www.gurobi.com/documentation/9.1/remoteservices/remoteservices.html

Type: string
Default value: ""

URL of the Cluster Manager for the Remote Services cluster.
You must set this parameter through either a gurobi.lic file (using CSMANAGER=YOUR_MANAGER_URL)

or an empty environment. Changing the parameter after your environment has been started will
result in an error.

Note: Cluster Manager only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

CSPriority

Client password for Remote Services cluster
Type: int
Default value: 0
Minimum value: -100
Maximum value: 100

The priority of the Compute Server job. Priorities must be between -100 and 100, with a default
value of 0 (by convention). Higher priority jobs are chosen from the server job queue before lower
priority jobs. A job with priority 100 runs immediately, bypassing the job queue and ignoring the
job limit on the server. You should exercise caution with priority 100 jobs, since they can severely
overload a server, which can cause jobs to fail, and in extreme cases can cause the server to crash.

Refer to the Gurobi Remote Services Reference Manual for more information on starting Com-
pute Server jobs.

You must set this parameter through either a gurobi.lic file (using PRIORITY=n) or an empty
environment. Changing the parameter after your environment has been created will have no effect.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

CSQueueTimeout

Queue timeout for new jobs
Type: double
Default value: -1
Minimum value: -1
Maximum value: Infinity

This parameter allows you to set a limit (in seconds) on how long a new Compute Server job
will wait in queue before it gives up (and reports a JOB_REJECTED error). Note that there might
be a delay of up to 20 seconds for the actual signaling of the time out.

Any negative value will allow a job to sit in the Compute Server queue indefinitely.

770

https://www.gurobi.com/documentation/9.1/remoteservices/remoteservices.html

You must set this parameter through a gurobi.lic file (using QUEUETIMEOUT=n) or an empty
environment. Changing the parameter after your environment has been created will have no effect.

Refer to the Gurobi Remote Services Reference Manual for more information on starting Com-
pute Server jobs.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

CSRouter

Router node for Remote Services cluster
Type: string
Default value: ""

The router node for a Remote Services cluster. A router can be used to improve the robustness
of a Compute Server deployment. You can refer to the router using either its name or its IP address.
A typical Remote Services deployment won’t use a router, so you typically won’t need to set this
parameter.

Refer to the Gurobi Remote Services Reference Manual for more information on starting Com-
pute Server jobs.

You must set this parameter through either a gurobi.lic file (using ROUTER=name) or an empty
environment. Changing the parameter after your environment has been created will have no effect.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

CSTLSInsecure

Use insecure mode in Transport Layer Security (TLS)
Type: int
Default value: 0
Minimum value: 0
Maximum value: 1

Indicates whether the Remote Services cluster is using insecure mode in the TLS (Transport
Layer Security). Set this to 0 unless your server administrator tells you otherwise.

Refer to the Gurobi Remote Services Reference Manual for more information on starting Com-
pute Server jobs.

You must set this parameter through either a gurobi.lic file (using CSTLSINSECURE) or an
empty environment. Changing the parameter after your environment has been created will have
no effect.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

CutAggPasses

Constraint aggregation passes in cut generation

771

https://www.gurobi.com/documentation/9.1/remoteservices/remoteservices.html
https://www.gurobi.com/documentation/9.1/remoteservices/remoteservices.html
https://www.gurobi.com/documentation/9.1/remoteservices/remoteservices.html

Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

A non-negative value indicates the maximum number of constraint aggregation passes performed
during cut generation. Overrides the Cuts parameter.

Changing the value of this parameter rarely produces a significant benefit.
One important note about integer-valued parameters: while the maximum value that can be

stored in a signed integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an
integer parameter to a value larger than this maximum will produce an error.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

Cutoff

Objective cutoff
Type: double
Default value: Infinity for minimization, -Infinity for maximization
Minimum value: -Infinity
Maximum value: Infinity

Indicates that you aren’t interested in solutions whose objective values are worse than the
specified value. If the objective value for the optimal solution is equal to or better than the
specified cutoff, the solver will return the optimal solution. Otherwise, it will terminate with a
CUTOFF status (see the Status Code section for further details).

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

CutPasses

Cutting plane passes
Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

A non-negative value indicates the maximum number of cutting plane passes performed during
root cut generation. The default value chooses the number of cut passes automatically.

You should experiment with different values of this parameter if you notice the MIP solver
spending significant time on root cut passes that have little impact on the objective bound.

One important note about integer-valued parameters: while the maximum value that can be
stored in a signed integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an

772

integer parameter to a value larger than this maximum will produce an error.
Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

Cuts

Global cut control
Type: int
Default value: -1
Minimum value: -1
Maximum value: 3

Global cut aggressiveness setting. Use value 0 to shut off cuts, 1 for moderate cut generation, 2
for aggressive cut generation, and 3 for very aggressive cut generation. This parameter is overridden
by the parameters that control individual cut types (e.g., CliqueCuts).

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

DegenMoves

Degenerate simplex moves
Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

Limits degenerate simplex moves. These moves are performed to improve the integrality of
the current relaxation solution. By default, the algorithm chooses the number of degenerate move
passes to perform automatically.

The default setting generally works well, but there can be cases where an excessive amount of
time is spent after the initial root relaxation has been solved but before the cut generation process
or the root heuristics have started. If you see multiple ’Total elapsed time’ messages in the log
immediately after the root relaxation log, you may want to try setting this parameter to 0.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

Disconnected

Disconnected component strategy

773

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

A MIP model can sometimes be made up of multiple, completely independent sub-models.
This parameter controls how aggressively we try to exploit this structure. A value of 0 ignores
this structure entirely, while larger values try more aggressive approaches. The default value of -1
chooses automatically.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

DisplayInterval

Frequency of log lines
Type: int
Default value: 5
Minimum value: 1
Maximum value: MAXINT

Determines the frequency at which log lines are printed (in seconds).
One important note about integer-valued parameters: while the maximum value that can be

stored in a signed integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an
integer parameter to a value larger than this maximum will produce an error.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

DistributedMIPJobs

Distributed MIP job count
Type: int
Default value: 0
Minimum value: 0
Maximum value: MAXINT

Enables distributed MIP. A value of n causes the MIP solver to divide the work of solving a
MIP model among n machines. Use the ComputeServer parameter to indicate the name of the
cluster where you would like your distributed MIP job to run (or use WorkerPool if your client
machine will act as manager and you just need a pool of workers).

The distributed MIP solver produces a slightly different log from the standard MIP solver, and
provides different callbacks as well. Please refer to the Distributed Algorithms section of the
Gurobi Remote Services Reference Manual for additional details.

774

https://www.gurobi.com/documentation/9.1/remoteservices/remoteservices.html

One important note about integer-valued parameters: while the maximum value that can be
stored in a signed integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an
integer parameter to a value larger than this maximum will produce an error.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

DualReductions

Controls dual reductions
Type: int
Default value: 1
Minimum value: 0
Maximum value: 1

Determines whether dual reductions are performed in presolve. You should disable these re-
ductions if you received an optimization status of INF_OR_UNBD and would like a more definitive
conclusion.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

FeasibilityTol

Primal feasibility tolerance
Type: double
Default value: 1e-6
Minimum value: 1e-9
Maximum value: 1e-2

All constraints must be satisfied to a tolerance of FeasibilityTol. Tightening this tolerance
can produce smaller constraint violations, but for numerically challenging models it can sometimes
lead to much larger iteration counts.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

FeasRelaxBigM

Big-M value for feasibility relaxations
Type: double
Default value: 1e6
Minimum value: 0
Maximum value: Infinity

775

When relaxing a constraint in a feasibility relaxation, it is sometimes necessary to introduce a
big-M value. This parameter determines the default magnitude of that value.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

FlowCoverCuts

Flow cover cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls flow cover cut generation. Use 0 to disable these cuts, 1 for moderate cut generation,
or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts
parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

FlowPathCuts

Flow path cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls flow path cut generation. Use 0 to disable these cuts, 1 for moderate cut generation,
or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts
parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

FuncPieceError

Error allowed for PWL translation of function constraints
Type: double
Default value: 1e-3
Minimum value: 1e-6
Maximum value: 1e+6

776

If the FuncPieces parameter is set to value −1 or −2, this attribute provides the maximum
allowed error (absolute for −1, relative for −2) in the piecewise-linear approximation.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

FuncPieceLength
Piece length for PWL translation of function constraints
Type: double
Default value: 1e-2
Minimum value: 1e-5
Maximum value: 1e+6

If the FuncPieces parameter is set to value 1, this parameter gives the length of each piece of
the piecewise-linear approximation.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

FuncPieceRatio
Control whether to under- or over-estimate function values in PWL approximation
Type: double
Default value: -1
Minimum value: -1
Maximum value: 1

This parameter controls whether the piecewise-linear approximation of a function constraint
is an underestimate of the function, an overestimate, or somewhere in between. A value of 0.0
will always underestimate, while a value of 1.0 will always overestimate. A value in between will
interpolate between the underestimate and the overestimate. A special value of -1 chooses points
that are on the original function.

See the discussion of function constraints for more information.
For examples of how to query or modify parameter values from our different APIs, refer to our

Parameter Examples.

FuncPieces
Sets strategy for PWL function approximation
Type: int
Default value: 0
Minimum value: -2
Maximum value: 200000000

This parameter sets the strategy used for performing a piecewise-linear approximation of a
function constraint. There are a few options:

777

• FuncPieces >= 2: Sets the number of pieces; pieces are equal width.

• FuncPieces = 1: Uses a fixed width for each piece; the actual width is provided in the
FuncPieceLength parameter.

• FuncPieces = -1: Bounds the absolute error of the approximation; the error bound is
provided in the FuncPieceError parameter.

• FuncPieces = -2: Bounds the relative error of the approximation; the error bound is
provided in the FuncPieceError parameter.

This parameter only applies to function constraints whose FuncPieces attribute has been set to
0.

See the discussion of function constraints for more information.
For examples of how to query or modify parameter values from our different APIs, refer to our

Parameter Examples.

FuncMaxVal
Maximum allowed value for x and y variables in function constraints
Type: double
Default value: 1e+6
Minimum value: 0
Maximum value: Infinity

Very large values in piecewise-linear approximations can cause numerical issues. This parameter
limits the bounds on the variables that participate in function constraints. Specifically, if x or y
participate in a function constraint, any bound larger than FuncMaxVal (in absolute value) will be
truncated.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

GomoryPasses
Gomory cut passes
Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

A non-negative value indicates the maximum number of Gomory cut passes performed. Over-
rides the Cuts parameter.

One important note about integer-valued parameters: while the maximum value that can be
stored in a signed integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an
integer parameter to a value larger than this maximum will produce an error.

Note: Only affects mixed integer programming (MIP) models

778

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

GUBCoverCuts

GUB cover cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls GUB cover cut generation. Use 0 to disable these cuts, 1 for moderate cut generation,
or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts
parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

Heuristics

Time spent in feasibility heuristics
Type: double
Default value: 0.05
Minimum value: 0
Maximum value: 1

Determines the amount of time spent in MIP heuristics. You can think of the value as the
desired fraction of total MIP runtime devoted to heuristics (so by default, we aim to spend 5% of
runtime on heuristics). Larger values produce more and better feasible solutions, at a cost of slower
progress in the best bound.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

IgnoreNames

Indicates whether to ignore names provided by users.
Type: int
Default value: 0
Minimum value: 0
Maximum value: 1

779

This parameter affects how Gurobi deals with names. If set to 1, subsequent calls to add
variables or constraints to the model will ignore the associated names. Names for objectives and
the model will also be ignored. In addition, subsequent calls to modify name attributes will have no
effect. Note that variables or constraints that had names at the point this parameter was changed
to 1 will retain their names. If you wish to discard all name information, you should set this
parameter to 1 before adding variables or constraints to the model.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

IISMethod

Selects method used to compute IIS
Type: int
Default value: -1
Minimum value: -1
Maximum value: 3

Chooses the IIS method to use. Method 0 is often faster, while method 1 can produce a smaller
IIS. Method 2 ignores the bound constraints. Method 3 will return the IIS for the LP relaxation
of a MIP model if the relaxation is infeasible, even though the result may not be minimal when
integrality constraints are included. The default value of -1 chooses automatically.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

ImpliedCuts

Implied bound cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls implied bound cut generation. Use 0 to disable these cuts, 1 for moderate cut genera-
tion, or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the
Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

ImproveStartGap

Solution improvement strategy control

780

Type: double
Default value: 0.0
Minimum value: 0.0
Maximum value: Infinity

The MIP solver can change parameter settings in the middle of the search in order to adopt
a strategy that gives up on moving the best bound and instead devotes all of its effort towards
finding better feasible solutions. This parameter allows you to specify an optimality gap at which
the MIP solver switches to a solution improvement strategy. For example, setting this parameter
to 0.1 will cause the MIP solver to switch strategies once the relative optimality gap is smaller than
0.1.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

ImproveStartNodes

Solution improvement strategy control
Type: double
Default value: Infinity
Minimum value: 0.0
Maximum value: Infinity

The MIP solver can change parameter settings in the middle of the search in order to adopt
a strategy that gives up on moving the best bound and instead devotes all of its effort towards
finding better feasible solutions. This parameter allows you to specify the node count at which the
MIP solver switches to a solution improvement strategy. For example, setting this parameter to 10
will cause the MIP solver to switch strategies once the node count is larger than 10.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

ImproveStartTime

Solution improvement strategy control
Type: double
Default value: Infinity
Minimum value: 0.0
Maximum value: Infinity

The MIP solver can change parameter settings in the middle of the search in order to adopt
a strategy that gives up on moving the best bound and instead devotes all of its effort towards
finding better feasible solutions. This parameter allows you to specify the time when the MIP

781

solver switches to a solution improvement strategy. For example, setting this parameter to 10 will
cause the MIP solver to switch strategies 10 seconds after starting the optimization.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

InfProofCuts

Infeasibility proof cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls infeasibility proof cut generation. Use 0 to disable these cuts, 1 for moderate cut
generation, or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides
the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

InfUnbdInfo

Additional info for infeasible/unbounded models
Type: int
Default value: 0
Minimum value: 0
Maximum value: 1

Determines whether simplex (and crossover) will compute additional information when a model
is determined to be infeasible or unbounded. Set this parameter if you want to query the unbounded
ray for unbounded models (through the UnbdRay attribute), or the infeasibility proof for infeasible
models (through the FarkasDual and FarkasProof attributes).

Note that if a model is found to be either infeasible or unbounded, and you simply want to
know which one it is, you should use the DualReductions parameter instead. It performs much less
additional computation.

Note: LP only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

782

InputFile

Import data into a model before beginning optimization
Type: string
Default value: ""

Specifies the name of a file that will be read before beginning a command-line optimization
run. This parameter can be used to input a MIP start (a .mst or .sol file), MIP hints (a .hnt
file), a simplex basis (a .bas file), or a set of parameter settings (a .prm file) from the Gurobi
command line. The suffix may optionally be followed by .zip, .gz, bz2, or .7z if the input files
are compressed.

Note: Command-line only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

IntegralityFocus

Integrality focus
Type: int
Default value: 0
Minimum value: 0
Maximum value: 1

One unfortunate reality in MIP is that integer variables don’t always take exact integral values.
While this typically doesn’t create significant problems, in some situations the side-effects can be
quite undesirable. The best-known example is probably a trickle flow, where a continuous variable
that is meant to be zero when an associated binary variable is zero instead takes a non-trivial value.
More precisely, given a constraint y ≤ Mb, where y is a non-negative continuous variable, b is a
binary variable, and M is a constant that captures the largest possible value of y, the constraint
is intended to enforce the relationship that y must be zero if b is zero. With the default integer
feasibility tolerance, the binary variable is allowed to take a value as large as 1e − 5 while still
being considered as taking value zero. If the M value is large, then the Mb upper bound on the y
variable can be substantial.

Reducing the value of the IntFeasTol parameter can mitigate the effects of such trickle flows,
but often at a significant cost, and often with limited success. The IntegralityFocus parameter
provides a better alternative. Setting this parameter to 1 requests that the solver work harder to
try to avoid solutions that exploit integrality tolerances. More precisely, the solver tries to find
solutions that are still (nearly) feasible if all integer variables are rounded to exact integral values.
We should say that the solver won’t always succeed in finding such solutions, and that this setting
introduces a modest performance penalty, but the setting will significantly reduce the frequency
and magnitude of such violations.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

783

IntFeasTol

Integer feasibility tolerance
Type: double
Default value: 1e-5
Minimum value: 1e-9
Maximum value: 1e-1

An integrality restriction on a variable is considered satisfied when the variable’s value is less
than IntFeasTol from the nearest integer value. Tightening this tolerance can produce smaller
integrality violations, but very tight tolerances may significantly increase runtime. Loosening this
tolerance rarely reduces runtime.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

IterationLimit

Simplex iteration limit
Type: double
Default value: Infinity
Minimum value: 0
Maximum value: Infinity

Limits the number of simplex iterations performed. The limit applies to MIP, barrier crossover,
and simplex. Optimization returns with an ITERATION_LIMIT status if the limit is exceeded (see
the Status Code section for further details).

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

JobID

Compute Server Job ID
Type: string
Default value: ""

If you are running on a Compute Server, this parameter provides the Compute Server Job ID
for the current job. Note that this is a read-only parameter.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

JSONSolDetail

Level of detail in JSON solution format

784

Type: int
Default value: 0
Minimum value: 0
Maximum value: 1

This parameter controls the amount of detail included in a JSON solution. For example, when
this parameter is set to 1, the JSON string will contain data for all of the variables, even those
with solution value 0.

For a precise description of the contents of the resulting JSON string, please refer to the JSON
solution format section.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

LazyConstraints
Programs that use lazy constraints must set this parameter
Type: int
Default value: 0
Minimum value: 0
Maximum value: 1

Programs that add lazy constraints through a callback must set this parameter to value 1. The
parameter tells the Gurobi algorithms to avoid certain reductions and transformations that are
incompatible with lazy constraints.

Note that if you use lazy constraints by setting the Lazy attribute (and not through a callback),
there’s no need to set this parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

LogFile
Name for Gurobi log file
Type: string
Default value: ""

Determines the name of the Gurobi log file. Modifying this parameter closes the current log
file and opens the specified file. Use an empty string for no log file. Use OutputFlag to shut off all
logging.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

LogToConsole
Control console logging

785

Type: int
Default value: 1
Minimum value: 0
Maximum value: 1

Enables or disables console logging. Use OutputFlag to shut off all logging.
For examples of how to query or modify parameter values from our different APIs, refer to our

Parameter Examples.

MarkowitzTol

Threshold pivoting tolerance
Type: double
Default value: 0.0078125
Minimum value: 1e-4
Maximum value: 0.999

The Markowitz tolerance is used to limit numerical error in the simplex algorithm. Specifically,
larger values reduce the error introduced in the simplex basis factorization. A larger value may
avoid numerical problems in rare situations, but it will also harm performance.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

Method

Algorithm used to solve continuous models
Type: int
Default value: -1
Minimum value: -1
Maximum value: 5

Algorithm used to solve continuous models or the root node of a MIP model. Options are:
-1=automatic, 0=primal simplex, 1=dual simplex, 2=barrier, 3=concurrent, 4=deterministic con-
current, 5=deterministic concurrent simplex.

In the current release, the default Automatic (-1) setting will typically choose non-deterministic
concurrent (Method=3) for an LP, barrier (Method=2) for a QP or QCP, and dual (Method=1)
for the MIP root node. Only the simplex and barrier algorithms are available for continuous QP
models. Only primal and dual simplex are available for solving the root of an MIQP model. Only
barrier is available for continuous QCP models.

Concurrent optimizers run multiple solvers on multiple threads simultaneously, and choose the
one that finishes first. Method=3 and Method=4 will run dual simplex, barrier, and sometimes
primal simplex (depending on the number of available threads). Method=5 will run both primal
and dual simplex. The deterministic options (Method=4 and Method=5) give the exact same
result each time, while Method=3 is often faster but can produce different optimal bases when run
multiple times.

786

The default setting is rarely significantly slower than the best possible setting, so you generally
won’t see a big gain from changing this parameter. There are classes of models where one particular
algorithm is consistently fastest, though, so you may want to experiment with different options when
confronted with a particularly difficult model.

Note that if memory is tight on an LP model, you should consider using the dual simplex
method (Method=1). The concurrent optimizer, which is typically chosen when using the default
setting, consumes a lot more memory than dual simplex alone.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

MinRelNodes

Minimum relaxation heuristic
Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

Number of nodes to explore in the minimum relaxation heuristic. Note that this heuristic is
only applied at the end of the MIP root, and only when no other root heuristic finds a feasible
solution.

This heuristic is quite expensive, and generally produces poor quality solutions. You should
generally only use it if other means, including exploration of the tree with default settings, fail to
produce a feasible solution.

The default value automatically chooses whether to apply the heuristic. It will only rarely
choose to do so.

One important note about integer-valued parameters: while the maximum value that can be
stored in a signed integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an
integer parameter to a value larger than this maximum will produce an error.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

MIPFocus

MIP solver focus
Type: int
Default value: 0
Minimum value: 0
Maximum value: 3

The MIPFocus parameter allows you to modify your high-level solution strategy, depending
on your goals. By default, the Gurobi MIP solver strikes a balance between finding new feasible
solutions and proving that the current solution is optimal. If you are more interested in finding

787

feasible solutions quickly, you can select MIPFocus=1. If you believe the solver is having no trouble
finding good quality solutions, and wish to focus more attention on proving optimality, select
MIPFocus=2. If the best objective bound is moving very slowly (or not at all), you may want to
try MIPFocus=3 to focus on the bound.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

MIPGap
Relative MIP optimality gap
Type: double
Default value: 1e-4
Minimum value: 0
Maximum value: Infinity

The MIP solver will terminate (with an optimal result) when the gap between the lower and
upper objective bound is less than MIPGap times the absolute value of the incumbent objective
value. More precisely, if zP is the primal objective bound (i.e., the incumbent objective value,
which is the upper bound for minimization problems), and zD is the dual objective bound (i.e., the
lower bound for minimization problems), then the MIP gap is defined as

gap = |zP − zD|/|zP |.

Note that if zP = zD = 0, then the gap is defined to be zero. If zP = 0 and zD 6= 0, the gap is
defined to be infinity.

For most models, zP and zD will have the same sign throughout the optimization process, and
then the gap is monotonically decreasing. But if zP and zD have opposite signs, the relative gap
may increase after finding a new incumbent solution, even though the absolute gap |zP − zD| has
decreased.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

MIPGapAbs
Absolute MIP optimality gap
Type: double
Default value: 1e-10
Minimum value: 0
Maximum value: Infinity

The MIP solver will terminate (with an optimal result) when the gap between the lower and
upper objective bound is less than MIPGapAbs.

788

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

MIPSepCuts
MIP separation cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls MIP separation cut generation. Use 0 to disable these cuts, 1 for moderate cut gen-
eration, or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides
the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

MIQCPMethod
Method used to solve MIQCP models
Type: int
Default value: -1
Minimum value: -1
Maximum value: 1

Controls the method used to solve MIQCPmodels. Value 1 uses a linearized, outer-approximation
approach, while value 0 solves continuous QCP relaxations at each node. The default setting (-1)
chooses automatically.

Note: Only affects MIQCP models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

MIRCuts
MIR cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

789

Controls Mixed Integer Rounding (MIR) cut generation. Use 0 to disable these cuts, 1 for mod-
erate cut generation, or 2 for aggressive cut generation. The default -1 value chooses automatically.
Overrides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

ModKCuts

Mod-k cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls mod-k cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or
2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts
parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

MultiObjMethod

Method used for multi-objective solves
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

When solving a continuous multi-objective model using a hierarchical approach, the model is
solved once for each objective. The algorithm used to solve for the highest priority objective is
controlled by the Method parameter. This parameter determines the algorithm used to solve for
subsequent objectives. As with the Method parameters, values of 0 and 1 use primal and dual
simplex, respectively. A value of 2 indicates that warm-start information from previous solves
should be discarded, and the model should be solved from scratch (using the algorithm indicated
by the Method parameter). The default setting of -1 usually chooses primal simplex.

Note: Only affects continuous multi-objective models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

790

MultiObjPre

Initial presolve level on multi-objective models
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls the initial presolve level used for multi-objective models. Value 0 disables the initial
presolve, value 1 applies presolve conservatively, and value 2 applies presolve aggressively. The
default -1 value usually applies presolve conservatively. Aggressive presolve may increase the chance
of the objective values being slightly different than those for other options.

Note: Only affects multi-objective models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

MultiObjSettings

Create multi-objective settings from a list of .prm files
Type: string
Default value: ""

This command-line only parameter allows you to specify a comma-separated list of .prm files
that are used to set parameters for the different solves in a multi-objective model.

To give an example, you could create two .prm files with the following contents...
vb0.prm:

VarBranch 0

vb1.prm:

VarBranch 1

Issuing the command gurobi_cl MultiObjSettings=vb0.prm,vb1.prm model.mps would use
different branching strategies when solving for the two objectives of the multi-objective model.

Note: Command-line only
Note: Only affects multi-objective models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

NetworkCuts

Network cut generation

791

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls network cut generation. Use 0 to disable these cuts, 1 for moderate cut generation,
or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts
parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

NodefileDir

Directory for node files
Type: string
Default value: "."

Determines the directory into which nodes are written when node memory usage exceeds the
specified NodefileStart value.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

NodefileStart

Write MIP nodes to disk
Type: double
Default value: Infinity
Minimum value: 0
Maximum value: Infinity

If you find that the Gurobi optimizer exhausts memory when solving a MIP, you should modify
the NodefileStart parameter. When the amount of memory used to store nodes (measured in
GBytes) exceeds the specified parameter value, nodes are compressed and written to disk. We
recommend a setting of 0.5, but you may wish to choose a different value, depending on the
memory available in your machine. By default, nodes are written to the current working directory.
The NodefileDir parameter can be used to choose a different location.

If you still exhaust memory after setting the NodefileStart parameter to a small value, you
should try limiting the thread count. Each thread in parallel MIP requires a copy of the model,
as well as several other large data structures. Reducing the Threads parameter can sometimes
significantly reduce memory usage.

792

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

NodeLimit

MIP node limit
Type: double
Default value: Infinity
Minimum value: 0
Maximum value: Infinity

Limits the number of MIP nodes explored. Optimization returns with an NODE_LIMIT status if
the limit is exceeded (see the Status Code section for further details). Note that if multiple threads
are used for the optimization, the actual number of explored nodes may be slightly larger than the
set limit.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

NodeMethod

Method used to solve MIP node relaxations
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Algorithm used for MIP node relaxations (except for the root node, see Method). Options
are: -1=automatic, 0=primal simplex, 1=dual simplex, and 2=barrier. Note that barrier is not an
option for MIQP node relaxations.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

NonConvex

Strategy for handling non-convex quadratic programs

793

Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Sets the strategy for handling non-convex quadratic objectives or non-convex quadratic con-
straints. With setting 0, an error is reported if the original user model contains non-convex
quadratic constructs. With setting 1, an error is reported if non-convex quadratic constructs could
not be discarded or linearized during presolve. With setting 2, non-convex quadratic problems are
solved by means of translating them into bilinear form and applying spatial branching. The default
-1 setting is currently equivalent to 1, and may change in future releases to be equivalent to 2.

Note: Only affects QP, QCP, MIQP, and MIQCP models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

NoRelHeurTime

Limits the amount of time spent in the NoRel heuristic
Type: double
Default value: 0
Minimum value: 0
Maximum value: Infinity

Limits the amount of time (in seconds) spent in the NoRel heuristic. This heuristic searches for
high-quality feasible solutions before solving the root relaxation. It can be quite useful on models
where the root relaxation is particularly expensive.

Note that this parameter will introduce non-determinism - different runs may take different
paths. Use the NoRelHeurWork parameter for deterministic results.

Note: Only affects MIP models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

NoRelHeurWork

Limits the amount of work spent in the NoRel heuristic
Type: double
Default value: 0
Minimum value: 0
Maximum value: Infinity

Limits the amount of work spent in the NoRel heuristic. This heuristic searches for high-quality
feasible solutions before solving the root relaxation. It can be quite useful on models where the
root relaxation is particularly expensive.

794

The work metric used in this parameter is tough to define precisely. A single unit corresponds
to roughly a second, but this will depend on the machine, the core count, and in some cases the
model. You may need to experiment to find a good setting for your model.

Note: Only affects MIP models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

NormAdjust

Choose simplex pricing norm.
Type: int
Default value: -1
Minimum value: -1
Maximum value: 3

Chooses from among multiple pricing norm variants. The details of how this parameter affects
the simplex pricing algorithm are subtle and difficult to describe, so we’ve simply labeled the options
0 through 3. The default value of -1 chooses automatically.

Changing the value of this parameter rarely produces a significant benefit.
For examples of how to query or modify parameter values from our different APIs, refer to our

Parameter Examples.

NumericFocus

Numerical focus
Type: int
Default value: 0
Minimum value: 0
Maximum value: 3

The NumericFocus parameter controls the degree to which the code attempts to detect and
manage numerical issues. The default setting (0) makes an automatic choice, with a slight prefer-
ence for speed. Settings 1-3 increasingly shift the focus towards being more careful in numerical
computations. With higher values, the code will spend more time checking the numerical accuracy
of intermediate results, and it will employ more expensive techniques in order to avoid potential
numerical issues.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

ObjNumber

Selects objective index of multi-objectives

795

Type: int
Default value: 0
Minimum value: 0
Maximum value: 2000000000

When working with multiple objectives, this parameter selects the index of the objective you
want to work with. When you query or modify an attribute associated with multiple objectives
(ObjN, ObjNVal, etc.), the ObjNumber parameter will determine which objective is actually affected.
The value of this parameter should be less than the value of the NumObj attribute (which captures
the number of objectives in the model).

Please refer to the discussion of Multiple Objectives for more information on the use of alter-
native objectives.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

ObjScale

Objective scaling
Type: double
Default value: 0.0
Minimum value: -1
Maximum value: Infinity

When positive, divides the model objective by the specified value to avoid numerical issues that
may result from very large or very small objective coefficients. The default value of 0 decides on
the scaling automatically. A value less than zero uses the maximum coefficient to the specified
power as the scaling (so ObjScale=-0.5 would scale by the square root of the largest objective
coefficient).

Note that objective scaling can lead to large dual violations on the original, unscaled objective
when the optimality tolerance with the scaled objective is barely satisfied, so it should be used
sparingly. Note also that scaling will be more effective when all objective coefficients are of similar
orders of magnitude, as opposed to objectives with a wide range of coefficients. In the latter case,
consider using the Multiple Objectives feature instead.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

OptimalityTol

Dual feasibility tolerance
Type: double
Default value: 1e-6
Minimum value: 1e-9
Maximum value: 1e-2

796

Reduced costs must all be smaller than OptimalityTol in the improving direction in order for
a model to be declared optimal.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

OutputFlag
Controls Gurobi output
Type: int
Default value: 1
Minimum value: 0
Maximum value: 1

Enables or disables solver output. Use LogFile and LogToConsole for finer-grain control. Setting
OutputFlag to 0 is equivalent to setting LogFile to "" and LogToConsole to 0.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

PartitionPlace
Controls where the partition heuristic runs
Type: int
Default value: 15
Minimum value: 0
Maximum value: 31

Setting the Partition attribute on at least one variable in a model enables the partitioning
heuristic, which uses large-neighborhood search to try to improve the current incumbent solution.

This parameter determines where that heuristic runs. Options are:

• Before the root relaxation is solved (16)

• At the start of the root cut loop (8)

• At the end of the root cut loop (4)

• At the nodes of the branch-and-cut search (2)

• When the branch-and-cut search terminates (1)

The parameter value is a bit vector, where each bit turns the heuristic on or off at that place.
The numerical values next to the options listed above indicate which bit controls the corresponding
option. Thus, for example, to enable the heuristic at the beginning and end of the root cut loop
(and nowhere else), you would set the 8 bit and the 4 bit to 1, which would correspond to a
parameter value of 12.

The default value of 15 indicates that we enable every option except the first one listed above.
For examples of how to query or modify parameter values from our different APIs, refer to our

Parameter Examples.

797

PerturbValue

Simplex perturbation
Type: double
Default value: 0.0002
Minimum value: 0
Maximum value: Infinity

Magnitude of the simplex perturbation. Note that perturbation is only applied when progress
has stalled, so the parameter will often have no effect.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

PoolGap

Maximum relative gap for stored solutions
Type: double
Default value: Infinity
Minimum value: 0
Maximum value: Infinity

Determines how large a (relative) gap to tolerate in stored solutions. When this parameter is
set to a non-default value, solutions whose objective values exceed that of the best known solution
by more than the specified (relative) gap are discarded. For example, if the MIP solver has found
a solution at objective 100, then a setting of PoolGap=0.2 would discard solutions with objective
worse than 120 (assuming a minimization objective).

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

PoolGapAbs

Maximum absolute gap for stored solutions
Type: double
Default value: Infinity
Minimum value: 0
Maximum value: Infinity

Determines how large a (absolute) gap to tolerate in stored solutions. When this parameter is
set to a non-default value, solutions whose objective values exceed that of the best known solution
by more than the specified (absolute) gap are discarded. For example, if the MIP solver has found
a solution at objective 100, then a setting of PoolGapAbs=20 would discard solutions with objective
worse than 120 (assuming a minimization objective).

798

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

PoolSearchMode

Selects different modes for exploring the MIP search tree
Type: int
Default value: 0
Minimum value: 0
Maximum value: 2

Selects different modes for exploring the MIP search tree. With the default setting (PoolSearchMode=0),
the MIP solver tries to find an optimal solution to the model. It keeps other solutions found along
the way, but those are incidental. By setting this parameter to a non-default value, the MIP search
will continue after the optimal solution has been found in order to find additional, high-quality
solutions. With a non-default value (PoolSearchMode=1 or PoolSearchMode=2), the MIP solver
will try to find n solutions, where n is determined by the value of the PoolSolutions parameter.
With a setting of 1, there are no guarantees about the quality of the extra solutions, while with
a setting of 2, the solver will find the n best solutions. The cost of the solve will increase with
increasing values of this parameter.

Once optimization is complete, the PoolObjBound attribute can be used to evaluate the quality
of the solutions that were found. For example, a value of PoolObjBound=100 indicates that there
are no other solutions with objective better 100, and thus that any known solutions with objective
better than 100 are better than any as-yet undiscovered solutions.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

PoolSolutions

Number of MIP solutions to store
Type: int
Default value: 10
Minimum value: 1
Maximum value: 2000000000

Determines how many MIP solutions are stored. For the default value of PoolSearchMode,
these are just the solutions that are found along the way in the process of exploring the MIP search
tree. For other values of PoolSearchMode, this parameter sets a target for how many solutions to
find, so larger values will impact performance.

Note: Only affects mixed integer programming (MIP) models

799

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

PreCrush
Controls presolve reductions that affect user cuts
Type: int
Default value: 0
Minimum value: 0
Maximum value: 1

Shuts off a few reductions in order to allow presolve to transform any constraint on the original
model into an equivalent constraint on the presolved model. You should consider setting this
parameter to 1 if you are using callbacks to add your own cuts. A cut that cannot be applied to
the presolved model will be silently ignored. The impact on the size of the presolved problem is
usually small.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

PreDepRow
Controls the presolve dependent row reduction
Type: int
Default value: -1
Minimum value: -1
Maximum value: 1

Controls the presolve dependent row reduction, which eliminates linearly dependent constraints
from the constraint matrix. The default setting (-1) applies the reduction to continuous models
but not to MIP models. Setting 0 turns the reduction off for all models. Setting 1 turns it on for
all models.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

PreDual
Controls presolve model dualization
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls whether presolve forms the dual of a continuous model. Depending on the structure
of the model, solving the dual can reduce overall solution time. The default setting uses a heuristic
to decide. Setting 0 forbids presolve from forming the dual, while setting 1 forces it to take the

800

dual. Setting 2 employs a more expensive heuristic that forms both the presolved primal and dual
models (on two threads), and heuristically chooses one of them.

Note: LP only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

PreMIQCPForm

Format of presolved MIQCP model
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Determines the format of the presolved version of an MIQCP model. Option 0 leaves the model
in MIQCP form, so the branch-and-cut algorithm will operate on a model with arbitrary quadratic
constraints. Option 1 always transforms the model into MISOCP form; quadratic constraints
are transformed into second-order cone constraints. Option 2 always transforms the model into
disaggregated MISOCP form; quadratic constraints are transformed into rotated cone constraints,
where each rotated cone contains two terms and involves only three variables.

The default setting (-1) choose automatically. The automatic setting works well, but there are
cases where forcing a different form can be beneficial.

Note: Only affects MIQCP models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

PrePasses

Presolve pass limit
Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

Limits the number of passes performed by presolve. The default setting (-1) chooses the number
of passes automatically. You should experiment with this parameter when you find that presolve
is consuming a large fraction of total solve time.

One important note about integer-valued parameters: while the maximum value that can be
stored in a signed integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an
integer parameter to a value larger than this maximum will produce an error.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

801

PreQLinearize

Presolve quadratic linearization
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls presolve Q matrix linearization. Binary variables in quadratic expressions provide
some freedom to state the same expression in multiple different ways. Options 1 and 2 of this
parameter attempt to linearize quadratic constraints or a quadratic objective, replacing quadratic
terms with linear terms, using additional variables and linear constraints. This can potentially
transform an MIQP or MIQCP model into an MILP. Option 1 focuses on producing an MILP
reformulation with a strong LP relaxation, with a goal of limiting the size of the MIP search tree.
Option 2 aims for a compact reformulation, with a goal of reducing the cost of each node. Option
0 attempts to leave Q matrices unmodified; it won’t add variables or constraints, but it may still
perform adjustments on quadratic objective functions to make them positive semi-definite (PSD).
The default setting (-1) chooses automatically.

Note: Only affects MIQP and MIQCP models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

Presolve

Controls the presolve level
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls the presolve level. A value of -1 corresponds to an automatic setting. Other options
are off (0), conservative (1), or aggressive (2). More aggressive application of presolve takes more
time, but can sometimes lead to a significantly tighter model.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

PreSOS1BigM

Threshold for SOS1-to-binary reformulation
Type: double
Default value: -1
Minimum value: -1
Maximum value: 1e10

802

Controls the automatic reformulation of SOS1 constraints into binary form. SOS1 constraints
are often handled more efficiently using a binary representation. The reformulation often requires
big-M values to be introduced as coefficients. This parameter specifies the largest big-M that can
be introduced by presolve when performing this reformulation. Larger values increase the chances
that an SOS1 constraint will be reformulated, but very large values (e.g., 1e8) can lead to numerical
issues.

The default value of -1 chooses a threshold automatically. You should set the parameter to 0
to shut off SOS1 reformulation entirely, or a large value to force reformulation.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

Please refer to this section for more information on SOS constraints.

PreSOS2BigM

Threshold for SOS2-to-binary reformulation
Type: double
Default value: 0
Minimum value: -1
Maximum value: 1e10

Controls the automatic reformulation of SOS2 constraints into binary form. SOS2 constraints
are often handled more efficiently using a binary representation. The reformulation often requires
big-M values to be introduced as coefficients. This parameter specifies the largest big-M that can
be introduced by presolve when performing this reformulation. Larger values increase the chances
that an SOS2 constraint will be reformulated, but very large values (e.g., 1e8) can lead to numerical
issues.

The default value of 0 disables the reformulation. You can set the parameter to -1 to choose an
automatic approach, or a large value to force reformulation.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

Please refer to this section for more information on SOS constraints.

PreSparsify

Controls the presolve sparsify reduction
Type: int
Default value: -1
Minimum value: -1
Maximum value: 1

Controls the presolve sparsify reduction. This reduction can sometimes significantly reduce the
number of non-zero values in the presolved model. Value 0 shuts off the reduction, while value 1
forces it on. The default value of -1 chooses automatically.

Note: Only affects mixed integer programming (MIP) models

803

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

ProjImpliedCuts

Projected implied bound cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls projected implied bound cut generation. Use 0 to disable these cuts, 1 for moderate
cut generation, or 2 for aggressive cut generation. The default -1 value chooses automatically.
Overrides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

PSDCuts

PSD cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls PSD cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or
2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts
parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

PSDTol

Positive semi-definite tolerance
Type: double
Default value: 1e-6
Minimum value: 0
Maximum value: Infinity

804

Sets a limit on the amount of diagonal perturbation that the optimizer is allowed to perform
on a Q matrix in order to correct minor PSD violations. If a larger perturbation is required, the
optimizer will terminate with a GRB_ERROR_Q_NOT_PSD error.

Note: Only affects QP/QCP/MIQP/MIQCP models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

PumpPasses

Passes of the feasibility pump heuristic
Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

Number of passes of the feasibility pump heuristic. Note that this heuristic is only applied at
the end of the MIP root.

This heuristic is quite expensive, and generally produces poor quality solutions. You should
generally only use it if other means, including exploration of the tree with default settings, fail to
produce a feasible solution.

One important note about integer-valued parameters: while the maximum value that can be
stored in a signed integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an
integer parameter to a value larger than this maximum will produce an error.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

QCPDual

Dual variables for QCP models
Type: int
Default value: 0
Minimum value: 0
Maximum value: 1

Determines whether dual variable values are computed for QCP models. Computing them can
add significant time to the optimization, so you should only set this parameter to 1 if you need
them.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

805

Quad

Controls quad precision in simplex
Type: int
Default value: -1
Minimum value: -1
Maximum value: 1

Enables or disables quad precision computation in simplex. The -1 default setting allows the
algorithm to decide. Quad precision can sometimes help solve numerically challenging models, but
it can also significantly increase runtime.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

Record

Enables API call recording
Type: int
Default value: 0
Minimum value: 0
Maximum value: 1

Enables API call recording. When enabled, Gurobi will write one or more files (named gurobi000.grbr
or similar) that capture the sequence of Gurobi commands that your program issued. This file can
subsequently be replayed using the Gurobi command-line tool. Replaying the file will repeat the
exact same sequence of commands, and when completed will show the time spent in Gurobi API
routines, the time spent in Gurobi algorithms, and will indicate whether any Gurobi environments
or models were leaked by your program. Replay files are particularly useful in tech support situ-
ations. They provide an easy way to relay to Gurobi tech support the exact sequence of Gurobi
commands that led to a question or issue.

This parameter must be set before starting an empty environment (or in a gurobi.env file).
All Gurobi commands will be recorded until the environment is freed or the program ends.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

ResultFile

Write a result file upon completion of optimization
Type: string
Default value: ""

Specifies the name of the result file to be written upon completion of optimization. The type
of the result file is determined by the file suffix. The most commonly used suffixes are .sol (to
capture the solution vector), .bas (to capture the simplex basis), and .mst (to capture the solution
vector on the integer variables). You can also write a .ilp file (to capture the IIS for an infeasible

806

model), or a .mps, .rew, .lp, or .rlp file (to capture the original model). The file suffix may
optionally be followed by .gz, .bz2, or .7z, which produces a compressed result.

More information on the file formats can be found in the File Format section.
For examples of how to query or modify parameter values from our different APIs, refer to our

Parameter Examples.

RINS

Relaxation Induced Neighborhood Search (RINS) heuristic frequency
Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

Frequency of the RINS heuristic. Default value (-1) chooses automatically. A value of 0 shuts
off RINS. A positive value n applies RINS at every n-th node of the MIP search tree.

Increasing the frequency of the RINS heuristic shifts the focus of the MIP search away from
proving optimality, and towards finding good feasible solutions. We recommend that you try
MIPFocus, ImproveStartGap, or ImproveStartTime before experimenting with this parameter.

One important note about integer-valued parameters: while the maximum value that can be
stored in a signed integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an
integer parameter to a value larger than this maximum will produce an error.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

RelaxLiftCuts

Relax-and-lift cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls relax-and-lift cut generation. Use 0 to disable these cuts, 1 for moderate cut generation,
or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts
parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

807

RLTCuts

RLT cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls Relaxation Linearization Technique (RLT) cut generation. Use 0 to disable these cuts,
1 for moderate cut generation, or 2 for aggressive cut generation. The default -1 value chooses
automatically. Overrides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

ScaleFlag

Model scaling
Type: int
Default value: -1
Minimum value: -1
Maximum value: 3

Controls model scaling. By default, the rows and columns of the model are scaled in order
to improve the numerical properties of the constraint matrix. The scaling is removed before the
final solution is returned. Scaling typically reduces solution times, but it may lead to larger con-
straint violations in the original, unscaled model. Turning off scaling (ScaleFlag=0) can sometimes
produce smaller constraint violations. Choosing a different scaling option can sometimes improve
performance for particularly numerically difficult models.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

ScenarioNumber

Selects scenario index of multi-scenario models
Type: int
Default value: 0
Minimum value: 0
Maximum value: 2000000000

When working with multiple scenarios, this parameter selects the index of the scenario you
want to work with. When you query or modify an attribute associated with multiple scenarios
(ScenNLB, ScenNUB, ScenNObj, ScenNRHS, etc.), the ScenarioNumber parameter will determine

808

which scenario is actually affected. The value of this parameter should be less than the value of
the NumScenarios attribute (which captures the number of scenarios in the model).

Please refer to the discussion of Multiple Scenarios for more information on the use of alternative
scenarios.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

Seed

Random number seed
Type: int
Default value: 0
Minimum value: 0
Maximum value: MAXINT

Modifies the random number seed. This acts as a small perturbation to the solver, and typically
leads to different solution paths.

One important note about integer-valued parameters: while the maximum value that can be
stored in a signed integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an
integer parameter to a value larger than this maximum will produce an error.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

ServerPassword

Client password for Remote Services cluster or token server
Type: string
Default value: ""

The password for connecting to the server (either a Compute Server or a token server).
For connecting to the Remote Services cluster referred to by the ComputeServer parameter,

you’ll need to supply the client password. Refer to the Gurobi Remote Services Reference Manual
for more information on starting Compute Server jobs.

Supply the token server password (if needed) when connecting to the server referred to by the
TokenServer parameter,

You must set this parameter through either a gurobi.lic file (using PASSWORD=pwd) or an
empty environment. Changing the parameter after your environment has been created will have
no effect.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

ServerTimeout

Network timeout

809

https://www.gurobi.com/documentation/9.1/remoteservices/remoteservices.html

Type: int
Default value: 60
Minimum value: 1
Maximum value: MAXINT

Network time-out for Compute Server and token server (in seconds). If the client program is
unable to contact the server for more than the specified amount of time, the client will quit with a
network error.

Refer to the Gurobi Remote Services Reference Manual for more information on starting Com-
pute Server jobs.

You must set this parameter using an empty environment. Changing the parameter after your
environment has been created will have no effect.

One important note about integer-valued parameters: while the maximum value that can be
stored in a signed integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an
integer parameter to a value larger than this maximum will produce an error.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

Sifting

Controls sifting within dual simplex
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Enables or disables sifting within dual simplex. Sifting can be useful for LP models where the
number of variables is many times larger than the number of constraints (we typically only see
significant benefits when the ratio is 100 or more). Options are Automatic (-1), Off (0), Moderate
(1), and Aggressive (2). With a Moderate setting, sifting will be applied to LP models and to
the root node for MIP models. With an Aggressive setting, sifting will be applied any time dual
simplex is used, including at the nodes of a MIP. Note that this parameter has no effect if you
aren’t using dual simplex. Note also that Gurobi will ignore this parameter in cases where sifting
is obviously a worse choice than dual simplex.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

SiftMethod

LP method used to solve sifting sub-problems
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

810

https://www.gurobi.com/documentation/9.1/remoteservices/remoteservices.html

LP method used to solve sifting sub-problems. Options are Automatic (-1), Primal Simplex
(0), Dual Simplex (1), and Barrier (2). Note that this parameter only has an effect when you are
using dual simplex and sifting has been selected (either automatically by dual simplex, or through
the Sifting parameter).

Changing the value of this parameter rarely produces a significant benefit.
For examples of how to query or modify parameter values from our different APIs, refer to our

Parameter Examples.

SimplexPricing

Simplex pricing strategy
Type: int
Default value: -1
Minimum value: -1
Maximum value: 3

Determines the simplex variable pricing strategy. Available options are Automatic (-1), Partial
Pricing (0), Steepest Edge (1), Devex (2), and Quick-Start Steepest Edge (3).

Changing the value of this parameter rarely produces a significant benefit.
For examples of how to query or modify parameter values from our different APIs, refer to our

Parameter Examples.

SolutionLimit

MIP solution limit
Type: int
Default value: MAXINT
Minimum value: 1
Maximum value: MAXINT

Limits the number of feasible MIP solutions found. Optimization returns with a SOLUTION_LIMIT
status once the limit has been reached (see the Status Code section for further details).

One important note about integer-valued parameters: while the maximum value that can be
stored in a signed integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an
integer parameter to a value larger than this maximum will produce an error.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

SolFiles

Location to store intermediate solution files
Type: string
Default value: ""

811

During the MIP solution process, multiple incumbent solutions are typically found on the path
to finding a proven optimal solution. Setting this parameter to a non-empty string causes these
solutions to be written to files (in .sol format) as they are found. The MIP solver will append
_n.sol to the value of the parameter to form the name of the file that contains solution number n.
For example, setting the parameter to value solutions/mymodel will create files mymodel_0.sol,
mymodel_1.sol, etc., in directory solutions.

Note that intermediate solutions can be retrieved as they are generated through a callback (by
requesting the MIPSOL_SOL in a MIPSOL callback). This parameter makes the process simpler.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

SolutionNumber

Select a sub-optimal MIP solution
Type: int
Default value: 0
Minimum value: 0
Maximum value: MAXINT

When querying attribute Xn, ObjNVal, or PoolObjVal to retrieve an alternate MIP solution,
this parameter determines which alternate solution is retrieved. The value of this parameter should
be less than the value of the SolCount attribute.

One important note about integer-valued parameters: while the maximum value that can be
stored in a signed integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an
integer parameter to a value larger than this maximum will produce an error.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

StartNodeLimit

Limit MIP start sub-MIP nodes
Type: int
Default value: -1
Minimum value: -3
Maximum value: 2000000000

This parameter limits the number of branch-and-bound nodes explored when completing a
partial MIP start. The default value of -1 uses the value of the SubMIPNodes parameter. A value
of -2 means to only check full MIP starts for feasibility and to ignore partial MIP starts. A value
of -3 shuts off MIP start processing entirely. Non-negative values are node limits.

812

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

StartNumber

Selects MIP start index
Type: int
Default value: 0
Minimum value: -1
Maximum value: 2000000000

This parameter selects the index of the MIP start you want to work with. When you modify
a MIP start value (using the Start attribute) the StartNumber parameter will determine which
MIP start is actually affected. The value of this parameter should be less than the value of the
NumStart attribute (which captures the number of MIP starts in the model).

The special value -1 is meant to append new MIP start to a model, but querying a MIP start
when StartNumber is -1 will result in an error.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

StrongCGCuts

Strong-CG cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls Strong Chvátal-Gomory (Strong-CG) cut generation. Use 0 to disable these cuts,
1 for moderate cut generation, or 2 for aggressive cut generation. The default -1 value chooses
automatically. Overrides the Cuts parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

SubMIPCuts

Sub-MIP cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

813

Controls sub-MIP cut generation. Use 0 to disable these cuts, 1 for moderate cut generation,
or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts
parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

SubMIPNodes

Nodes explored in sub-MIP heuristics
Type: int
Default value: 500
Minimum value: 0
Maximum value: MAXINT

Limits the number of nodes explored by MIP-based heuristics (such as RINS). Exploring more
nodes can produce better solutions, but it generally takes longer.

One important note about integer-valued parameters: while the maximum value that can be
stored in a signed integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an
integer parameter to a value larger than this maximum will produce an error.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

Symmetry

MIP symmetric detection
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

Controls MIP symmetry detection. A value of -1 corresponds to an automatic setting. Other
options are off (0), conservative (1), or aggressive (2).

Changing the value of this parameter rarely produces a significant benefit.
Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

Threads

Thread count

814

Type: int
Default value: 0
Minimum value: 0
Maximum value: NProc

Controls the number of threads to apply to parallel algorithms (concurrent LP, parallel barrier,
parallel MIP, etc.). The default value of 0 is an automatic setting. It will generally use all of the
cores in the machine, but it may choose to use fewer.

While you will generally get the best performance by using all available cores in your machine,
there are a few exceptions. One is of course when you are sharing a machine with other jobs. In
this case, you should select a thread count that doesn’t oversubscribe the machine.

We have also found that certain classes of MIP models benefit from reducing the thread count,
often all the way down to one thread. Starting multiple threads introduces contention for machine
resources. For classes of models where the first solution found by the MIP solver is almost always
optimal, and that solution isn’t found at the root, it is often better to allow a single thread to
explore the search tree uncontended.

Another situation where reducing the thread count can be helpful is when memory is tight.
Each thread can consume a significant amount of memory.

We’ve made the pragmatic choice to impose a soft limit of 32 threads for the automatic setting
(0). If your machine has more, and you find that using more increases performance, you should
feel free to set the parameter to a larger value.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

TimeLimit

Time limit
Type: double
Default value: Infinity
Minimum value: 0
Maximum value: Infinity

Limits the total time expended (in seconds). Optimization returns with a TIME_LIMIT status
if the limit is exceeded (see the Status Code section for further details).

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

TokenServer

Name of your token server
Type: string
Default value: ""

When using a token license, set this parameter to the name of the token server. You can refer
to the server using its name or its IP address.

815

You can provide a comma-separated list of token servers to increase robustness. If the first
server in the list doesn’t respond, the second will be tried, etc.

You must set this parameter through either a gurobi.lic file (using TOKENSERVER=server) or
an empty environment. Changing the parameter after your environment has been created will have
no effect.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

TSPort

Port for token server
Type: int
Default value: 41954
Minimum value: 0
Maximum value: 65536

Port to use when connecting to the Gurobi token server. You should only change this if your
network administrator tells you to.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

TuneBaseSettings

Comma-separated list of base parameter settings
Type: string
Default value: ""

A list of parameter files (e.g., base1.prm,base2.prm) that define settings that should be tried
first during the tuning process, in the order they are given. Default parameter settings will also be
tried, but after the settings provided in these files. You can include an empty parameter file in the
list if you would like default settings to be tried earlier.

Note: Command-line only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

TuneCleanup

Enables a tuning cleanup phase
Type: double
Default value: 0.0
Minimum value: 0.0
Maximum value: 1.0

816

Enables a cleanup phase at the end of tuning. The parameter indicates the percentage of total
tuning time to devote to this phase, with a goal of reducing the number of parameter changes
required to achieve the best tuning result.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

TuneCriterion

Tuning criterion
Type: int
Default value: -1
Minimum value: -1
Maximum value: 3

Modifies the tuning criterion for the tuning tool. The primary tuning criterion is always to
minimize the runtime required to find a proven optimal solution. However, for MIP models that
don’t solve to optimality within the specified time limit, a secondary criterion is needed. Set this
parameter to 1 to use the optimality gap as the secondary criterion. Choose a value of 2 to use the
objective of the best feasible solution found. Choose a value of 3 to use the best objective bound.
Choose 0 to ignore the secondary criterion and focus entirely on minimizing the time to find a
proven optimal solution. The default value of -1 chooses automatically.

Note that for multi-objective problems value 1 and 3 are unsupported. See the Multiple Objec-
tives section for more details on this.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

TuneJobs

Distributed tuning job count
Type: int
Default value: 0
Minimum value: 0
Maximum value: MAXINT

Enables distributed parallel tuning, which can significantly increase the performance of the
tuning tool. A value of n causes the tuning tool to distribute tuning work among n parallel jobs.
These jobs are distributed among a set of machines. Use the WorkerPool parameter to provide a
distributed worker cluster.

Note that distributed tuning is most effective when the worker machines have similar perfor-
mance. Distributed tuning doesn’t attempt to normalize performance by server, so it can incorrectly
attribute a boost in performance to a parameter change when the associated setting is tried on a
worker that is significantly faster than the others.

One important note about integer-valued parameters: while the maximum value that can be
stored in a signed integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an
integer parameter to a value larger than this maximum will produce an error.

817

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

TuneOutput

Tuning output level
Type: int
Default value: 2
Minimum value: 0
Maximum value: 3

Controls the amount of output produced by the tuning tool. Level 0 produces no output; level
1 produces tuning summary output only when a new best parameter set is found; level 2 produces
tuning summary output for each parameter set that is tried; level 3 produces tuning summary
output, plus detailed solver output, for each parameter set tried.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

TuneResults

Number of improved parameter sets returned
Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

The tuning tool often finds multiple parameter sets that produce better results than the baseline
settings. This parameter controls how many of these sets should be retained when tuning is
complete. The default value retains the best results that were found for each count of changed
parameters. In other words, it retains the best result for one changed parameter, for two changed
parameter, etc. Results that aren’t on the efficient frontier are discard.

One important note about integer-valued parameters: while the maximum value that can be
stored in a signed integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an
integer parameter to a value larger than this maximum will produce an error.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

TuneTimeLimit

Tuning tool time limit
Type: double
Default value: -1
Minimum value: -1
Maximum value: Infinity

818

Limits total tuning runtime (in seconds). The default setting (-1) chooses a time limit auto-
matically.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

TuneTrials

Perform multiple runs on each parameter set to limit the effect of random noise
Type: int
Default value: 3
Minimum value: 1
Maximum value: MAXINT

Performance on a MIP model can sometimes experience significant variations due to random
effects. As a result, the tuning tool may return parameter sets that improve on the baseline only
due to randomness. This parameter allows you to perform multiple solves for each parameter set,
using different Seed values for each, in order to reduce the influence of randomness on the results.

One important note about integer-valued parameters: while the maximum value that can be
stored in a signed integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an
integer parameter to a value larger than this maximum will produce an error.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

UpdateMode

Changes the behavior of lazy updates
Type: int
Default value: 1
Minimum value: 0
Maximum value: 1

Determines how newly added variables and linear constraints are handled. The default setting
(1) allows you to use new variables and constraints immediately for building or modifying the
model. A setting of 0 requires you to call update before these can be used.

Since the vast majority of programs never query Gurobi for details about the optimization
models they build, the default setting typically removes the need to call update, or even be aware
of the details of our lazy update approach for handling model modifications. However, these details
will show through when you try to query modified model information.

In the Gurobi interface, model modifications (bound changes, right-hand side changes, objective
changes, etc.) are placed in a queue. These queued modifications are applied to the model at three
times: when you call update, when you call optimize, or when you call write to write the model
to disk. When you query information about the model, the result will depend on both whether
that information was modified and when it was modified. In particular, no matter what setting of

819

UpdateMode you use, if the modification is sitting in the queue, you’ll get the result from before
the modification.

To expand on this a bit, all attribute modifications are actually placed in a queue. This includes
attributes that may not traditionally be viewed as being part of the model, including things like
variable branching priorities, constraint basis statuses, etc. Querying the values of these attributes
will return their previous values if subsequent modifications are still in the queue.

The only potential benefit to changing the parameter to 0 is that in unusual cases this setting
may allow simplex to make more aggressive use of warm-start information after a model modifica-
tion.

If you want to change this parameter, you need to set it as soon as you create your Gurobi
environment.

Note that you still need to call update to modify an attribute on an SOS constraint, quadratic
constraint, or general constraint.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

UserName
User name for Remote Services
Type: string
Default value: ""

Identify the user connecting to the Remote Services Manager.
You can provide either a username and password, or an access ID and a secret key, to authen-

ticate your connection to a Cluster Manager.
You can set this parameter through either a gurobi.lic file (using USERNAME=YOUR_USERNAME)

or an empty environment. Changing the parameter after your environment has been started will
result in an error.

Note: Cluster Manager only

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

VarBranch
Branch variable selection strategy
Type: int
Default value: -1
Minimum value: -1
Maximum value: 3

Controls the branch variable selection strategy. The default -1 setting makes an automatic
choice, depending on problem characteristics. Available alternatives are Pseudo Reduced Cost
Branching (0), Pseudo Shadow Price Branching (1), Maximum Infeasibility Branching (2), and
Strong Branching (3).

Changing the value of this parameter rarely produces a significant benefit.

820

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

WorkerPassword

Distributed worker password
Type: string
Default value: ""

When using a distributed algorithm (distributed MIP, distributed concurrent, or distributed
tuning), this parameter allows you to specify the password for the distributed worker cluster pro-
vided in the WorkerPool parameter.

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

WorkerPool

Distributed worker cluster (for distributed algorithms)
Type: string
Default value: ""

When using a distributed algorithm (distributed MIP, distributed concurrent, or distributed
tuning), this parameter allows you to specify a Remote Services cluster that will provide distributed
workers. You should also specify the access password for that cluster, if there is one, in the
WorkerPassword parameter. Note that you don’t need to set either of these parameters if your job
is running on a Compute Server node and you want to use the same cluster for the distributed
workers.

You can provide a comma-separated list of machines for added robustness. If the first node in
the list is unavailable, the client will attempt to contact the second node, etc.

To give an example, if you have a Remote Services cluster that uses port 61000 on a pair of
machines named server1 and server2, you could set WorkerPool to
"server1:61000" or "server1:61000,server2:61000".

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

ZeroHalfCuts

Zero-half cut generation
Type: int
Default value: -1
Minimum value: -1
Maximum value: 2

821

Controls zero-half cut generation. Use 0 to disable these cuts, 1 for moderate cut generation,
or 2 for aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts
parameter.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

ZeroObjNodes

Zero-objective heuristic
Type: int
Default value: -1
Minimum value: -1
Maximum value: MAXINT

Number of nodes to explore in the zero objective heuristic. Note that this heuristic is only
applied at the end of the MIP root, and only when no other root heuristic finds a feasible solution.

This heuristic is quite expensive, and generally produces poor quality solutions. You should
generally only use it if other means, including exploration of the tree with default settings, fail to
produce a feasible solution.

One important note about integer-valued parameters: while the maximum value that can be
stored in a signed integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an
integer parameter to a value larger than this maximum will produce an error.

Note: Only affects mixed integer programming (MIP) models

For examples of how to query or modify parameter values from our different APIs, refer to our
Parameter Examples.

12.3 Parameter Examples
Gurobi parameter handling is designed to be orthogonal, meaning that you only need to use a small
number of routines to work with a large number parameters. In particular:

• The names and meanings of the various Gurobi parameters remain constant across the dif-
ferent programming language APIs, although some decoration is required in each language.

• Given the type of a parameter (double, integer, etc.) and the programming language you
wish to use it from, you simply need to identify the appropriate routine for that parameter
type in that language in order to query or modify that parameter.

Please refer to the following sections for detailed examples of how to work with parameters from
our various APIs:

• C

• C++

822

• C#

• Java

• MATLAB

• Python

• R

• Visual Basic

You can also browse our Examples to get a better sense of how to use our parameter interface.
One important note about integer-valued parameters: while the maximum value that can be

stored in a signed integer is 231 − 1, we use a MAXINT value of 2,000,000,000. Attempting to set an
integer parameter to a value larger than this maximum will produce an error.

C Parameter Examples

The C interface defines a symbolic constant for each parameter. The symbolic constant name is
prefixed by GRB_type_PAR_, where type is either INT, DBL, or STR. This is followed by the capitalized
parameter name. For example, the symbolic constant for the integer Threads parameter (found in
C header file gurobi_c.h) is:

#define GRB_INT_PAR_THREADS "Threads"

The routine you use to modify a parameter value depends on the type of the parameter. For a
double-valued parameter, you would use GRBsetdblparam.

Recall that each model gets its own copy of the environment when it is created. Parameter
changes to the original environment therefore have no effect on existing models. You’ll need to use
GRBgetenv to retrieve the environment associated with a particular model if you want to change
a parameter for that model.

To set the TimeLimit parameter for a model, you’d do:

error = GRBsetdblparam(GRBgetenv(model), GRB_DBL_PAR_TIMELIMIT, 100.0);

If you’d prefer to use a string for the parameter name, you can also do:

error = GRBsetdblparam(GRBgetenv(model), "TimeLimit", 100.0);

The case of the string is ignored, as are underscores. Thus, TimeLimit and TIME_LIMIT are
equivalent.

Use GRBgetdblparam to query the current value of a (double) parameter:

double currentvalue;
error = GRBgetdblparam(modelenv, "TimeLimit", ¤tvalue);

823

https://www.gurobi.com/documentation/9.1/examples/index.html

C++ Parameter Examples
In the C++ interface, parameters are grouped by datatype into three enums: GRB_DoubleParam,
GRB_IntParam, and GRB_StringParam. You refer to a specific parameter by appending the param-
eter name to the enum name. For example, the Threads parameter is GRB_IntParam_Threads.

To modify a parameter, you use GRBModel::set. Recall that you can also set parameters on an
environment, but changes to the environment won’t affect models that have already been created
using that environment. It is generally simpler to set parameters on the model itself.

To set the TimeLimit parameter for a model, you’d do:

GRBModel *m = ...;
m->set(GRB_DoubleParam_TimeLimit, 100.0);

You can also set the value of a parameter using strings for the parameter name and desired
value. For example:

GRBModel *m = ...;
m->set("TimeLimit", "100.0");

Use GRBModel::get to query the current value of a parameter:

currentlimit = m.get(GRB_DoubleParam_TimeLimit);

C# Parameter Examples
In the C# interface, parameters are grouped by datatype into three enums: GRB.DoubleParam,
GRB.IntParam, and GRB.StringParam. You would refer to the integer Threads parameter as
GRB.IntParam.Threads.

To modify a parameter, set the corresponding .NET property from Model.Parameters. To set
the TimeLimit parameter, for example:

GRBModel m = ...;
m.Parameters.TimeLimit = 100.0;

You can also use GRBModel.Set:

m.Set(GRB.DoubleParam.TimeLimit, 100.0);

You can also set the value of a parameter using strings for the parameter name and desired
value. For example:

GRBModel m = ...;
m.Set("TimeLimit", "100.0");

To query the current value of a parameter, use:

currentlimit = m.Parameters.TimeLimit;

You can also use GRBModel.Get:

currentlimit = m.Get(GRB.DoubleParam.TimeLimit);

824

Java Parameter Examples
In the Java interface, parameters are grouped by datatype into three enums: GRB.DoubleParam,
GRB.IntParam, and GRB.StringParam. You would refer to the integer Threads parameter as
GRB.IntParam.Threads.

To modify a parameter, you use GRBModel.set. Recall that you can also set parameters on an
environment, but changes to the environment won’t affect models that have already been created
using that environment. It is generally simpler to set parameters on the model itself.

To set the TimeLimit parameter for a model, you’d do:

GRBModel m = ...;
m.set(GRB.DoubleParam.TimeLimit, 100.0);

You can also set the value of a parameter using strings for the parameter name and desired
value. For example:

GRBModel m = ...;
m.set("TimeLimit", "100.0");

Use GRBModel.get to query the current value of a parameter:

currentlimit = m.get(GRB.DoubleParam.TimeLimit);

MATLAB Parameter Examples
In the MATLAB interface, parameters are passed to Gurobi through a struct. To modify a
parameter, you create a field in the struct with the appropriate name, and set it to the desired
value. For example, to set the TimeLimit parameter to 100 you’d do:

params.timelimit = 100;

The case of the parameter name is ignored, as are underscores. Thus, you could also do:

params.timeLimit = 100;

...or...

params.TIME_LIMIT = 100;

All desired parameter changes should be stored in a single struct, which is passed as the second
parameter to the gurobi function.

Python Parameter Examples
In the Python interface, parameters are listed as constants within the GRB.Param class. You would
refer to the Threads parameter as GRB.Param.Threads.

To modify a parameter, you can set the appropriate member of Model.Params. To set the time
limit for model m, you’d do:

m.Params.timeLimit = 100.0

The case of the parameter name is actually ignored, as are underscores, so you could also do:

825

m.Params.timelimit = 100.0

...or...

m.Params.TIME_LIMIT = 100.0

You can also use the Model.setParam method:

m.setParam(GRB.Param.TimeLimit, 100.0)

If you’d prefer to use a string for the parameter name, you can also do:

m.setParam("TimeLimit", 100.0);

To query the current value of a parameter, use:

currentlimit = m.Params.timeLimit

R Parameter Examples
In the R interface, parameters are passed to Gurobi through a list. To modify a parameter, you
create a named component in the list with the appropriate name, and set it to the desired value.
For example, to set the TimeLimit parameter to 100 you’d do:

params <- list(TimeLimit=100)

The case of the parameter name is ignored, as are underscores. Thus, you could also do:

params <- list(timeLimit = 100)

...or...

params <- list(TIME_LIMIT = 100)

All desired parameter changes should be stored in a single list, which is passed as the second
parameter to the gurobi function.

Visual Basic Parameter Examples
In the Visual Basic interface, parameters are grouped by datatype into three enums: GRB.DoubleParam,
GRB.IntParam, and GRB.StringParam. You would refer to the integer Threads parameter as
GRB.IntParam.Threads.

To modify a parameter, set the corresponding .NET property from Model.Parameters. To set
the TimeLimit parameter, for example:

GRBModel m = ...
m.Parameters.TimeLimit = 100.0

You can also use GRBModel.Set:

m.Set(GRB.DoubleParam.TimeLimit, 100.0)

You can also set the value of a parameter using strings for the parameter name and desired
value. For example:

826

GRBModel m = ...
m.Set("TimeLimit", "100.0")

To query the current value of a parameter, use:

currentlimit = m.Parameters.TimeLimit

You can also use GRBModel.Get:

currentlimit = m.Get(GRB.DoubleParam.TimeLimit)

827

Optimization Status Codes

Once an optimize call has returned, the Gurobi optimizer sets the Status attribute of the model to
one of several possible values. The attribute takes an integer value, but we recommend that you
use one of the predefined status constants to check the status in your program. Each code has a
name, and each language requires a prefix on this name to obtain the appropriate constant. You
would access status code OPTIMAL in the following ways from the available Gurobi interfaces:

Language Status Code
C GRB_OPTIMAL
C++ GRB_OPTIMAL
Java GRB.Status.OPTIMAL
.NET GRB.Status.OPTIMAL
Python GRB.OPTIMAL

Possible status codes are as follows:

Status code Value Description
LOADED 1 Model is loaded, but no solution information is available.
OPTIMAL 2 Model was solved to optimality (subject to tolerances), and

an optimal solution is available.
INFEASIBLE 3 Model was proven to be infeasible.
INF_OR_UNBD 4 Model was proven to be either infeasible or unbounded. To

obtain a more definitive conclusion, set the DualReductions
parameter to 0 and reoptimize.

UNBOUNDED 5 Model was proven to be unbounded. Important note: an un-
bounded status indicates the presence of an unbounded ray
that allows the objective to improve without limit. It says
nothing about whether the model has a feasible solution. If
you require information on feasibility, you should set the ob-
jective to zero and reoptimize.

CUTOFF 6 Optimal objective for model was proven to be worse than
the value specified in the Cutoff parameter. No solution
information is available.

ITERATION_LIMIT 7 Optimization terminated because the total number of sim-
plex iterations performed exceeded the value specified in
the IterationLimit parameter, or because the total num-
ber of barrier iterations exceeded the value specified in the
BarIterLimit parameter.

NODE_LIMIT 8 Optimization terminated because the total number of branch-
and-cut nodes explored exceeded the value specified in the
NodeLimit parameter.

828

TIME_LIMIT 9 Optimization terminated because the time expended ex-
ceeded the value specified in the TimeLimit parameter.

SOLUTION_LIMIT 10 Optimization terminated because the number of solutions
found reached the value specified in the SolutionLimit pa-
rameter.

INTERRUPTED 11 Optimization was terminated by the user.
NUMERIC 12 Optimization was terminated due to unrecoverable numerical

difficulties.
SUBOPTIMAL 13 Unable to satisfy optimality tolerances; a sub-optimal solu-

tion is available.
INPROGRESS 14 An asynchronous optimization call was made, but the asso-

ciated optimization run is not yet complete.
USER_OBJ_LIMIT 15 User specified an objective limit (a bound on either the best

objective or the best bound), and that limit has been reached.

829

Batch Status Codes

All batches have a current status, which is queried through the BatchStatus attribute on a Batch
object. The attribute takes an integer value, but we recommend that you use one of the predefined
status constants to check the status in your program. Each code has a name, and each language
requires a prefix on this name to obtain the appropriate constant. You would access status code
COMPLETED in the following ways from the available Gurobi interfaces:

Language Status Code
C GRB_BATCH_COMPLETED
C++ GRB_BATCH_COMPLETED
Java GRB.BatchStatus.COMPLETED
.NET GRB.BatchStatus.COMPLETED
Python GRB.BATCH_COMPLETED

Possible batch status codes are as follows:
Status code Value Description
CREATED 1 Batch was created, but is not ready to be scheduled.
SUBMITTED 2 The batch has been completely specified, and now is waiting for a job to finish processing the request.
ABORTED 3 Batch processing was aborted by the user.
FAILED 4 Batch processing failed.
COMPLETED 5 A Batch Job successfully processed the Batch request.

See the Batch Optimization section for more details.

830

Callback Codes

The Gurobi callback routines make use of a pair of arguments: where and what. When a user
callback function is called, the where argument indicates from where in the Gurobi optimizer it
is being called (presolve, simplex, barrier, MIP, etc.). When the user callback wishes to obtain
more detailed information about the state of the optimization, the what argument can be passed
to an appropriate get method for your language to obtain additional information (e.g., GRBcbget
in C, GRBCallback::getIntInfo in C++, GRBCallback.getIntInfo in Java, GRBCallback.GetIntInfo
in .NET, and Model.cbGet in Python).

More detailed information on how to use callbacks in your application can be found in the
reference manuals for the different Gurobi language interfaces (C, C++, Java, .NET, and Python).

Note that changing parameters from within a callback is not supported, doing so may lead to
undefined behavior.

Possible values for the where and what arguments are listed in the following tables. Note that
these values are referred to in slightly different ways from the different Gurobi interfaces. Consider
the SIMPLEX value as an example. You would refer to this constant as follows from the different
Gurobi APIs:

Language Callback constant
C GRB_CB_SIMPLEX
C++ GRB_CB_SIMPLEX
Java GRB.Callback.SIMPLEX
.NET GRB.Callback.SIMPLEX
Python GRB.Callback.SIMPLEX

Possible where values are:
where Numeric value Optimizer status
POLLING 0 Periodic polling callback
PRESOLVE 1 Currently performing presolve
SIMPLEX 2 Currently in simplex
MIP 3 Currently in MIP
MIPSOL 4 Found a new MIP incumbent
MIPNODE 5 Currently exploring a MIP node
MESSAGE 6 Printing a log message
BARRIER 7 Currently in barrier
MULTIOBJ 8 Currently in multi-objective optimization

Allowable what values depend on the value of the where argument. Valid combinations are:

what where Result
type

Description

RUNTIME Any except
POLLING

double Elapsed solver runtime (seconds).

831

PRE_COLDEL PRESOLVE int The number of columns removed by
presolve to this point.

PRE_ROWDEL PRESOLVE int The number of rows removed by pre-
solve to this point.

PRE_SENCHG PRESOLVE int The number of constraint senses
changed by presolve to this point.

PRE_BNDCHG PRESOLVE int The number of variable bounds
changed by presolve to this point.

PRE_COECHG PRESOLVE int The number of coefficients changed by
presolve to this point.

SPX_ITRCNT SIMPLEX double Current simplex iteration count.
SPX_OBJVAL SIMPLEX double Current simplex objective value.
SPX_PRIMINF SIMPLEX double Current primal infeasibility.
SPX_DUALINF SIMPLEX double Current dual infeasibility.
SPX_ISPERT SIMPLEX int Is problem currently perturbed?
MIP_OBJBST MIP double Current best objective.
MIP_OBJBND MIP double Current best objective bound.
MIP_NODCNT MIP double Current explored node count.
MIP_SOLCNT MIP int Current count of feasible solutions

found.
MIP_CUTCNT MIP int Current count of cutting planes ap-

plied.
MIP_NODLFT MIP double Current unexplored node count.
MIP_ITRCNT MIP double Current simplex iteration count.
MIPSOL_SOL MIPSOL double * Solution vector for new solution (C

only). The resultP argument to C rou-
tine GRBcbget should point to an ar-
ray of doubles that is at least as long
as the number of variables in the user
model. Use the getSolution callback
method in the object-oriented inter-
faces.

MIPSOL_OBJ MIPSOL double Objective value for new solution.
MIPSOL_OBJBST MIPSOL double Current best objective.
MIPSOL_OBJBND MIPSOL double Current best objective bound.
MIPSOL_NODCNT MIPSOL double Current explored node count.
MIPSOL_SOLCNT MIPSOL int Current count of feasible solutions

found.
MIPNODE_STATUS MIPNODE int Optimization status of current MIP

node (see the Status Code section for
further information).

MIPNODE_OBJBST MIPNODE double Current best objective.
MIPNODE_OBJBND MIPNODE double Current best objective bound.
MIPNODE_NODCNT MIPNODE double Current explored node count.

832

MIPNODE_SOLCNT MIPNODE int Current count of feasible solutions
found.

MIPNODE_REL MIPNODE double * Relaxation solution for the current
node, when its optimization status
is GRB_OPTIMAL (C only). The
resultP argument to C routine GR-
Bcbget should point to an array of
doubles that is at least as long as the
number of variables in the user model.
Use the getNodeRel callback method
in the object-oriented interfaces.

BARRIER_ITRCNT BARRIER int Current barrier iteration count.
BARRIER_PRIMOBJ BARRIER double Primal objective value for current bar-

rier iterate.
BARRIER_DUALOBJ BARRIER double Dual objective value for current bar-

rier iterate.
BARRIER_PRIMINF BARRIER double Primal infeasibility for current barrier

iterate.
BARRIER_DUALINF BARRIER double Dual infeasibility for current barrier

iterate.
BARRIER_COMPL BARRIER double Complementarity violation for current

barrier iterate.
MULTIOBJ_OBJCNT MULTIOBJ int Current count of objectives already

optimized.
MULTIOBJ_SOLCNT MULTIOBJ int Current count of feasible solutions

found.
MULTIOBJ_SOL MULTIOBJ double * Solution vector for new solution (C

only). The resultP argument to C rou-
tine GRBcbget should point to an ar-
ray of doubles that is at least as long
as the number of variables in the user
model. Use the getSolution callback
method in the object-oriented inter-
faces.

MSG_STRING MESSAGE char * The message that is being printed.

Remember that the appropriate prefix must be added to the what or where name listed above,
depending on the language you are using.

Callback notes

Note that the POLLING callback does not allow any additional information to be retrieved. It is
provided in order to allow interactive applications to regain control frequently, so that they can
maintain application responsiveness.

The object-oriented interfaces have specialized methods for obtaining the incumbent or relax-
ation solution. While in C you would use GRBcbget, you use getSolution or getNodeRel in the

833

object-oriented interfaces. Please consult the callback descriptions for C++, Java, .NET, or Python
for further details.

Note that the MIPNODE callback will be called once for each cut pass during the root node solve.
The MIPNODE_NODCNT value will remain at 0 until the root node is complete. If you query relaxation
values from during the root node, the first MIPNODE callback will give the relaxation with no cutting
planes, and the last will give the relaxation after all root cuts have been applied.

Note that the multi-objective optimization algorithm solves a sequence of optimization prob-
lems. In each solve the MULTIOBJ callback will be called. Also, MIP-related callbacks will be called
if the original model is a MIP, and LP-related callbacks will be called if the original model is an
LP.

834

Error Codes

Errors can arise in most of the Gurobi library routines. In the C interface, library routines return
an integer error code. In the C++, Java, .NET, and Python interfaces, Gurobi methods can throw
an exception (a C++ exception, a Java exception, a .NET exception, or a Python exception)

Underlying all Gurobi error reporting is a set of error codes. These are integer values, but we
recommend that you use one of the predefined error code constants to check the error status in your
program. Each error code has a name, and each language requires a prefix on this name to obtain
the appropriate constant. You would access error code OUT_OF_MEMORY in the following ways from
the available Gurobi interfaces:

Language Error Code
C GRB_ERROR_OUT_OF_MEMORY
C++ GRB_ERROR_OUT_OF_MEMORY
Java GRB.Error.OUT_OF_MEMORY
.NET GRB.Error.OUT_OF_MEMORY
Python GRB.Error.OUT_OF_MEMORY

Note that when an error occurs, it produces both an error code and an error message. The
message can be obtained through GRBgeterrormessage in C, through GRBException::getMessage()
in C++, through the inherited getMessage() method on the GRBException class in Java, through
the inherited Message property on the GRBException class in .NET, or through the e.message
attribute on the GurobiError object in Python.

Possible error codes are:

Error code Error
number

Description

OUT_OF_MEMORY 10001 Available memory was exhausted
NULL_ARGUMENT 10002 NULL input value provided for a required argument
INVALID_ARGUMENT 10003 An invalid value was provided for a routine argu-

ment
UNKNOWN_ATTRIBUTE 10004 Tried to query or set an unknown attribute
DATA_NOT_AVAILABLE 10005 Attempted to query or set an attribute that could

not be accessed at that time
INDEX_OUT_OF_RANGE 10006 Tried to query or set an attribute, but one or

more of the provided indices (e.g., constraint in-
dex, variable index) was outside the range of valid
values

UNKNOWN_PARAMETER 10007 Tried to query or set an unknown parameter
VALUE_OUT_OF_RANGE 10008 Tried to set a parameter to a value that is outside

the parameter’s valid range
NO_LICENSE 10009 Failed to obtain a valid license

835

SIZE_LIMIT_EXCEEDED 10010 Attempted to solve a model that is larger than
the limit for a demo license

CALLBACK 10011 Problem in callback
FILE_READ 10012 Failed to read the requested file
FILE_WRITE 10013 Failed to write the requested file
NUMERIC 10014 Numerical error during requested operation
IIS_NOT_INFEASIBLE 10015 Attempted to perform infeasibility analysis on a

feasible model
NOT_FOR_MIP 10016 Requested operation not valid for a MIP model
OPTIMIZATION_IN_PROGRESS 10017 Tried to query or modify a model while optimiza-

tion was in progress
DUPLICATES 10018 Constraint, variable, or SOS contained duplicated

indices
NODEFILE 10019 Error in reading or writing a node file during MIP

optimization
Q_NOT_PSD 10020 Q matrix in QP model is not positive semi-definite
QCP_EQUALITY_CONSTRAINT 10021 QCP equality constraint specified (only inequali-

ties are supported unless the NonConvex param-
eter is set to 2)

NETWORK 10022 Problem communicating with the Gurobi Com-
pute Server

JOB_REJECTED 10023 Gurobi Compute Server responded, but was un-
able to process the job (typically because the
queuing time exceeded the user-specified timeout
or because the queue has exceeded its maximum
capacity)

NOT_SUPPORTED 10024 Indicates that a Gurobi feature is not supported
under your usage environment (for example, some
advanced features are not supported in a Com-
pute Server environment)

EXCEED_2B_NONZEROS 10025 Indicates that the user has called a query routine
on a model with more than 2 billion non-zero en-
tries, and the result would exceed the maximum
size that can be returned by that query routine.
The solution is typically to move to the GRBX ver-
sion of that query routine.

INVALID_PIECEWISE_OBJ 10026 Piecewise-linear objectives must have certain
properties (as described in the documentation for
the various setPWLObj methods). This error in-
dicates that one of those properties was violated.

UPDATEMODE_CHANGE 10027 The UpdateMode parameter can not be modified
once a model has been created.

CLOUD 10028 Problems launching a Gurobi Instant Cloud job.

836

MODEL_MODIFICATION 10029 Indicates that the user has modified the model in
such a way that the model became invalid. For
example, this happens when a general constraint
exists in the model and the user deletes the re-
sultant variable of this constraint. In such a case,
the general constraint does not have any mean-
ingful interpretation anymore. The solution is to
also delete the general constraint when a resultant
variable is deleted.

CSWORKER 10030 When you are using a client-server feature, this
error indicates that there was an application prob-
lem.

TUNE_MODEL_TYPES 10031 Indicates that tuning was invoked on a set of mod-
els, but the models were of different types (e.g.,
one an LP, another a MIP).

SECURITY 10032 Indicates that an authentication step failed or
that an operation was attempted for which the
current credentials do not warrant permission.

NOT_IN_MODEL 20001 Tried to use a constraint or variable that is not
in the model, either because it was removed or
because it has not yet been added.

FAILED_TO_CREATE_MODEL 20002 Failed to create the requested model
INTERNAL 20003 Internal Gurobi error

837

Model File Formats

The Gurobi optimizer works with a variety of file formats:

• The MPS, REW, LP, RLP, ILP, and OPB formats are used to hold optimization models.

• The MST format is used to hold MIP start data. Importing this data into a MIP model
allows optimization to start with a known feasible solution.

• The HNT format is used to hold MIP hints. Importing this data into a MIP model guides
the MIP search towards a guess at a high-quality feasible solution.

• The ORD format is used to hold MIP variable branching priorities. Importing this data into
a MIP model affects the search strategy.

• The BAS format holds simplex basis information. Importing this data into a continuous
models allows the simplex algorithm to start from the given simplex basis.

• The SOL and JSON solution formats are used to hold solution information. The latter
includes additional information about the results of the optimization. Both formats can only
be written after the model has been optimized.

• The ATTR format stores a collection of attributes of a model, including (multiple) MIP starts,
solution, basis information, partitions, variable hints and branching priorities.

• The PRM format holds parameter values. Importing this data into a model changes the
values of the referenced parameters.

Note that all of the Gurobi file I/O routines can work with compressed versions of these files.
Specifically, we can read or write files with the following extensions: .zip, .gz, .bz2, and .7z
(assuming that the associated compression tool, e.g., 7zip for .7z, is installed on your machine
and a corresponding entry is part of you PATH environment variable).

17.1 MPS format
MPS format is the oldest and most widely used format for storing math programming models.
There are actually two variants of this format in wide use. In fixed format, the various fields must
always start at fixed columns in the file. Free format is very similar, but the fields are separated by
whitespace characters instead of appearing in specific columns. One important practical difference
between the two formats is in name length. In fixed format, row and column names are exactly 8
characters, and spaces are part of the name. In free format, names can be arbitrarily long (although
the Gurobi reader places a 255 character limit on name length), and names may not contain spaces.
The Gurobi MPS reader reads both MPS types, and recognizes the format automatically.

Note that any line that begins with the * character is a comment. The contents of that line are
ignored.

838

NAME section

The first section in an MPS format file is the NAME section. It gives the name of the model:

NAME AFIRO

In fixed format, the model name starts in column 15.
ROWS section

The next section is the ROWS section. It begins with the word ROWS on its own line, and continues
with one line for each row in the model. These lines indicate the constraint type (E for equality,
L for less-than-or-equal, or G for greater-than-or-equal), and the constraint name. In fixed format,
the type appears in column 2 and the row name starts in column 5. Here’s a simple example:

ROWS
E R09
E R10
L X05
N COST

Note that an N in the type field indicates that the row is a free row. The first free row is used as
the objective function.

If the file includes multiple N rows, each including a priority, weight, relative, and absolute
tolerance field, then each such row is treated as an objective in a multi-objective model. The
additional fields must appear after the name, separated by spaces. For example, the following
would capture a pair of objectives, where the first has priority 2 and the second has priority 1 (and
both have identical weights, and relative and absolute tolerances):

N OBJ0 2 1 0 0
N OBJ1 1 1 0 0

Please refer to the multi-objective, ObjNPriority, ObjNWeight, ObjNAbsTol, and ObjNRelTol
sections for information on the meanings of these fields. Note that all objectives of a multi-objective
optimization problem have to be linear.
LAZYCONS section

The next section is the LAZY CONSTRAINT section. It begins with the line LAZYCONS, optional
followed by a space and a laziness level 1-3 (if no laziness level is specified 1 is assumed), and
continues with one line for each lazy constraint. The format is the same as that of the ROWS section:
each line indicates the constraint type (E for equality, L for less-than-or-equal, or G for greater-
than-or-equal), and the constraint name. In fixed format, the type appears in column 2 and the
row name starts in column 5. For example:

LAZYCONS
E R01
G R07
L S01
LAZYCONS 2
E R02
G R03
L S11

839

Lazy constraints are linear constraints, and they are semantically equivalent to standard linear
constraints (i.e., entries in the ROWS section). Depending on their laziness level they are enforced
differently by the MIP solver. Please refer to the description of the Lazy attribute for details.

This section is optional.
COLUMNS section

The next and typically largest section of an MPS file is the COLUMNS section, which lists the columns
in the model and the non-zero coefficients associated with each. Each line in the columns section
provides a column name, followed by either zero, one, or two non-zero coefficients from that column.
Coefficients are specified using a row name first, followed by a floating-point value. Consider the
following example:

COLUMNS
X01 X48 .301 R09 -1.
X01 R10 -1.06 X05 1.
X02 X21 -1. R09 1.
X02 COST -4.

The first line indicates that column X01 has a non-zero in row X48 with coefficient .301, and a
non-zero in row R09 with coefficient -1.0. Note that multiple lines associated with the same column
must be contiguous in the file.

In fixed format, the column name starts in column 5, the row name for the first non-zero starts
in column 15, and the value for the first non-zero starts in column 25. If a second non-zero is
present, the row name starts in column 40 and the value starts in column 50.
Integrality markers

The COLUMNS section can optionally include integrality markers. The variables introduced between
a pair of markers must take integer values. All variables within markers will have a default lower
bound of 0 and a default upper bound of 1 (other bounds can be specified in the BOUNDS section).
The beginning of an integer section is marked by an INTORG marker:

MARK0000 ’MARKER’ ’INTORG’

The end of the section is marked by an INTEND marker:

MARK0000 ’MARKER’ ’INTEND’

The first field (beginning in column 5 in fixed format) is the name of the marker (which is ignored).
The second field (in column 15 in fixed format) must be equal to the string ’MARKER’ (including
the single quotes). The third field (in column 40 in fixed format) is ’INTORG’ at the start and
’INTEND’ at the end of the integer section.

The COLUMNS section can contain an arbitrary number of such marker pairs.
RHS section

The next section of an MPS file is the RHS section, which specifies right-hand side values. Each line
in this section may contain one or two right-hand side values.

RHS
B X50 310. X51 300.
B X05 80. X17 80.

840

The first line above indicates that row X50 has a right-hand side value of 310, and X51 has a right-
hand side value of 300. In fixed format, the variable name for the first bound starts in column
15, and the first bound value starts in column 25. For the second bound, the variable name starts
in column 40 and the value starts in column 50. The name of the RHS is specified in the first
field (column 5 in fixed format), but this name is ignored by the Gurobi reader. If a row is not
mentioned anywhere in the RHS section, that row takes a right-hand side value of +0. You may
define an objective offset by setting the negative +offset as right-hand side of the objective row.
For example, if the +linear objective row in the problem is called COST and you +want to add an
offset of 1000 to your objective function, you can +add the following to the RHS section: +

+RHS
+ RHS1 COST -1000
+

BOUNDS section

The next section in an MPS file is the optional BOUNDS section. By default, each variable takes a
lower bound of 0 and an infinite upper bound. Each line in this section can modify the lower bound
of a variable, the upper bound, or both. Each line indicates a bound type (in column 2 in fixed
format), a bound name (ignored), a variable name (in column 15 in fixed format), and a bound
value (in columns 25 in fixed format). The different bound types, and the meaning of the associate
bound value, are as follows:
LO lower bound
UP upper bound
FX variable is fixed at the specified value
FR free variable (no lower or upper bound)
MI infinite lower bound
PL infinite upper bound
BV variable is binary (equal 0 or 1)
LI lower bound for integer variable
UI upper bound for integer variable
SC upper bound for semi-continuous variable
SI upper bound for semi-integer variable

Consider the following example:

BOUNDS
FR BND X49
UP BND X50 80.
LO BND X51 20.
FX BND X52 30.

In this BOUNDS section, variable X49 gets a lower bound of -infinity (infinite upper bound is
unchanged), variable X50 gets a upper bound of 80 (lower bound is unchanged at 0, X51 gets a
lower bound of 20 (infinite upper bound is unchanged), and X52 is fixed at 30.
QUADOBJ section

The next section in an MPS file is the optional QUADOBJ section, which contains quadratic objective
terms. Each line in this section represents a single non-zero value in the lower triangle of the

841

Q matrix. The names of the two variable that participate in the quadratic term are found first
(starting in columns 5 and 15 in fixed format), followed by the numerical value of the coefficient
(in column 25 in fixed format). By convention, the Q matrix has an implicit one-half multiplier
associated with it. Here’s an example containing three quadratic terms:

QUADOBJ
X01 X01 10.0
X01 X02 2.0
X02 X02 2.0

These three terms would represent the quadratic function (10X012 + 2X01 ∗X02 + 2X02 ∗X01 +
2X022)/2 (recall that the single off-diagonal term actually represents a pair of non-zero values in
the symmetric Q matrix).
QCMATRIX section

The next section in an MPS file contains zero or more QCMATRIX blocks. These blocks contain
the quadratic terms associated with the quadratic constraints. There should be one block for each
quadratic constraint in the model.

Each QCMATRIX block starts with a line that indicates the name of the associated quadratic
constraint (starting in column 12 in fixed format). This is followed by one of more quadratic terms.
Each term is described on one line, which gives the names of the two involved variables (starting in
columns 5 and 15 in fixed format), followed by the coefficient (in column 25 in fixed format). For
example:

QCMATRIX QC0
X01 X01 10.0
X01 X02 2.0
X02 X01 2.0
X02 X02 2.0

These four lines describe three quadratic terms: quadratic constraint QC0 contains terms 10X012,
4X01 ∗ X02, and 2X022. Note that a QCMATRIX block must contain a symmetric matrix, so for
example an X01*X02 term must be accompanied by a matching X02*X01 term.

Linear terms for quadratic constraint QC0 appear in the COLUMNS section. The sense and right-
hand side value appear in the ROWS and RHS sections, respectively.
PWLOBJ section

The next section in an MPS file is the optional PWLOBJ section, which contains piecewise-linear
objective functions. Each line in this section represents a single point in a piecewise-linear objective
function. The name of the associated variable appears first (starting in column 4), followed by the
x and y coordinates of the point (starting in columns 14 and 17). Here’s an example containing
two piecewise-linear expressions, for variables X01 and X02, each with three points:

X01 1 1
X01 2 2
X01 3 4
X02 1 1
X02 3 5
X02 7 10

842

SOS section

The next section in an MPS file is the optional SOS section. The representation for a single SOS
constraint contains one line that provides the type of the SOS set (S1 for SOS type 1 or S2 for
SOS type 2, found in column 2 in fixed format) and the name of the SOS set (column 5 in fixed
format) of the SOS set. This is followed by one line for each SOS member. The member line gives
the name of the member (column 5 in fixed format) and the associated weight (column 15 in fixed
format). Here’s an example containing two SOS2 sets.

SOS
S2 sos1

x1 1
x2 2
x3 3

S2 sos2
x3 1
x4 2
x5 3

Indicator Constraint section

The indicator constraint section is optional in the MPS format. It starts with the keyword
INDICATORS. Each subsequent line of the indicator section starts with the keyword IF (placed
at column 2 in fixed format) followed by a space and a row name (the row must have already been
defined in the ROWS section). The line continues with a binary variable (placed at column 15 in
fixed format) and finally a value 0 or 1 (placed at column 25 in fixed format).

Here a simple example:

INDICATORS
IF row1 x1 0
IF row2 y1 1

The first indicator constraint in this example states that row1 has to be fulfilled if the x1 takes
a value of 0.
General Constraint section

An MPS file may contain an optional section that captures general constraints. This section starts
with the keyword GENCONS.

General constraints can be of two basic types: simple general constraints - MIN , MAX , OR,
AND, ABS or PWL, or function constraints - polynomial (POLY), power (POW), exponential
(EXP or EXPA), logarithmic (LOG or LOGA), and trigonometric functions (SIN , COS , or TAN).

Each general constraint starts with a general constraint type specifier (MIN , MAX , OR, AND,
ABS , PWL, POLY , POW , EXP, EXPA, LOG, LOGA, SIN , COS , or TAN), found in column 2
in fixed format. Optionally a space and a constraint name may follow.

For function constraints, the next line defines a few attributes used to perform the piecewise-
linear approximation. The line starts with the keyword Options (found in column 5 in fixed
format), followed by two spaces, followed by four values (separated by two spaces) that define the
FuncPieces, FuncPieceLength, FuncPieceError, and FuncPieceRatio attribute values (in that
order).

843

What follows depends on the general constraint type. Simple general constraints start with
the name of the so-called resultant variable, placed on it’s own line (starting at column 5 in fixed
format). For MIN or MAX constraints, a non empty list of variables or values follows (with each
variable name on its own line). For OR and AND constraints, a list of binary variables follows
(each on its own line). For ABS constraints, one additional variable follows (on its own line). In
fixed format, all of these variables or values begin in column 5.

Piecewise-linear constraints start with the name of the so-called operand variable (starting at
column 5 in fixed format), followed by the so-called resultant variable. The next lines contain the
piecewise-linear function breakpoints, each represented as pair of x and y values. The x values must
be non-decreasing.

Function constraints also start with the name of the operand variable (starting at column 5
in fixed format), followed by two spaces, followed by the name of the resultant variable. This is
sufficient to define EXP LOG, SIN , COS , and TAN functions. The POW , EXPA and LOGA
functions require an exponent or base, respectively, which is defined on the next line (starting in
column 5 in fixed format). For the polynomial function, the following lines contain a coefficient
(at column 5 in fixed format), followed by two spaces, followed by the associated power (natural
numbers only). Note that powers must be decreasing.

The other general constraint type, the INDICATOR constraint, appears in a separate Indicator
section, which is described above.

The following shows an example of a general constraint section:

GENCONS
MAX gc0

r1
x1
x2
x10
0.7

MIN gencons1
r2
y0
10
y1
r1

AND and1
r
b1
b2

OR or1
r
b3
b4

ABS GC14
xabs
x

PWL GC0

844

x[0] y[0]
-1 2
0 1
0 0
0 1
1 2

POLY GC2
Options 0 0.01 0.001 -1
x y
4 7
2 3

SIN gc1
Options 0 0.01 1e-05 0.5
y z

LOGA gc6
Options 0 0.01 0.001 -1
x y
10

EXPA gc4
Options 0 0.01 0.001 -1
y z
3

For more information, consult the general constraint discussion.
Scenario section

An MPS file may contain an optional section that captures scenario data. A model can have
multiple scenarios, where each defines a set of changes to the original model (which we refer to as
the base model).

This section starts with the keyword SCENARIOS, followed by the number of scenarios. Scenarios
are described as a set of changes to the objective function, the right-hand sides of linear constraints,
and the bounds of variables. Objective changes are stated first, followed by right-hand side changes,
then bound changes. A scenario can be empty (i.e., identical to the base model).

Each scenario starts with the keyword NAME (starting at column 2 in fixed format), followed by
a scenario name.

Changes to the objective function are defined in the COLUMNS subsection (starting at column
2 in fixed format). Each objective change is on its own line; that line contains the variable name
(starting at column 5 in fixed format), the objective name (starting at column 15 in fixed format),
and the modified objective value (starting at column 25 in fixed format). The format is similar to
the columns section above.

Changes to the right-hand sides of linear constraints are defined in the RHS subsection (starting
at column 2 in fixed format). Each right-hand side change is on its own line; that line contains a
right-hand side specifier (starting at column 5 in fixed format), the constraint name (starting at
column 15 in fixed format), and the right-hand side value (starting at column 25 in fixed format).
The format is similar to the right-hand side section above.

Changes to variable bounds are defined in the BOUNDS subsection. Each changed variable bound

845

is on its own line. The format is similar to the bounds section above (with a small difference that
the first and second column in fixed format are 5 and 8, respectively).

The following example shows three scenarios in MPS format:
SCENARIOS 3
NAME scenario0
NAME scenario1
COLUMNS

x1 OBJ 0
x2 OBJ 1

RHS
RHS1 c1 2
RHS1 c2 2

BOUNDS
FR BND1 x1
LO BND1 x3 0.5
UP BND1 x3 1.5
FX BND1 x2 0

NAME scenario2
BOUNDS

FX BND1 x3 3

For more information, consult the multiple scenario discussion.
ENDATA

The final line in an MPS file must be an ENDATA statement.
Additional notes

Note that in the Gurobi optimizer, MPS models are always written in full precision. That means
that if you write a model and then read it back, the data associated with the resulting model will
be bit-for-bit identical to the original data.

17.2 REW format
The REW format is identical to the MPS format, except in how objects are named when files are
written. When writing an MPS format file, the Gurobi optimizer refers to constraints and variables
using their given names. When writing an REW format file, the Gurobi optimizer ignores the
given names and instead refers to the variables using a set of default names that are based on row
and column numbers. The constraint name depends solely on the associated row number: row i
gets name ci. The variable name depends on the type of the variable, the column number of the
variable in the constraint matrix, and the number of non-zero coefficients in the associated column.
A continuous variable in column 7 with column length 2 would get name C7(2), for example. A
binary variable with the same characteristics would get name B7(2).

17.3 LP format
The LP format captures an optimization model in a way that is easier for humans to read than
MPS format, and can often be more natural to produce. One limitation of the LP format is that

846

it doesn’t preserve several model properties. In particular, LP files do not preserve column order
when read, and they typically don’t preserve the exact numerical values of the coefficients (although
this isn’t inherent to the format).

Unlike MPS files, LP files do not rely on fixed field widths. Line breaks and whitespace char-
acters are used to separate objects. Here is a simple example:

\ LP format example

Maximize
x + y + z

Subject To
c0: x + y = 1
c1: x + 5 y + 2 z <= 10
qc0: x + y + [x ^ 2 - 2 x * y + 3 y ^ 2] <= 5

Bounds
0 <= x <= 5
z >= 2

Generals
x y z

End

The backslash symbol starts a comment; the remainder of that line is ignored.
Variable names play a major role in LP files. Each variable must have its own unique name.

A name should be no longer than 255 characters, and to avoid confusing the LP parser, it can
not begin with a number or any of the characters +, -, *, ^, <, >, =, (,), [,], ,, or :.
For similar reasons, a name should not contain any of the characters +, -, *, ^, or :. Also,
variable names should not be equal (case insensitive) to any of the LP file format keywords, e.g.,
st, bounds, min, max, binary, or end. Names must be preceded and followed by whitespace.

The same rules apply to any other type of names in the LP format, e.g., constraint names or
the objective name.

Note that whitespace characters are not optional in the Gurobi LP format. Thus, for example,
the text x+y+z would be treated as a single variable name, while x + y + z would be treated as a
three term expression.

LP files are structured as a list of sections, where each section captures a logical piece of the
whole optimization model. Sections begin with particular keywords, and must generally come in a
fixed order, although a few are allowed to be interchanged.

Objective Section

The first section in an LP file is the objective section. This section begins with one of the following
six keywords: minimize, maximize, minimum, maximum, min, or max. Capitalization is ignored.
This keyword may appear alone, or it may be immediately followed by multi-objectives, which
indicates that the model contains multiple objective functions.

Single-Objective Case

Let us consider single-objective models first, where this header is followed by a single linear or
quadratic expression that captures the objective function.

847

The objective optionally begins with a label. A label consists of a name, followed by a colon
character, following by a space. A space is allowed between the name and the colon, but not
required.

The objective then continues with a list of linear terms, separated by the + or - operators. A
term can contain a coefficient and a variable (e.g., 4.5 x), or just a variable (e.g., x). The objective
can be spread over many lines, or it may be listed on a single line. Line breaks can come between
tokens, but never within tokens.

The objective may optionally continue with a list of quadratic terms. The quadratic portion
of the objective expression begins with a [symbol and ends with a] symbol, followed by / 2.
These brackets should enclose one or more quadratic terms. Either squared terms (e.g., 2 x ^ 2)
or product terms (e.g., 3 x * y) are accepted. Coefficients on the quadratic terms are optional.

For variables with piecewise-linear objective functions, the objective section will include a
__pwl(x) term, where x is the name of the variable. You should view these as comments; they are
ignored by the LP reader. The actual piecewise-linear expressions are pulled from the later PWLObj
section.

The objective expression must always end with a line break.
An objective section might look like the following:

Minimize
obj: 3.1 x + 4.5 y + 10 z + [x ^ 2 + 2 x * y + 3 y ^ 2] / 2

Multi-Objective Case

In the multi-objective case, the header is followed by one or more linear objective functions, where
each starts with its own sub-header. The sub-header gives the name of the objective, followed by a
number of fields that provide a Priority, Weight, absolute tolerance (AbsTol) and relative tolerance
(RelTol) for that objective (see ObjNPriority, ObjNWeight, ObjNAbsTol, and ObjNRelTol for
details on the meanings of these fields). The fields start with the field name, followed by a =,
followed by the value. For example:

OBJ0: Priority=2 Weight=1 AbsTol=0 RelTol=0

Please refer to the multi-objective section for additional details.
Each sub-header is followed by a linear expression that captures that objective.
A complete multi-objective section might look like the following:

Minimize multi-objectives
OBJ0: Priority=2 Weight=1 AbsTol=0 RelTol=0
3.1 x + 4.5 y + 10 z

OBJ1: Priority=1 Weight=1 AbsTol=0 RelTol=0
10 x + 0.1 y

The objective section is optional. The objective is set to 0 when it is not present.
Constraints Section

The next section is the constraints section. It begins with one of the following headers, on its own
line: subject to, such that, st, or s.t.. Capitalization is ignored.

The constraint section can have an arbitrary number of constraints. Each constraint starts
with an optional label (constraint name, followed by a colon, followed by a space), continues with

848

a linear expression, followed by an optional quadratic expression (enclosed in square brackets), and
ends with a comparison operator, followed by a numerical value, followed by a line break. Valid
comparison operators are =, <=, <, >=, or >. Note that LP format does not distinguish between
strict and non-strict inequalities, so for example < and <= are equivalent.

Note that the left-hand side of a constraint may not contain a constant term; the constant must
appear on the right-hand side.

The following is a simple example of a valid linear constraint:

c0: 2.5 x + 2.3 y + 5.3 z <= 8.1

The following is a valid quadratic constraint:

qc0: 3.1 x + 4.5 y + 10 z + [x ^ 2 + 2 x * y + 3 y ^ 2] <= 10

The constraint section may also contain another constraint type: the so-called indicator con-
straint. Indicator constraints start with an optional label (constraint name, followed by a colon,
followed by a space), followed by a binary variable, a space, a =, again a space and a value, either 0
or 1. They continue with a space, followed by ->, and again a space and finally a linear constraint
(without a label).

For example:

c0: b1 = 1 -> 2.5 x + 2.3 y + 5.3 z <= 8.1

This example constraint requires the given linear constraint to be satisfied if the variable b1
takes a value of 1.

Every LP format file must have a constraints section.
Lazy Constraints Section

The next section is the lazy constraints section. It begins with the line Lazy Constraints, optional
followed by a space and a laziness level 1-3 (if no laziness level is specified 1 is assumed), and
continues with a list of linear constraints in the exact same format as the linear constraints in the
constraints section. For example:

Lazy Constraints
c0: 2.5 x + 2.3 y + 5.3 z <= 8.1

Lazy Constraints 2
c1: 1.5 x + 3.3 y + 4.3 z <= 8.1

Lazy constraints are linear constraints, and they are semantically equivalent to standard linear
constraints. Depending on their laziness level they are enforced differently by the MIP solver.
Please refer to the description of the Lazy attribute for details.

This section is optional.
Bounds Section

The next section is the bounds section. It begins with the word Bounds, on its own line, and is
followed by a list of variable bounds. Each line specifies the lower bound, the upper bound, or
both for a single variable. The keywords inf or infinity can be used in the bounds section to
specify infinite bounds. A bound line can also indicate that a variable is free, meaning that it is
unbounded in either direction.

Here are examples of valid bound lines:

849

0 <= x0 <= 1
x1 <= 1.2
x2 >= 3
x3 free
x2 >= -Inf

It is not necessary to specify bounds for all variables; by default, each variable has a lower
bound of 0 and an infinite upper bound. In fact, the entire bounds section is optional.
Variable Type Section

The next section is the variable types section. Variables can be designated as being either binary,
general integer, or semi-continuous. In all cases, the designation is applied by first providing the
appropriate header (on its own line), and then listing the variables that have the associated type.
For example:

Binary
x y z

Variable type designations don’t need to appear in any particular order (e.g., general integers
can either precede or follow binaries). If a variable is included in multiple sections, the last one
determines the variable type.

Valid keywords for variable type headers are: binary, binaries, bin, general, generals, gen,
semi-continuous, semis, or semi.

The variable types section is optional. By default, variables are assumed to be continuous.
SOS Section

An LP file can contain a section that captures SOS constraints of type 1 or type 2. The SOS section
begins with the SOS header on its own line (capitalization isn’t important). An arbitrary number
of SOS constraints can follow. An SOS constraint starts with a name, followed by a colon (unlike
linear constraints, the name is not optional here). Next comes the SOS type, which can be either
S1 or S2. The type is followed by a pair of colons.

Next come the members of the SOS set, along with their weights. Each member is captured using
the variable name, followed by a colon, followed by the associated weight. Spaces can optionally
be placed before and after the colon. An SOS constraint must end with a line break.

Here’s an example of an SOS section containing two SOS constraints:

SOS
sos1: S1 :: x1 : 1 x2 : 2 x3 : 3
sos2: S2 :: x4:8.5 x5:10.2 x6:18.3

The SOS section is optional.
PWLObj Section

An LP file can contain a section that captures piecewise-linear objective functions. The PWL section
begins with the PWLObj header on its own line (capitalization isn’t important). Each piecewise-
linear objective function is associated with a model variable. A PWL function starts with the
corresponding variable name, followed immediately by a colon (the name is not optional). Next
come the points that define the piecewise-linear function. These points are represented as (x, y)

850

pairs, with parenthesis surrounding the two values and a comma separating them. A PWL function
must end with a line break.

Here’s an example of a PWLObj section containing two simple piecewise-linear functions:

PWLObj
x1: (1, 1) (2, 2) (3, 4)
x2: (1, 3) (3, 5) (100, 300)

The PWLObj section is optional.
General Constraint Section

An LP file may contain an optional section that captures general constraints. This section starts
with one of the following keywords general constraints, general constraint, gencons, or g.c. (capi-
talization is ignored).

General constraints can be of two basic types: simple general constraints - MIN , MAX , OR,
AND, ABS , or PWL, or function constraints - polynomial (POLY), power (POW), exponential (EXP
or EXPA), logarithmic (LOG or LOGA), or trigonometric (SIN, COS, or TAN).

A simple general constraint starts with an optional label (constraint name, followed by a colon),
followed by a variable name (the so-called resultant), then an equals sign =. The line continues
with a general constraint type specifier (MIN , MAX , OR, AND, or ABS), then a (. All tokens
must be separated using spaces. Capitalization is ignored.

What follows depends on the general constraint type. MIN or MAX constraints expect a non-
empty, comma-separated list of variables or values. OR and AND constraints expect a comma-
separated list of binary variables. ABS constraints only expect one variable name. Again, all tokens
(including commas) must be separated using spaces.

All of these general constraints end with a) and a line break.
Here are a few examples:

gc0: r1 = MAX (x1 , x2 , x10 , 0.7)
gencons1: r2 = MIN (y0 , 10 , y1 , r1)
and1: r = AND (b1 , b2)
or1: r = OR (b3 , b4)
GC14: xabs = ABS (x)

Piecewise-linear constraints also start with an optional label (constraint name, followed by a
colon). The line continues with a variable name (the so-called resultant) and an equal sign =. Next
comes the keyword PWL that indicates that the constraint is of type piecewise-linear. This is
followed by a (, and then by a variable name (the so-called operand) followed by a). The line
continues with a : and then the list of piecewise-linear breakpoints in parentheses (e.g., (x0, y0)
(x1, y1)) with non-decreasing values on x. Recall that spaces are required between tokens.

Here an example:

GC0: y[0] = PWL (x[0]) : (-1, 2) (0, 1) (0, 0) (0, 1) (1, 2)

There is one other type of simple constraint, the INDICATOR constraint. Those appear in the
regular constraints section (described above), not in the general constraint section.

Function constraints also start with an optional label (constraint name, followed by a colon).
An optional list of attribute assignments follows. These start with a (, then a space-separate list of

851

Name=Value strings (no spaces before or after the =), closed with a). An example is shown below.
Default values are used if no attributes are specified.

The line continues with a variable name (the so-called resultant) and an equal sign =. Next
comes a keyword that indicates the type of function being defined (POLY , POW , EXP, EXPA,
LOG, LOG_A, SIN , COS , or TAN). For a LOG, use LOG_A if it isn’t a natural log, where A is
the base. This is followed by a (, and then by the expression that defines the actual function. The
line closes with a). Recall that spaces are required between tokens.

Polynomials and powers are described in what is hopefully the natural way, with exponents
preceded by the ^ symbol.

The following give examples of a few function constraints:

gc1: (PieceError=1e-05 PieceRatio=0.5) z = SIN (y)
GC2: (PieceLength=0.001) y = POLY (5 x ^ 3 + 2 x + 5)
gc3: z = EXPA (3.5 ^ y)
gc4: z = LOG_10 (y)
logytoz: z = LOG (y)

For more information, consult the general constraint discussion.
Scenario Section

An LP file may contain an optional section that captures scenario data. A model can have multiple
scenarios, where each defines a set of changes to the original model (which we refer to as the base
model).

This section starts with the Scenario keyword (capitalization is ignored), followed by a scenario
name. Scenarios are described as a set of changes to the objective function, the right-hand sides
of linear constraints, and the bounds of variables. Objective changes are stated first, followed by
right-hand side changes, then bound changes. A scenario can be empty (i.e., identical to the base
model).

Changes to the objective function start with one of the allowed objective keywords (Minimize,
Maximize, etc.; see objective section above for additional information). Note that the keyword
needs to match the objective sense of the base model. This is followed by a line for each changed
objective coefficient that contains the variable name and its modified value (separated by a space).

Changes to the right-hand sides of linear constraints start with one of the allowed constraint
section keywords (Subject To, etc.; see the constraints section above for additional information).
This is followed by a line for each changed right-hand side value that contains the constraint name
followed by a colon, then a space, the constraint sense, a space, and the scenario right-hand side
value.

Changes to variable bounds start with the Bounds keyword. This is followed by a line for each
variable with changed scenario bounds; the format of each such line is the same as in the bounds
section above.

The following example shows three scenarios in LP format:

Scenario scenario0
Scenario scenario1
Maximize
x1 0
x2 1

852

Subject To
c1: <= 2
c2: >= 2
Bounds
x3 <= 1.5
x1 free
0 <= x2 <= 0
x3 >= 0.5
Scenario scenario2
Bounds
x3 = 3

For more information, consult the multiple scenario discussion.

End statement

The last line in an LP format file should be an End statement.

17.4 RLP format
The RLP format is identical to the LP format, except in how objects are named when files are
written. When writing an LP format file, the Gurobi optimizer refers to constraints and variables
using their given names. When writing an RLP format file, the Gurobi optimizer ignores the given
names and instead refers to the variables using names that are based on variable or constraint
characteristics. The constraint name depends solely on the associated row number: row i gets
name ci. The variable name depends on the type of the variable, the column number of the
variable in the constraint matrix, and the number of non-zero coefficients in the associated column.
A continuous variable in column 7 with column length 2 would get name C7(2), for example. A
binary variable with the same characteristics would get name B7(2).

17.5 ILP format
The ILP file format is identical to the LP format. The only difference is in how they are used. ILP
files are specifically used to write computed Irreducible Inconsistent Subsystem (IIS) models.

17.6 OPB format
The OPB file format is used to store pseudo-boolean satisfaction and pseudo-boolean optimization
models. These models may only contain binary variables, but these variables may be complemented
and multiplied together in constraints and objectives. Pseudo-boolean models in OPB files are
translated into a MIP representation by Gurobi. The syntax of the OPB format is described in
detail by Roussel and Manquinho. However, the OPB format supported by Gurobi is less restrictive,
e.g., fractional coefficients are allowed.

853

https://www.cril.univ-artois.fr/PB12/format.pdf

The following is an example of a pseudo-boolean optimization model

minimize y − 1.3x(1− z) + (1− z)
subject to 2y − 3x+ 1.7w = 1.7

−y + x+ xz(1− v) ≥ 0
−y ≤ 0,
v, w, x, y, z ∈ {0, 1}.

(1)

The corresponding OPB file for this example is given by

* This is a dummy pseudo-boolean optimization model
min: y - 1.3 x ~z + ~z;
2 y - 3 x + 1.7 w = 1.7;
-1 y + x + x z ~v >= 0;
-1 y <= 0;

Lines starting with * are treated as comments and ignored. Non-comment lines must end with
a semicolon ;. Whitespace characters must be used to separate variables. The complement of a
variable may be specified with a tilde ~.

Only minimization models are supported. These models must be specified with the min: ob-
jective keyword. This keyword must appear before other constraints. Satisfiability models may be
defined by omitting the objective.

Constraint senses >=, =, and <= are supported.

17.7 MST format
A MIP start (MST) file is used to specify an initial solution for a mixed integer programming model.
The file lists values to assign to the variables in the model. If a MIP start has been imported into
a MIP model before optimization begins (using GRBread, for example), the Gurobi optimizer will
attempt to build a feasible solution from the specified start values. A good initial solution often
speeds the solution of the MIP model, since it provides an early bound on the optimal value, and
also since the specified solution can be used to seed the local search heuristics employed by the
MIP solver.

A MIP start file consists of variable-value pairs, each on its own line. Any line that begins with
the hash sign (#) is a comment line and is ignored. The following is a simple example:

MIP start
x1 1
x2 0
x3 1

Importing a MIP start into a model is equivalent to setting the Start attribute for each listed
variable to the associated value. If the same variable appears more than once in a start file, the
last assignment is used. Importing multiple start files is equivalent to reading the concatenation of
the imported files.

Note that start files don’t need to specify values for all variables. When variable values are left
unspecified, the Gurobi solver will try to extend the specified values into a feasible solution for the
full model.

854

It is important to mention that when saving an MST file, Gurobi will not save the values of
continuous variables. If you want to save a complete description of the best solution found, we
recommend to save it as a solution file (SOL format). This will guarantee that you will save the
values for each variable present in your model.

17.8 HNT format
A MIP hint (HNT) file is used to provide hints for the values of the variables in a mixed integer
programming model (typically obtained from a solution to a related model). The file lists values
for variables in the model, and priorities for those hints. When MIP hints are imported into a MIP
model before optimization begins (using GRBread, for example), the MIP search is guided towards
the values captured in those hints. Good hints often allow the MIP solver to find high-quality
solutions much more quickly.

A MIP hint file consists of variable-value-priority triples, each on its own line. Any line that
begins with the hash sign (#) is a comment line and is ignored. The following is a simple example:

MIP hints
x1 1 2
x2 0 1
x3 1 1

Importing hints into a model is equivalent to setting the VarHintVal and VarHintPri attributes
for each listed variable to the associated values. If the same variable appears more than once in
a hint file, the last assignment is used. Importing multiple hint files is equivalent to reading the
concatenation of the imported files.

Note that hint files don’t need to specify values for all variables. When values are left unspecified,
the Gurobi MIP solver won’t attempt to adjust the search strategy for those variables.

17.9 ORD format
A priority ordering (ORD) file is used to input a set of variable priority orders. Reading a priority
file (using GRBread, for example) modifies the MIP branch variable selection. When choosing a
branching variable from among a set of fractional variables, the Gurobi MIP solver will always
choose a variable with higher priority over one with a lower priority.

The file consists of variable-value pairs, each on its own line. The file contains one line for each
variable in the model. Any line that starts with the hash sign (#) is treated as a comment line and
is ignored. The following is a simple example:

Branch priority file
x 1
y 1
z -1

Variables have a default branch priority value of 0, so it is not necessary to specify values for all
variables.

Importing a priority order file is equivalent to replacing the BranchPriority attribute value for
each variable in the model. Note that you can still modify the BranchPriority attribute after
importing an ordering file.

855

17.10 BAS format
An LP basis (BAS) file is used to specify an initial basis for a continuous model. The file provides
basis status information for each variable and constraint in the model. If written by Gurobi, to
reduce the size of the file, it only includes the difference to the slack basis. In a slack basis for
each row the corresponding slack variable is basic while all other problem variables are at their
lower bound. If a basis has been imported into a continuous model before optimization begins
(using GRBread, for example), and if a simplex optimizer has been selected (through the Method
parameter), the Gurobi simplex optimizer begins from the specified basis.

A BAS file begins with a NAME line, and ends with an ENDATA statement. No information is
retrieved from these lines, but they are required by the format. Between these two lines are basis
status lines, each consisting of two or three fields and starting with a white space character. If the
first field is LL, UL, or BS, the variable named (slack variables are not allowed) in the second field is
non-basic at its lower bound, non-basic at its upper bound, or basic, respectively. Any additional
fields are ignored. If the first field is XL or XU, the variable named in the second field is basic, while
the row named in the third field states that the corresponding slack variable is non-basic at its
lower or upper bound, respectively.

The following is a simple example:
NAME example.bas
XL x1 c1
XU x2 c2
UL x3
LL x4
ENDATA

Importing a basis into a model is equivalent to setting the VBasis and CBasis attributes for
each listed variable and constraint to the specified basis status.

A near-optimal basis can speed the solution of a difficult LP model. However, specifying a start
basis that is not extremely close to an optimal solution will often slow down the solution process.
Exercise caution when providing start bases.

17.11 SOL format
A Gurobi solution (SOL) file is used to output a solution vector. It can be written (using GRBwrite,
for example) whenever a solution is available.

The file consists of variable-value pairs, each on its own line. The file contains one line for each
variable in the model. The following is a simple example:
Solution file
x 1.0
y 0.5
z 0.2

17.12 JSON solution format
JSON (or JavaScript Object Notation) is a lightweight, text-based, language-independent data
interchange format. It was derived from JavaScript, but many modern programming languages

856

include code to generate and parse JSON-format data.
Gurobi JSON solution format is meant to be a simple and standard way to capture and share

optimization results. It conforms to the RFC-8259 standard. JSON solutions can be written to a
file or captured in a string.

The JSON solution captures the values of various Gurobi attributes associated with the solution
to the model. Some are related to the model overall, some to individual variables, and some to
individual constraints. The exact contents of a JSON solution string will depend on a few factors:

• The type of model being solved (linear, quadratic, mixed-integer, multi-objective, etc.). Some
solution information is simply not available for certain problem types (e.g., dual variable values
for MIP models).

• The set of tagged elements in the model. Users can tag variables (using the VTag attribute),
linear constraints (using the CTag attribute), and quadratic constraints (using the QCTag
attribute). Only tagged elements will have solution information in the JSON solution.

• The JSONSolDetail parameter, which controls how much detail is included in the JSON
solution.

• Parameter settings such as InfUnbdInfo or QCPDual, which cause the optimization process
to generate more solution information.

JSON solutions aren’t generally meant to be interpreted directly by humans. Instead, you
typically feed them into a JSON parser, which provides tools for extracting the desired information
from the string. JSON is a widely-used format, and nearly all modern program languages have
libraries available for helping to parse JSON strings and files. And if you are determined to examine
the string directly, JSON parsers typically also include pretty-printing utilities that make it easier
to do so.
Basic Structure

A JSON solution string consists of a collection of named components. In its simplest form, it might
look like the following:

{ "SolutionInfo": { "Status": 3,
"Runtime": "3.4289908409118652e-01",
"BoundVio": "0",
"ConstrVio": "0",
"IterCount": "0",
"BarIterCount": 0}}

A JSON parser makes it relatively easy to extract the various components from this string. In
Python, for example, you would be able to retrieve the optimization status by accessing result[’SolutionInfo’][’Status’]
after parsing.

Before discussing the specific information that is available in this format, let us first say a word
about how data is represented. The type of each data item follows from the attribute type. For
example, Status is an integer attribute, so the corresponding value is stored as an integer. Runtime
is a double attribute, which is represented as a string, and that string always captures the exact,
double-precision (IEEE754) value of the attribute.

857

https://www.rfc-editor.org/rfc/rfc8259.html

Named Components

A JSON solution will always have at least one named object: SolutionInfo. It may contain up to
three optional named arrays: Vars, Constrs, QConstrs. A JSON solution string may look like:

{"SolutionInfo": {...},
"Vars": [...],
"Constrs": [...],
"QConstrs": [...]}

The exact contents of the three optional sections will depend on what model components have
been tagged and on what solution information is available. If no variables have been tagged, for
example, then the Vars array will not be present. For a MIP model, the Constrs array will not be
present, since MIP solutions don’t contain any constraint information.
SolutionInfo Object

The SolutionInfo object contains high-level information about the solution that was computed
for this model. Some entries will always be present, while others depend on the problem type or
the results of the optimization. This component may include the following model attributes:

Status (always present): The optimization status (optimal, infeasible, hit the time limit, etc.).

Runtime (always present): Runtime for the optimization (in seconds).

ObjVal: The solution objective value.

ObjBound: The best known bound on the objective value.

ObjBoundC: The best known bound on the objective value (before using integrality information to
strengthen the bound).

MIPGap: The optimality gap.

IntVio: The maximum integrality violation.

BoundVio: The maximum bound violation.

ConstrVio: The maximum constraint violation.

ObjNVal (multi-objective only): An array of objective values, one for each objective.

ScenNObjVal (multi-scenario only): An array of objective values, one for each scenario.

ScenNObjBound (multi-scenario only): An array of objective bounds, one for each scenario.

IterCount: Number of simplex iterations.

BarIterCount: Number of barrier iterations.

NodeCount: Number of branch-and-cut nodes explored for MIP models.

FarkasProof: Part of the infeasibility certificate for infeasible models. Note that you have to set
the InfUnbdInfo parameter before the optimization call for this information to be available.

858

SolCount: Number of stored solutions (only for MIP models).

PoolObjBound: Bound on the objective of undiscovered MIP solutions.

PoolObjVal: Only for MIP models with at least one solution. For single-objective models, this is
an array containing the objective value for each stored solution (starting with the incumbent).
For multi-objective models, this is an array containing SolCount arrays of values, each array
contains the objective value for each multi-objective for the particular solution.

Here’s an example of a SolutionInfo object for a MIP model:

{ "SolutionInfo": { "Status": 2,
"Runtime": "5.8451418876647949e+00",
"ObjVal": "3089",
"ObjBound": "3089",
"ObjBoundC": "3089",
"MIPGap": "0",
"IntVio": "0",
"BoundVio": "0",
"ConstrVio": "0",
"IterCount": "32",
"BarIterCount": 0,
"NodeCount": "1",
"SolCount": 1,
"PoolObjBound": "3089",
"PoolObjVal": ["3089"]}}

Vars Array

The Vars component is an array (possibly empty) of objects containing information about tagged
variables. Some entries will always be present, while others depend on the problem type or the
results of the optimization. This component may include the following variable attributes:

VTag (always present): Array containing the variable tag. Note that this is stored as an array,
but the array will currently only ever contain a single string.

X (always present): Value for the variable in the current solution.

Xn: Values for all stored solutions including the incumbent solution (only for MIP).

ScenNX: For multiple scenarios, values for all scenario solutions.

RC: For continuous models with dual information, the reduced cost for the variable.

VBasis: For continuous models whose solution is basic, the basis status for the variable.

UnbdRay: For unbounded models with InfUnbdInfo enabled, the unbounded ray component asso-
ciated with the variable.

The following attributes are only included if JSONSolDetail is greater than 0: RC, UnbdRay,
VBasis, Xn.

These objects may look like:

859

{ "VTag": ["VTag7"], "X": "1"}
{ "VTag": ["VTag12"], "X": "3.6444895037909271e-02", "RC": "0"}
{ "VTag": ["VTag2747"],

"X": "0",
"Xn": ["0", "1", "1", "1", "0", "1", "1", "0", "0", "0"]}

Constrs Array

The Constrs component is an array (possibly empty) of objects containing information about
tagged linear constraints. Some entries will always be present, while others depend on the problem
type or the results of the optimization. This component may include the following constraint
attributes:

CTag (always present): Array containing the linear constraint tag. Note that this is stored as
an array, but the array will currently only ever contain a single string.

Slack (always present): Value for the slack variable in the current solution.

Pi: For continuous models with dual information, the dual value for the corresponding constraint.

FarkasDual: For infeasible models with InfUnbdInfo enabled, the Farkas dual component associ-
ated with the constraint.

This component will always be empty for MIP models.
The following attributes are only included if JSONSolDetail is greater than 0: CBasis, FarkasDual,

Pi, Slack.
These objects may look like:

{ "CTag": ["CTag72"],
"Slack": "-1.3877787807814457e-17",
"Pi": "-5.6530866311690423e-02"}

QConstrs Array

The QConstrs component is an array (possibly empty) of objects containing information about
tagged quadratic constraints. Some entries will always be present, while others depend on the prob-
lem type or the results of the optimization. This component may include the following quadratic
constraint attributes:

QCTag (always present): Array containing the quadratic constraint tag. Note that this is stored
as an array, but the array will currently only ever contain a single string.

QCSlack (always present): Value for the slack variable in the current solution.

QCPi: For continuous models with dual information, the dual value for the corresponding constraint.

This component will always be empty for MIP models.
The following attributes are only included if JSONSolDetail is greater than 0: QCPi, QCSlack.

860

JSON Solution Examples

For a continuous model, the JSON solution string may look like

{ "SolutionInfo": {
"Status": 2,
"Runtime": "9.9294495582580566e-01",
"ObjVal": "5.2045497375374854e-07",
"BoundVio": "0",
"ConstrVio": "1.002e-07",
"IterCount": "0",
"BarIterCount": 3},

"Vars": [
{"VTag": ["VTag7"], "X": "-3.0187172916263982e-09", "RC": "0"},
{"VTag": ["VTag1340"], "X": "-3.0696132844593768e-09", "RC": "0"},
{"VTag": ["VTag2673"], "X": "-4.8134359014615295e-09", "RC": "0"},
{"VTag": ["VTag4006"], "X": "-7.1652420015125937e-02", "RC": "0"},
{"VTag": ["VTag5339"], "X": "-1.5815441619302997e-02", "RC": "0"},
{"VTag": ["VTag6672"], "X": "1.4945278866946186e-02", "RC": "0"}],

"Constrs": [
{"CTag": ["CTag7"], "Slack": "4.85722506e-17", "Pi": "2.3140310696e-06"},
{"CTag": ["CTag673"], "Slack": "0", "Pi": "-1.4475853138350041e-06"},
{"CTag": ["CTag1339"], "Slack": "-2.7758914e-17", "Pi": "-3.7443785e-06"},
{"CTag": ["CTag2005"], "Slack": "4.3420177e-18", "Pi": "-1.0277524e-06"},
{"CTag": ["CTag2671"], "Slack": "-1.3895245e-17", "Pi": "8.0012944e-07"},
{"CTag": ["CTag3337"], "Slack": "6.39465e-16", "Pi": "-5.3368958e-06"}]}

For a multi-objective LP, the JSON solution string may look like

{ "SolutionInfo": {
"Status": 2,
"Runtime": "2.2838807106018066e-01",
"ObjNVal": ["10", "339"],
"IterCount": "112",
"BarIterCount": 0,
"NodeCount": "0"},

"Vars": [
{"VTag": ["VTag7"], "X": "0"},
{"VTag": ["VTag569"], "X": "0"},
{"VTag": ["VTag1131"], "X": "0"},
{"VTag": ["VTag1693"], "X": "0"},
{"VTag": ["VTag2255"], "X": "0"},
{"VTag": ["VTag2817"], "X": "0"},
{"VTag": ["VTag3379"], "X": "0"},
{"VTag": ["VTag3941"], "X": "0"},
{"VTag": ["VTag4503"], "X": "0"},
{"VTag": ["VTag5065"], "X": "1"},

861

{"VTag": ["VTag5627"], "X": "1"},
{"VTag": ["VTag6189"], "X": "1"}]}

For a regular MIP problem, the JSON solution string may look like

{ "SolutionInfo": {
"Status": 2,
"Runtime": "2.4669170379638672e-03",
"ObjVal": "3124",
"ObjBound": "3124",
"ObjBoundC": "3124",
"MIPGap": "0",
"IntVio": "1.958742e-08",
"BoundVio": "0",
"ConstrVio": "1.002e-07",
"IterCount": "465",
"BarIterCount": 0,
"NodeCount": "1",
"SolCount": 4,
"PoolObjBound": "3124",
"PoolObjVal": ["3124", "3124", "3124", "3124"]},

"Vars": [
{"VTag": ["VTag7"], "X": "1", "Xn": ["1", "1", "1", "1"]},
{"VTag": ["VTag466"], "X": "0", "Xn": ["0", "1", "1", "0"]},
{"VTag": ["VTag925"], "X": "0", "Xn": ["0", "0", "0", "0"]},
{"VTag": ["VTag1384"], "X": "0", "Xn": ["0", "0", "1", "1"]},
{"VTag": ["VTag1843"], "X": "0", "Xn": ["0", "1", "0", "0"]},
{"VTag": ["VTag2302"], "X": "0", "Xn": ["0", "1", "1", "0"]}]}

For a multi-objective MIP, the JSON solution string may look like

{ "SolutionInfo": {
"Status": 2,
"Runtime": "3.5403838157653809e+00",
"ObjNVal": ["2763", "704"],
"IterCount": "595",
"BarIterCount": 0,
"NodeCount": "1",
"SolCount": 6,
"PoolObjVal": [["2763", "704"], ["2763", "705"],

["2763", "716"], ["2763", "718"],
["2763", "769"], ["2763", "1060"]]},

"Vars": [
{"VTag": ["VTag7"], "X": "1", "Xn": ["1", "1", "1", "1", "1", "1"]},
{"VTag": ["VTag466"], "X": "0", "Xn": ["0", "1", "0", "0", "0", "0"]},
{"VTag": ["VTag925"], "X": "0", "Xn": ["0", "0", "0", "0", "1", "1"]},
{"VTag": ["VTag1384"], "X": "0", "Xn": ["0", "0", "0", "0", "0", "0"]},

862

{"VTag": ["VTag1843"], "X": "0", "Xn": ["0", "0", "1", "1", "0", "0"]},
{"VTag": ["VTag2302"], "X": "0", "Xn": ["0", "1", "0", "0", "0", "0"]}]}

For a multi-scenario model, the JSON solution string may look like

{ "SolutionInfo": {
"Status": 2,
"Runtime": "3.5403838157653809e+00",
"ObjVal": "2763",
"ObjBound": "2763",
"ObjBoundC": "1324",
"IntVio": "0",
"BoundVio": "0",
"ConstrVio": "0",
"ScenNObjVal": ["2763", "3413", "1e+100"],
"ScenNObjBound": ["2763", "3413", "1e+100"],
"IterCount": "595",
"BarIterCount": 0,
"NodeCount": "1",
"SolCount": 3,
"PoolObjBound": "2763",
"PoolObjVal": ["2763", "2763", "2763"]},

"Vars": [
{"VTag": ["VTag7"], "X": "1", "ScenNX": ["1", "0", "1e+101"], "Xn": ["1", "0", "1"]},
{"VTag": ["VTag466"], "X": "0", "ScenNX": ["1", "1", "1e+101"], "Xn": ["1", "1", "1"]},
{"VTag": ["VTag925"], "X": "0", "ScenNX": ["0", "0", "1e+101"], "Xn": ["0", "0", "0"]},
{"VTag": ["VTag1384"], "X": "0", "ScenNX": ["2", "1", "1e+101"], "Xn": ["2", "1", "0"]},
{"VTag": ["VTag1843"], "X": "0", "ScenNX": ["0", "2", "1e+101"], "Xn": ["0", "2", "1"]},
{"VTag": ["VTag2302"], "X": "0", "ScenNX": ["0", "1", "1e+101"], "Xn": ["0", "1", "0"]}]}

If the scenario objective value ScenNObjVal is infinite (GRB_INFINITY = 1e+100 for minimization,
-GRB_INFINITY = -1e+100 for maximization), then no feasible solution has been found for this
scenario. The corresponding ScenNX value for each variable will be GRB_UNDEFINED = 1e+101.
Moreover, if the ScenNObjBound value for the scenario is also infinite, it means that the scenario
has been proven to be infeasible.

17.13 ATTR format
A Gurobi attribute (ATTR) file is used to store, and read, attribute information of a model --
provided by the user or generated during a previous solution call -- that affects the optimization
process.

More precisely, this file stores -- if available -- the following attributes: X, the primal solution to
the last optimization call. Start, all the stored MIP start vectors. Partition, the variable partition.
VarHintVal and VarHintPri, the variable hint information. BranchPriority, the variable branch
priority vector. Lazy, the lazy attribute for each constraint. VTag, CTag and QCTag, the tagged
elements of the model. VBasis and CBasis, the basis information for variables and constraints.
PStart and DStart, the simplex-start information for variables and constraints.

863

Any line starting with the character ’#’, or empty lines, are considered as comments, and will
be discarded at reading time. The file should start by a line of the form
GRB_ATTR_FILE_VERSION 090102
which indicate the version of the file. Older versions are backward-compatible. Then follows a
number of sections, each storing one set of attributes. Each section starts with one of the following:

• SECTION SOLUTION

• SECTION MIPSTART

• SECTION PARTITION

• SECTION VARHINTS

• SECTION BRANCHPRIORITY

• SECTION LAZYCONSTRS

• SECTION BASIS

• SECTION PSTART

• SECTION DSTART

• SECTION VTAG

• SECTION CTAG

• SECTION QCTAG

For those attributes for which there is a dedicated file extension, the following format is exactly
the same as described in the corresponding file format description.

For sections involving other variable attributes, each line is a tuple describing the variable name,
and the attribute(s) value related to it. Variables with attribute values at default may be omitted.

For sections involving other constraint attributes, each line is a tuple describing the constraint
name, and the attribute(s) value related to it. Constraints with attribute values at default may be
omitted.

If a model has multiple MIP starts, each of them will be saved in a different SECTION MIPSTART.
Whenever an attribute file is loaded into a model, each SECTION MIPSTART will be loaded into a
new MIP start vector.

The tags of variables and constraints must be enclosed in double quotes. If the tag itself contains
a double quote, this needs to be escaped by a backslash. Moreover, if the tag contains a backslash,
this also needs to be escaped, which yields two consecutive backslashes. For example, if a variable
named “V01” has as a tag the string: “My Tag"\”, the corresponding line in the attribute file will
contain:

V01 "My Tag \"\\"

864

Note that tags can only consist of US-ASCII printable characters.

17.14 PRM format
A Gurobi parameter (PRM) file is used to specify parameter settings. Reading a parameter file
(using GRBread, for example) causes the parameters specified in the file to take the specified values.

The file consists of parameter-value pairs, each on its own line. Any line that begins with the
hash sign (#) is a comment line and is ignored. The following is a simple example:

Parameter settings
Cuts 2
Heuristics 0.5

If an unknown parameter name is listed in the file, a warning is printed and the associated line
is ignored.

Note that when you write a Gurobi parameter file (using GRBwrite inC, Model.write in Python,
or in any of the other APIs), both integer or double parameters not at their default value will be
saved, but no string parameter will be saved into the file.

865

Logging

The Gurobi Optimizer produces a log that allows you to track the progress of the optimization.
The Gurobi command-line tool and the Gurobi Interactive Shell put the log to both the screen and
to a file named gurobi.log by default. The other interfaces just put the log to the screen. Screen
output can be controlled using the OutputFlag parameter, and file output can be controlled using
the LogFile parameter.

18.1 Header
When you solve a model, the first part of the resulting log contains basic information about the
model you are solving and the machine you are solving it on. You will first see a line that looks
like this:

Thread count: 4 physical cores, 8 logical processors, using up to 8 threads

This shows the number of physical cores and logical processors in the machine. The latter may be
larger than the former due to Simultaneous Multi Threading (SMT), which allows one physical core
to appear as multiple logical processors. This log line also shows the maximum number of threads
that the solver will use in this instance. This depends on the number of (logical) processors in the
machine, but also on the number requested (through the Threads parameter), and for some license
types on the number enabled by your license.

Next you will see summary information about the model you are solving:

Optimize a model with 755 rows, 2756 columns and 8937 nonzeros
Model fingerprint: 0x22935346
Variable types: 0 continuous, 2756 integer (0 binary)

The first line shows the size of the model. The second shows the model fingerprint, which is a hash
value that takes into account the values of all attributes of all components of the model. The intent
is that models that differ in any way will most always have different fingerprints. The last log line
above provides additional information about variable integrality (for MIP models).

The final portion of the header contains statistics about the constraint matrix:

Coefficient statistics:
Matrix range [1e+00, 1e+04]
Objective range [1e+00, 1e+04]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+04]

This information gives a very rough indication of whether you can expect numerical issues when
solving your model. Please consult the numerical guidelines section to learn more.

The format of the remainder of the log depends on the algorithm that is invoked (simplex,
barrier, sifting, branch-and-cut, or IIS. We now describe the contents of the log for each.

866

18.2 Simplex Logging
The simplex log can be divided into three sections: the presolve section, the simplex progress
section, and the summary section.
Presolve Section

The first thing the Gurobi optimizer does when optimizing a model is to apply a presolve algorithm
in order to simplify the model. The first section of the Gurobi log provides information on the
extent to which presolve succeeds in this effort. Consider the following example output from
NETLIB model dfl001:

Presolve removed 2349 rows and 3378 columns
Presolve time: 0.04s
Presolved: 3722 rows, 8852 columns, 30908 nonzeros

The example output shows that presolve was able to remove 2349 rows and 3378 columns, and
it required 0.04 seconds. The final line in the presolve section shows the size of the model after
presolve. This is size of the model that is passed to the simplex optimizer. Note that the solution
that is computed for this model is automatically transformed into a solution for the original problem
once simplex finishes (in a process often called uncrushing), but this uncrush step is transparent
and produces no log output.
Progress Section

The second section of the Gurobi simplex output provides information on the progress of the simplex
method:

Iteration Objective Primal Inf. Dual Inf. Time
0 -2.4571000e+32 4.000000e+30 2.457100e+02 0s

18420 1.1265574e+07 1.655263e+03 0.000000e+00 5s
20370 1.1266393e+07 0.000000e+00 0.000000e+00 6s

The five columns in each output row show the number of simplex iterations performed to that
point, the objective value for the current basis, the magnitude of the primal infeasibility for the
current basis (computed as the sum of the absolute values of all constraint and bound violations),
the magnitude of the dual infeasibility (computed as the sum of the absolute values of all dual
constraint violations), and the amount of time expended to that point (measured using wall clock
time). The default simplex algorithm in the Gurobi solver is dual simplex, which tries to maintain
dual feasibility while performing simplex pivots to improve the objective. Thus, once the dual
simplex algorithm has found an initial dual feasible basis, you will generally see a dual infeasibility
value of zero. When the primal and dual infeasibilities both reach zero, the basis is optimal and
optimization is complete.

By default, the Gurobi optimizer produces a log line every 5 seconds. The frequency of log
lines can be changed by modifying the DisplayInterval parameter (see the Parameter section of this
document for more information).
Summary Section

The third section of the simplex log provides summary information. It provides a summary of the
work that the simplex algorithm performed, including the iteration count and the runtime, and it

867

provides information on outcome of the optimization. The summary for a model that is solved to
optimality would look like this:

Solved in 20370 iterations and 5.75 seconds
Optimal objective 1.126639304e+07

Other termination states produce different summaries. For example, a user interrupt would produce
a summary that looks like:

Stopped in 7482 iterations and 3.41 seconds
Solve interrupted

Hitting a time limit would produce a summary that looks like:

Stopped in 18082 iterations and 5.00 seconds
Time limit reached

18.3 Barrier Logging
The barrier log can be divided into five sections: the presolve section, the barrier preprocessing
section, the barrier progress section, the crossover progress section, and the summary section.

Presolve Section

As mentioned earlier, the first thing the Gurobi optimizer does when optimizing a model is to apply
a presolve algorithm in order to simplify the model. The first section of the Gurobi log provides
information on the extent to which presolve succeeds in this effort. Consider the following example
output from NETLIB model dfl001:

Presolve removed 2349 rows and 3378 columns
Presolve time: 0.04s
Presolved: 3722 rows, 8852 columns, 30908 nonzeros

The example output shows that presolve was able to remove 2349 rows and 3378 columns, and
it required 0.04 seconds. The final line in the presolve section shows the size of the model after
presolve. This is size of the model that is passed to the barrier optimizer. Note that the solution
that is computed for this model is automatically transformed into a solution for the original problem
once barrier finishes (in a process often called uncrushing), but this uncrush step is transparent
and produces no log output.

Barrier Preprocessing Section

The factor matrix for the linear system solved in each iteration of the barrier method can be quite
large and quite expensive to compute. In order to reduce the cost of this computation, the first
step of the barrier algorithm is to compute a fill-reducing reordering of the rows and columns of
this matrix. This step can be quite expensive, but the cost is recouped in the reduced cost of the
subsequent barrier iterations.

Once this fill-reducing reordering has been computed, the Gurobi Optimizer outputs information
related to the barrier factor matrix:

868

Barrier statistics:
AA’ NZ : 3.657e+04
Factor NZ : 8.450e+05 (roughly 12 MBytes of memory)
Factor Ops : 3.944e+08 (less than 1 second per iteration)
Threads : 8

The First line shows the number of off-diagonal entries in the lower triangle of AAT . A scaled
version of this matrix is factored in each iteration of the barrier algorithm, so the structure of the
Cholesky factor depends on the structure of AAT .

The next two lines indicate the number of non-zero values in the factor matrix, and the number
of floating-point operations required to factor it. Note that the log also provides an estimate of
how much memory will be needed by the barrier algorithm, and how long each barrier iteration will
require: These are rough estimates that are meant to provide a general sense of how difficult the
model will be to solve. If you want to obtain an estimate of overall solution time, note that most
models achieve convergence in roughly 50 iterations, but there are many exceptions. Crossover
runtime is typically comparable to the cost of a few barrier iterations, but this time can vary
considerably, depending on the model characteristics.

The final line shows the number of threads that will be used to perform the barrier iterations.
You may sometimes see two other lines in this section:

Dense cols : 3
Free vars : 20

The first indicates how many columns from the constraint matrix were treated as dense. The
second indicates how many variables in the model are free. Dense columns and free variables can
sometimes lead to numerical difficulties in the barrier solver, so it is useful to know when they are
present.
Progress Section

The third section of the Gurobi barrier output provides information on the progress of the barrier
method:

Objective Residual
Iter Primal Dual Primal Dual Compl Time

0 1.47340463e+12 -1.05838204e+09 1.49e+04 2.46e+02 1.94e+09 0s
1 6.13234163e+11 -3.97417254e+10 5.97e+03 5.98e+06 8.82e+08 0s
2 2.89634303e+11 -9.20268188e+10 2.54e+03 2.24e+06 3.81e+08 0s
3 6.57753936e+10 -9.40746258e+10 2.39e+02 2.87e+05 5.17e+07 0s
4 2.44710457e+10 -2.59852944e+10 3.16e+01 3.01e+04 9.00e+06 0s
5 6.74069830e+09 -1.78169224e+10 4.01e+00 2.01e+04 3.17e+06 0s
6 1.93163205e+09 -3.10778084e+09 2.46e-01 3.13e+03 5.62e+05 0s
7 6.54973737e+08 -6.89946649e+08 4.40e-02 5.35e+02 1.47e+05 0s
8 2.44764500e+08 -3.47987016e+08 1.47e-02 4.02e+02 6.46e+04 0s
9 1.35906001e+08 -1.41063037e+08 7.16e-03 1.66e+02 3.01e+04 0s
10 9.29132721e+07 -6.69973369e+07 4.58e-03 7.60e+01 1.73e+04 0s

The seven columns in each output row show the number of barrier iterations performed to that
point, the primal and dual objective values for the current barrier iterate, the magnitude of the

869

primal and dual infeasibilities for the current iterate (computed as the infinity-norms of the primal
and dual residual vectors, respectively), the magnitude of the complementarity violation of the
current primal and dual iterates (the dot product of the primal solution and the dual reduced cost
vector), and the amount of time expended to that point (measured using wall clock time). When the
primal infeasibility, dual infeasibility, and complementarity satisfy barrier convergence tolerances
(controlled using the BarConvTol parameter), the solution is declared optimal and optimization is
complete.

Unlike the simplex and MIP optimizers, the barrier optimizer produces a log line for each iterate,
independent of the value of the DisplayInterval parameter.

You may sometimes see a star after the iteration count in the barrier progress log:

15 2.42800468e+03 8.54543324e+04 1.68e+02 1.02e-09 8.30e+04 0s
16 4.05292006e+03 4.65997441e+04 1.82e+02 2.50e-01 4.25e+04 0s
17* 4.88742259e+08 4.30781025e+10 5.17e+00 1.31e-01 2.52e-02 0s
18* 1.21709951e+06 3.39471138e+13 8.55e-06 3.14e-06 3.14e-05 0s
19* -1.38021972e+06 3.31580578e+16 3.42e-08 8.20e-09 3.22e-08 0s
20* 1.25182178e+06 3.31575855e+19 6.54e-12 7.34e-09 3.22e-11 0s

This indicates that the model may be primal or dual infeasible. Note that these intermediate indi-
cations of infeasibility won’t necessarily turn into an infeasibility proof, so the star may disappear
in later iterations.
Crossover Section

The fourth section of the barrier log provides information on the crossover step. This section is
only present when crossover is selected (as controlled through the Crossover parameter. Crossover
converts the interior point solution produced by the barrier algorithm to a basic solution.

The first stage in crossover is to push variables to bounds in order to obtain a valid basic
solution. By default, this is done for dual variables first, then for primal variables. Progress of this
phase is tracked with this portion of the crossover log...

Crossover log...

1610 DPushes remaining with DInf 0.0000000e+00 1s
0 DPushes remaining with DInf 0.0000000e+00 1s

144 PPushes remaining with PInf 5.7124800e-03 1s
0 PPushes remaining with PInf 5.7124800e-03 1s

Push phase complete: Pinf 5.7124800e-03, Dinf 8.1488315e-07 1s

Each line indicates how many push steps remain, the amount of infeasibility in the current solution,
and the elapsed barrier time.

Upon completion of the push phase, crossover has a basic solution that isn’t necessarily optimal.
The resulting basis is passed to simplex, and simplex completes the optimization...

Iteration Objective Primal Inf. Dual Inf. Time
1700 1.1266352e+07 5.712480e-03 0.000000e+00 1s
1868 1.1266393e+07 0.000000e+00 0.000000e+00 1s

870

The five columns in each output row of the simplex log show the number of simplex iterations
performed to that point in the crossover algorithm (including the push steps), the objective value
for the current basis, the magnitude of the primal infeasibility for the current basis (computed as
the sum of the absolute values of all constraint and bound violations), the magnitude of the dual
infeasibility (computed as the sum of the absolute values of all dual constraint violations), and the
amount of time expended by the crossover algorithm to that point (measured using wall clock time).
When the primal and dual infeasibilities both reach zero, the basis is optimal and optimization is
complete.

Summary Section

The final section of the barrier log provides summary information. It provides a summary of the
work that the barrier algorithm performed, including the iteration count and the runtime, and it
provides information on outcome of the optimization. The summary for a model that is solved to
optimality would look like this:

Solved in 1868 iterations and 1.05 seconds
Optimal objective 1.126639304e+07

Other termination states produce different summaries. For example, a user interrupt would produce
a summary that looks like:

Stopped in 7482 iterations and 3.41 seconds
Solve interrupted

Hitting a time limit would produce a summary that looks like:

Stopped in 9221 iterations and 5.00 seconds
Time limit exceeded

18.4 Sifting Logging
Sifting will sometimes be used within the dual simplex method, either as a result of an automatic
choice by the Gurobi Optimizer or because the user selected it through the Sifting parameter.
The sifting log consists of three sections: the presolve section, the sifting progress section, and the
summary section. The first and last are identical to those for simplex, so we’ll only discuss the
middle section here.

Sifting Progress Section

As we mentioned, output for sifting and dual simplex are indistinguishable until the progress section
begins. For sifting, the progress section begins with a clear indication that sifting has been selected:

Starting sifting (using dual simplex for sub-problems)...

The sifting algorithm performs a number of major iterations, where each iteration solves a smaller
LP sub-problem. It uses the result to update the current primal and dual solution. The sifting
log prints one line per major iteration, with information on the current primal and dual objective
values:

871

Iter Pivots Primal Obj Dual Obj Time
0 0 infinity 2.0000000e+01 11s
1 4662 1.5220652e+03 2.7034420e+02 12s
2 8917 1.3127217e+03 4.6530259e+02 13s
3 16601 1.1651147e+03 6.4767742e+02 17s
4 30060 1.0881514e+03 7.8842688e+02 29s
5 45169 1.0618879e+03 8.8656855e+02 46s
6 59566 1.0549766e+03 9.5404159e+02 64s
7 73614 1.0540577e+03 1.0172213e+03 82s

The first column in the log gives the major iteration number. The second shows the total number
of simplex iterations performed in solving the sifting sub-problems. The third and fourth columns
show the primal and dual objective values for the current solution. The final column shows elapsed
runtime.

The completion of sifting is indicated with the following message:

Sifting complete

The basis computed by sifting is then handed back to dual simplex, and the log from that point
forward comes from the dual simplex algorithm.

18.5 MIP Logging
The MIP log can be divided into three sections: the presolve section, the simplex progress section,
and the summary section.
Presolve Section

As with the simplex and barrier logs, the first section of the MIP log is the presolve section. Here
is presolve output for MIPLIB model mas76:

Presolve removed 0 rows and 3 columns
Presolve time: 0.01s
Presolved: 12 rows, 148 columns, 1615 nonzeros
Variable types: 1 continuous, 147 integer (145 binary)

In this example, presolve was able to remove 3 columns. The last two lines show the size of the
model that is passed to the branch-and-cut algorithm and the types of remaining variables.
Progress Section

The next section in the MIP log tracks the progress of the branch-and-cut search. The search
involves a number of different steps, so this section typically contains a lot of detailed information.
The first thing to observe in the log for example mas76 is this line:

Found heuristic solution: objective 157344.61033

It indicates that the Gurobi heuristics found an integer-feasible solution before the root relaxation
was solved.

The next thing you will see in the log is the root relaxation solution display. For a model where
the root solves quickly, this display contains a single line:

872

Root relaxation: objective 3.889390e+04, 50 iterations, 0.00 seconds

For models where the root relaxation takes more time (MIPLIB model dano3mip, for example),
the Gurobi solver will automatically include a detailed simplex log for the relaxation itself:

Root simplex log...

Iteration Objective Primal Inf. Dual Inf. Time
15338 5.7472018e+02 6.953458e+04 0.000000e+00 5s
19787 5.7623162e+02 0.000000e+00 0.000000e+00 7s

Root relaxation: objective 5.762316e+02, 19787 iterations, 6.18 seconds

To be more precise, this more detailed log is triggered whenever the time to solve the root relaxation
exceeds the DisplayInterval parameter value (5 seconds by default).

The next section provides progress information on the branch-and-cut tree search:

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 38893.9036 0 11 157344.610 38893.9036 75.3% - 0s
H 0 0 80297.610430 38893.9036 51.6% - 0s
H 0 0 60361.518931 38893.9036 35.6% - 0s
H 0 0 41203.601476 38893.9036 5.61% - 0s

0 0 38923.3264 0 12 41203.6015 38923.3264 5.53% - 0s
0 0 38923.3264 0 12 41203.6015 38923.3264 5.53% - 0s

H 0 0 40697.054142 38923.3264 4.36% - 0s
0 0 38923.3264 0 13 40697.0541 38923.3264 4.36% - 0s

H 0 0 40005.054142 38923.3264 2.70% - 0s
0 0 38939.3131 0 15 40005.0541 38939.3131 2.66% - 0s
0 0 38964.7042 0 13 40005.0541 38964.7042 2.60% - 0s
0 0 39004.6387 0 15 40005.0541 39004.6387 2.50% - 0s
0 0 39008.7922 0 15 40005.0541 39008.7922 2.49% - 0s
0 0 39008.9356 0 12 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 14 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 15 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 15 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 16 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 17 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 17 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 19 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 18 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 18 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 19 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 19 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 18 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 18 40005.0541 39008.9356 2.49% - 0s

873

0 0 39008.9356 0 18 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 18 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 18 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 19 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 21 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 21 40005.0541 39008.9356 2.49% - 0s
0 0 39008.9356 0 19 40005.0541 39008.9356 2.49% - 0s
0 2 39008.9356 0 19 40005.0541 39008.9356 2.49% - 0s

This display is somewhat dense with information, but each column is hopefully fairly easy to
understand. The Nodes section (the first two columns) provides general quantitative information
on the progress of the search. The first column shows the number of branch-and-cut nodes that
have been explored to that point, while the second shows the number of leaf nodes in the search
tree that remain unexplored. At times, there will be an H or * character at the beginning of the
output line. These indicate that a new feasible solution has been found, either by a MIP heuristic
(H) or by branching (*).

The Current Node section provides information on the specific node that was explored at that
point in the branch-and-cut tree. It shows the objective of the associated relaxation, the depth of
that node in the branch-and-cut tree, and the number of integer variables that have non-integral
values in the associated relaxation.

The Objective Bounds section provides information on the best known objective value for
a feasible solution (i.e., the objective value of the current incumbent), and the current objective
bound provided by leaf nodes of the search tree. The optimal objective value is always between
these two values. The third column in this section (Gap) shows the relative gap between the two
objective bounds. When this gap is smaller than the MIPGap parameter, optimization terminates.

The Work section of the log provides information on how much work has been performed to
that point. The first column shows the average number of simplex iterations performed per node
in the branch-and-cut tree. The final column shows the elapsed time since the solve began.

By default, the Gurobi MIP solver prints a log line every 5 seconds (although the interval can
sometimes be longer for models with particularly time-consuming nodes). The interval between
log lines can be adjusted with the DisplayInterval parameter (see the Parameter section of this
document for more information).

Note that the explored node count often stays at 0 for an extended period. This means that the
Gurobi MIP solver is processing the root node. The Gurobi solver can often expend a significant
amount of effort on the root node, generating cutting planes and trying various heuristics in order
to reduce the size of the subsequent branch-and-cut tree.
Summary Section

The third section in the log provides summary information once the MIP solver has finished:

Cutting planes:
Gomory: 1
MIR: 17

Explored 313128 nodes (1741251 simplex iterations) in 4.80 seconds
Thread count was 8 (of 8 available processors)

874

Solution count 7: 40005.1 40697.1 41203.6 ... 157345

Optimal solution found (tolerance 1.00e-04)
Best objective 4.000505414200e+04, best bound 4.000505414200e+04, gap 0.0000%

In this example, the Gurobi solver required just under 5 seconds to solve the model to optimality,
and it used 8 threads to do so (the thread count can be limited with the Threads parameter). The
gap between the best feasible solution objective and the best bound is 0.0%, which produces an
Optimal termination status, since the achieved gap is smaller than the default MIPGap parameter
value.

18.6 Solution Pool and Multi-Scenario Logging
Populating a solution pool or solving for multiple scenarios involves looking for more than one
solution, which leads to different logging output. In particular, logging for these methods comes
in two phases. In the first, the log shows progress towards finding one provably optimal solution
(for multi-scenario optimization, this is the best solution over all scenarios). The log for this first
phase is identical to the standard MIP log. It shows progress in the lower and upper bounds, and
the phase terminates when these are sufficiently close to each other.

The second phase starts once attention has shifted towards finding solutions beyond that one
optimal solution. You will see a message indicating that a new phase has begun. When populating
a solution pool, you will see:

Optimal solution found at node 7407 - now completing solution pool...

When solving for multiple scenarios, you will see:

Optimal solution found at node 15203 - now completing multiple scenarios...

You will also see an additional header, which is slightly different from the standard MIP header.
For a solution pool:

Nodes | Current Node | Pool Obj. Bounds | Work
| | Worst |

Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

For multiple scenarios:

Nodes | Current Node | Scenario Obj. Bounds | Work
| | Worst |

Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

The most important difference versus the standard header is in the Incumbent column. In the
standard MIP log, this column shows the objective value for the best solution found so far. For a
solution pool or multiple scenarios, this column shows the objective value for the worst solution.
This of course isn’t the worst solution ever found. Rather, it shows the objective value for the
worst solution among all the solutions that the MIP solver has been asked to find. For example, if
you have set the PoolSolutions parameter to 100 to ask for the 100 best solutions, this column will
show the objective value for the 100th best solution found so far. If you are solving a multi-scenario

875

model, this column shows the worst solution found over all scenarios. As the search progresses,
the value in this column will improve monotonically as the MIP solver replaces this worst solution
with better solutions.

One other important difference in this second phase log is in the meaning of the BestBd column.
In the standard MIP log, this column gives a bound on the best possible objective value for any
solution. In this log, this column shows the best possible objective value for any solution that has
not yet been found. To give an example, if a minimization model has a unique optimal solution
at objective 100, the second phase will begin once the lower bound reaches 100, and the BestBd
column will show a value larger than 100 once the solver has determined that only one solution
exists at objective 100.

The BestBd and Incumbent columns allow you to track progress towards completion of the
solution pool or multi-scenario solve. Specifically, once the best bound for any solution that has
not yet been found reaches the objective value for the worst solution, we know that we can’t improve
that solution and we can stop.

18.7 Multi-Objective Logging
The contents of the log for a multi-objective solve will depend on the approach you use to solve
the model. As noted in the section on multi-objective models, you have two options. In a blended
approach, where the objectives are combined into a single objective, the log will be the same as
what you’d see for a single-objective model. When using a hierarchical approach, a series of models
is solved, one for each objective priority level. If your model is a pure hierarchical multi-objective
problem with three objectives, the optimization process log will start with

Multi-objectives: starting optimization with 3 objectives ...

If your model is a mixed hierarchical-blended multi-objective problem with five objectives but only
three priorities, the optimization log will start with

Multi-objectives: starting optimization with 5 objectives (3 combined) ...

You will also see a log for each solve, introduced by a small header

Multi-objectives: optimize objective 1 Name ...

Where Name will be the name of the objective function being optimize, or (weighted) if the
objective function is the result of blending more than one objective function.

The logs for the individual solves will again be the same as what you’d see for a single-objective
model.

18.8 Distributed MIP Logging
Logging for distributed MIP is very similar to the standard MIP logging. The main difference is in
the progress section. The header for the standard MIP logging looks like this:

876

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

In contrast, the distributed MIP header has a different label for the second-to-last field:

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | ParUtil Time

Instead of showing iterations per node, this field in the distributed log shows parallel utilization.
Specifically, it shows the fraction of the preceding time period (the time since the previous progress
log line) that the workers spent actively processing MIP nodes.

Here is an example of a distributed MIP progress log:

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | ParUtil Time

H 0 157344.61033 - - 0s
H 0 40707.729144 - - 0s
H 0 28468.534497 - - 0s
H 0 18150.083886 - - 0s
H 0 14372.871258 - - 0s
H 0 13725.475382 - - 0s

0 0 10543.7611 0 19 13725.4754 10543.7611 23.2% 99% 0s
* 266 12988.468031 10543.7611 18.8% 0s
H 1503 12464.099984 10630.6187 14.7% 0s
* 2350 12367.608657 10632.7061 14.0% 1s
* 3360 12234.641804 10641.4586 13.0% 1s
H 3870 11801.185729 10641.4586 9.83% 1s

Ramp-up phase complete - continuing with instance 2 (best bd 10661)

16928 2731 10660.9626 0 12 11801.1857 10660.9635 9.66% 99% 2s
135654 57117 11226.5449 19 12 11801.1857 11042.3036 6.43% 98% 5s
388736 135228 11693.0268 23 12 11801.1857 11182.6300 5.24% 96% 10s
705289 196412 cutoff 11801.1857 11248.8963 4.68% 98% 15s
1065224 232839 11604.6587 28 10 11801.1857 11330.2111 3.99% 98% 20s
1412054 238202 11453.2202 31 12 11801.1857 11389.7119 3.49% 99% 25s
1782362 209060 cutoff 11801.1857 11437.2670 3.08% 97% 30s
2097018 158137 11773.6235 20 11 11801.1857 11476.1690 2.75% 92% 35s
2468495 11516 cutoff 11801.1857 11699.9393 0.86% 78% 40s
2481830 0 cutoff 11801.1857 11801.1857 0.00% 54% 40s

One thing you may find in the progress section is that node counts may not increase monoton-
ically. Distributed MIP tries to create a single, unified view of node numbers, but with multiple
machines processing nodes independently, possibly at different rates, some inconsistencies are in-
evitable.

Another difference is the line that indicates that the distributed ramp-up phase is complete.
At this point, the distributed strategy transitions from a concurrent approach to a distributed

877

approach. The log line indicates which worker was the winner in the concurrent approach. Dis-
tributed MIP continues by dividing the partially explored MIP search tree from this worker among
all of the workers.

Another difference in the distributed log is in the summary section. The distributed MIP log
includes a breakdown of how runtime was spent:

Runtime breakdown:
Runtime breakdown:

Active: 37.85s (93%)
Sync: 2.43s (6%)
Comm: 0.34s (1%)

This is an aggregated view of the utilization data that is displayed in the progress log lines. In
this example, the workers spent 93% of runtime actively working on MIP nodes, 6% waiting to
synchronize with other workers, and 1% communicating data between machines.

18.9 IIS Logging
Recall that an Irreducible Infeasible Subsystem (IIS) is a subset of the constraints and variable
bounds in your infeasible model with the following properties:

• It is still infeasible, and

• If a single constraint or bound is removed, the subsystem becomes feasible.

The process of identifying an IIS is one of addition and subtraction. The algorithm grows a set of
constraints and bounds that are known to be part of an IIS, and also a set that are known not to
be. You can track the progress of this process in the IIS log.

Computing Irreducible Inconsistent Subsystem (IIS)...

Constraints | Bounds | Runtime
Min Max Guess | Min Max Guess |

--
0 17509 - 0 4 - 0s
0 12996 - 0 4 - 5s
0 10398 20 0 0 - 10s
0 9749 20 0 0 - 15s
1 9584 20 0 0 - 20s
4 9576 20 0 0 - 25s
6 9406 20 0 0 - 30s
8 8432 40 0 0 - 35s
11 8422 40 0 0 - 40s
15 8413 60 0 0 - 45s
18 8241 60 0 0 - 50s
21 7908 50 0 0 - 55s
24 7735 50 0 0 - 60s

...

878

The first two columns show the minimum and maximum sizes of the set of constraints in the IIS.
The fourth and fifth column give the same information for the set of variable bounds. The final
column shows elapsed runtime.

The third and sixth columns in the IIS log provide guesses at the final size of the IIS. Computing
an IIS can be quite time-consuming, and it is often useful to have a sense of how large the result will
be. These guesses can be quite accurate in some cases, but unfortunately there are some models
that can fool our heuristic. You should treat these as very rough estimates.

When the process completes, the algorithm outputs the size of the IIS (the number of constraints
and bounds in the irreducible subsystem):

IIS computed: 102 constraints, 0 bounds
IIS runtime: 129.91 seconds

Note in this case that early guesses were in the neighborhood of 50 constraints, but the IIS contained
102.

If you terminate the process early, you will get a non-minimal infeasible subsystem instead:

Non-minimal IIS computed: 3179 constraints, 0 bounds
IIS runtime: 120.29 seconds

879

Gurobi Command-Line Tool

The Gurobi command-line tool allows you to perform simple commands without the overhead or
complexity of an interactive interface. While the most basic usage of the command-line tool is quite
straightforward, the tool has a number of uses that are perhaps less obvious. This section talks
about its full capabilities.

To use this tool, you’ll need to type commands into a command-line interface. Linux and Mac
users can use a Terminal window. Windows users will need to open a Command Prompt (also
known as a Console window or a cmd window). To launch one, hold down the Start and R keys
simultaneously, and then type cmd into the Run box that appears.

The command to solve a model using the command-line tool is:

gurobi_cl [parameter=value]* modelfile

The Gurobi log file is printed to the screen as the model solves, and the command terminates
when the solve is complete. Parameters are chosen from among the Gurobi parameters. The final
argument is the name of a file that contains an optimization model, stored in MPS or LP format.
You can learn more about using the command-line tool to solve models in this section.

The command-line tool can also be used to replay recordings of API calls. The command for
this usage is:

gurobi_cl recordingfile

A recording file is a binary file generated by Gurobi with a .grbr extension. You can learn more
about using the command-line tool to replay recordings in this section.

The command-line tool can also be used to check on the status of a Gurobi token server. The
command is:

gurobi_cl --tokens

This command will show you whether the token server is currently serving tokens, and which users
and machines are currently using tokens.

You can also type:

gurobi_cl --help

to get help on the use of the tool, or:

gurobi_cl --version

to get version information, or:

gurobi_cl --license

880

to get the location of the current Gurobi license file.

19.1 Solving a Model
The command-line tool provides an easy way to solve a model stored in a file. The model can be
stored in several different formats, including MPS, REW, LP, and RLP, and the file can optionally
be compressed using gzip, bzip2, or 7z. See the File Format discussion for more information on
accepted formats.

The most basic command-line command is the following:

gurobi_cl model.mps

This will read the model from the indicated file, optimize it, and display the Gurobi log file as the
solve proceeds.

You can optionally include an arbitrary number of parameter=value commands before the
name of the file. For example:

gurobi_cl Method=2 TimeLimit=100 model.mps

The full set of Gurobi parameters is described in the Parameter section.
Gurobi Compute Server users can add the --server= switch to specify a server. For example,

the command:

gurobi_cl --server=server1 Method=2 TimeLimit=100 model.mps

would solve the model stored in file model.mps on machine server1, assuming it is running Gurobi
Compute Server. If the Compute Server has an access password, use the --password= switch to
specify it.

Gurobi Instant Cloud users can add the --accessid=, --secretkey=, and --pool= switches
to run a model on a cloud instance. For example, the command:

gurobi_cl --accessid=0f5e0ace-f929-a919-82d5-02272b3b0e19 \
--secretkey=8EDZOIf7T9avp0ZHef9Tsw --pool=mypool model.mps

would solve the model stored in file model.mps on cloud pool mypool using the provided access ID
and secret key. If the pool isn’t currently active, it will launch it first.
Writing Result Files

While it is often useful to simply solve a model and display the log, it is also common to want to
review the resulting solution. You can use the ResultFile parameter to write the solution to a file:

gurobi_cl ResultFile=model.sol model.mps

The file name suffix determines the type of file written. Useful file formats for solution information
are .sol (for solution vectors) and .bas (for simplex basis information). Again, you should consult
the section on File Formats for a list of the supported formats

If you have an infeasible model, you may want to examine a corresponding Irreducible Incon-
sistent Subsystem (IIS) to identify the cause of the infeasibility. You can ask the command-line
tool to write a .ilp format file. It will attempt to solve the model, and if the model is found to be
infeasible, it will automatically compute an IIS and write it to the requested file name. An IIS is
a subset of the constraints and variable bounds with the following properties:

881

• It is still infeasible, and

• If a single constraint or bound is removed, the subsystem becomes feasible.

Note that an infeasible model may have multiple IISs. The one returned by Gurobi is not necessarily
the smallest one; there may exist others with fewer constraints or bounds.

IIS results are returned in a number of attributes: IISConstr, IISLB, IISUB, IISSOS, IISQCon-
str, and IISGenConstr. Each indicates whether the corresponding model element is a member of
the computed IIS.

The IIS log provides information about the progress of the algorithm, including a guess at the
eventual IIS size.

If an IIS computation is interrupted before completion, Gurobi will return the smallest infeasible
subsystem found to that point.

Another use of ResultFile is to translate between file formats. For example, if you want to
translate a model from MPS format to LP format, you could issue the following command:

gurobi_cl TimeLimit=0 ResultFile=model.lp model.mps

Gurobi can write compressed files directly, so this command would also work (assuming that 7zip
is installed on your machine):

gurobi_cl TimeLimit=0 ResultFile=model.lp.7z model.mps

The ResultFile parameter works differently from other parameters in the command-line in-
terface. While a parameter normally takes a single value, you can actually specify multiple result
files. For example, the following command:

gurobi_cl ResultFile=model.sol ResultFile=model.bas model.mps

will write two files.
Reading Input Files

You can use the InputFile parameter to read input files during the optimization. The most common
input formats are .bas (a simplex basis), .mst (a MIP start), .sol (also a MIP start), .hnt (MIP
hints), and .ord (a MIP priority order). For example, the following command:

gurobi_cl InputFile=model.bas model.mps

would start the optimization of the continuous model stored in file model.mps using the basis
provided in file model.bas.

Reading input files is equivalent to setting the values of Gurobi attributes. A .bas file populates
the VBasis and CBasis attributes, while a .ord file populates the BranchPriority attribute. A .mst
or .sol file populates the Start attribute. A .hnt file populates the VarHintVal and VarHintPri
attributes.

Again, you should consult the File Formats section for more information on supported file
formats

19.2 Replaying Recording Files
If you’ve generated a recording of the Gurobi API calls made by your program, you may use the
command-line tool to replay this recording.

882

Recordings are stored in files with .grbr extensions. To replay a recording from a file named
recording000.grbr issue the following command:

gurobi_cl recording000.grbr

You should adjust the file name to match the recording you wish to replay.
You will know you have succeeded in replaying a recording, if you see lines similar to the

following at the beginning of the command-line tool’s output:

Replay* Replay of file ’recording000.grbr’
Replay* Recording captured Tue Sep 13 19:28:48 2021
Replay* Recording captured with Gurobi version 9.1.2 (linux64)

For information about recording API calls and replaying them, see the Recording API Calls
chapter.

883

Solution Pool

While the default goal of the Gurobi Optimizer is to find one proven optimal solution to your
model, with a possible side-effect of finding other solutions along the way, the solver provides a
number of parameters that allow you to change this behavior.

20.1 Finding Multiple Solutions

By default, the Gurobi MIP solver will try to find one proven optimal solution to your model. It
will typically find multiple sub-optimal solutions along the way, which can be retrieved later (using
the SolutionNumber parameter, and the Xn and PoolObjVal attributes). However, these solutions
aren’t produced in a systematic way. The set of solutions that are found depends on the exact path
the solver takes through the MIP search. You could solve a MIP model once, obtaining a set of
interesting sub-optimal solutions, and then solve the same problem again with different parameter
settings, and find only one optimal solution or a different set of sub-optimal solutions.

If you’d like more control over how solutions are found and retained, the Gurobi Optimizer
has a number of parameters available for this. The first and simplest one is PoolSolutions, which
controls the size of the solution pool. Changing this parameter won’t affect the number of solutions
that are found - it simply determines how many of those are retained.

You can use the PoolSearchMode parameter to control the approach used to find multiple
solutions. In its default setting (0), the MIP search simply aims to find one optimal solution.
Setting the parameter to 1 causes the MIP search to expend additional effort to find more solutions,
but in a non-systematic way, and with no guarantee on the quality of these solutions: you will get
more solutions, but not necessarily the best solutions. Setting the parameter to 2 causes the MIP
to do a systematic search for the n best solutions. For both non-default settings, the PoolSolutions
parameter sets the target for the number of solutions to find.

If you are only interested in solutions that are within a certain gap of the best solution found,
you can set the PoolGap parameter. Solutions that are not within the specified gap are discarded.

Obtaining an OPTIMAL optimization return status when using PoolSearchMode=2 indicates that
the MIP solver succeeded in finding the desired number of best solutions, or it proved that the model
doesn’t have that many distinct feasible solutions. If the solver terminated early (e.g., due to a
time limit), you can use the PoolObjBound attribute to evaluate the quality of the solutions that
were found. You can find more details on how to do this later in this section.

There are a few subtleties associated with finding multiple solutions that you should be aware
of. For example, the notion of finding the n best solutions can be a bit ambiguous when you have
a non-zero optimality tolerance. Also, it isn’t obvious whether two solutions should be considered
different when the model has continuous variables. We’ll discuss these issues later in this section.

884

20.2 Retrieving Solutions
After optimization has completed, you can retrieve solutions from the solution pool using a few
parameters and attributes. The SolCount attribute indicates how many solutions were retained by
the MIP solver. The best solution can always be obtained through the X attribute. Sub-optimal
solutions can be obtained by first setting the SolutionNumber parameter and then querying the Xn
attribute to obtain the solution or the PoolObjVal attribute to obtain the objective value for the
corresponding solution.

For example, to retrieve the worst solution kept by the MIP solver, you’d first query SolCount to
determine how many solutions are available, then set the SolutionNumber parameter to SolCount-1,
then query the Xn attribute.

The PoolObjBound attribute gives a bound on the objective value of undiscovered solutions
(i.e., of solutions that aren’t already in the solution pool). Further tree exploration won’t find
solutions having a better objective value than PoolObjBound.

The difference between this attribute and ObjBound is that the latter gives a bound on the
objective for any solution, while PoolObjBound only refers to undiscovered solutions (which are not
in the solution pool). ObjBound is always at least as tight as PoolObjBound, and is often strictly
looser than PoolObjBound. If PoolSearchMode=0 or PoolSearchMode=1, then PoolObjBound and
ObjBound will always take the same value.

If the solver terminated early (e.g. due to reaching the time limit), you can still use the attribute
PoolObjBound to get a count of how many of the n best solutions you found: any solutions having
objective values that are at least as good as PoolObjBound are among the n best. This is illustrated
in the examples on the next section.

20.3 Examples
Parameter usage

Let’s continue with a few examples on how the parameters related to solution pools would be
used. Imagine that you are solving a MIP model with an optimal (minimization) objective of 100.
Further imagine that, using default settings, the MIP solver finds four solutions to this model with
objectives 100, 110, 120, and 130.

If you set the PoolSolutions parameter to 3 and solve the model again, the MIP solver would
return with 3 solutions in the solution pool (i.e., the SolCount attribute would have value 3). If
you instead set the PoolGap parameter to value 0.2, the MIP solver would discard any solutions
whose objective value is worse than 120 (which would also leave 3 solutions in the solution pool).

If you set the PoolSearchMode parameter to 1 and the PoolSolutions parameter to 10, the MIP
solver would continue running after having found an optimal solution trying to find and store 10
solutions, but with no guarantee on the quality of the additional solutions.

If you set the PoolSearchMode parameter to 2 and the PoolSolutions parameter to 10, the MIP
solver would attempt to find the 10 best solutions to the model. An OPTIMAL return status would
indicate that either (i) it found the 10 best solutions, or (ii) it found all feasible solutions to the
model, and there were fewer than 10. If you also set the PoolGap parameter to a value of 0.1, the
MIP solver would try to find 10 solutions with objective no worse than 110. While this may appear
equivalent to asking for 10 solutions and simply ignoring those with objective worse than 110, the
solve will typically complete significantly faster with this parameter set, since the solver does not

885

have to expend effort looking for solutions beyond the requested gap.
Interpreting attribute information

Let’s try to better understand the attributes related to solution pools. Consider again a minimiza-
tion problem where the parameter settings PoolSearchMode=2 and PoolSolutions=10 have been
used.

First, imagine that the solver terminated with an OPTIMAL return status. We look at several
possible hypothetical values of some attributes:

• Case 1 : ObjVal=100, ObjBound=100, PoolObjBound=500, and the objective value of the 10th
solution in the pool is 500.
The first solution in the pool is optimal (because ObjVal and ObjBound are equal), and the
solver was able to find 10 solutions of value at most 500. Because PoolObjBound=500, we
know that all solutions that the solver did not find have an objective value of at least 500.
Since the last solution in the pool has value 500, the 10 solutions in the pool are definitely
the 10 best solutions.

• Case 2 : ObjVal=100, ObjBound=100, PoolObjBound=+infinity, SolCount=7, and the values
of the 7th and 8th solutions in the pool are 350 and +infinity, respectively.
The solver has found 7 solutions and has proven that no other feasible solution for the model
exists. The best of these 7 solutions has objective 100, the worst of them has objective 350.

Now, imagine that the solver terminated early due to a time limit (return status TIME_LIMIT).
Again, we look at several possible hypothetical values of some attributes:

• Case 3: ObjVal=100, ObjBound=50, PoolObjBound=50
Since ObjBound < ObjVal, the solver did not prove optimality of the incumbent solution (the
first solution in the pool). There can be better solutions than the incumbent.

• Case 4: ObjVal=100, ObjBound=100, PoolObjBound=100, and the objective value of the 10th
solution in the pool is 500.
The first solution in the pool is optimal (because ObjVal and ObjBound are equal), and the
solver was able to find 10 solutions with objective value at most 500. Because PoolObjBound=100,
we know that all solutions that the solver did not find have an objective value of at least 100.
Since the value of the last solution in the pool is 500, it could be the case that there exist
10 or more solutions with objective smaller than 500 (but greater than or equal to 100). In
particular, solutions that are currently in the pool and have objective value greater than 100
might not be among the 10 best solutions.

• Case 5: ObjVal=100, ObjBound=100, PoolObjBound=200, and the objective values of the 4th,
5th and 10th solutions in the pool are 180, 220 and 500, respectively.
The first solution in the pool is optimal (because ObjVal and ObjBound are equal), and the
solver was able to find 10 solutions of value at most 500. Because PoolObjBound=200, we
know that all solutions that the solver did not find have an objective value of at least 200.
This means that the first 4 solutions in the pool (up to the solution with value 180) are
definitely the best four solutions that exist. The 5th solution with value 220 (and subsequent
solutions in the pool) may be inferior to other undiscovered solutions.

886

20.4 Subtleties and Limitations
There are a few subtleties associated with finding multiple solutions that we’ll cover now.
Continuous Variables

One subtlety arises when considering multiple solutions for models with continuous variables.
Specifically, you may have two solutions that take identical values on the integer variables but
where some continuous variables differ. By choosing different points on the line between these two
solutions, you actually have an infinite number of choices for feasible solutions to the problem. This
might be an issue, because the solution pool could be filled with solutions that only differ in the
values of continuous variables but are otherwise equivalent, providing little interesting information.
To avoid this issue, we define two solutions as being equivalent if they take the same values on all
integer variables (and on all continuous variables that participate in SOS constraints). A solution
will be discarded if it is equivalent to another solution that is already in the pool.
Optimality Gap

The interplay between the optimality gap (MIPGap or MIPGapAbs) and multiple solutions can
be a bit subtle. When using the default PoolSearchMode, a non-zero optimality gap indicates that
you are willing to allow the MIP solver to declare a solution optimal, even though the model may
have other, better solutions. The claim the solver makes upon termination is that no other solution
would improve the incumbent objective by more than the optimality gap. Terminating at this point
is ultimately a pragmatic choice - we’d probably rather have the true best solution, but the cost of
reducing the optimality gap to zero can often be prohibitive.

This pragmatic choice can produce a bit of confusion when finding multiple optimal solutions.
Specifically, if you ask for the n best solutions, the optimality gap plays a similar role as it does in
the default case, but the implications may be a bit harder to understand. Specifically, a non-zero
optimality gap means that you are willing to allow the solver to declare that it has found the n
best solutions, even though there may be solutions that are better than those that were returned.
The claim in this case is that any solution not among the reported n best would improve on the
objective for the worst among the n best by less than the optimality gap.

If you want to avoid this source of potential confusion, you should set the optimality gap to 0
when using PoolSearchMode=2.
Logging

The log for a MIP solve with PoolSearchMode set to a non-default value is different from the
standard MIP log. You should consult the section Solution Pool and Multi-Scenario Logging for
details.
Distributed MIP

One limitation that we should point out related to multiple solutions is that the distributed MIP
solver has not been extended to support non-default PoolSearchMode settings. Distributed MIP
will typically produce many more feasible solutions than non-distributed MIP, but there’s no way
to ask it to find the n best solutions.

887

Multiple Objectives

While typical optimization models have a single objective function, real-world optimization prob-
lems often have multiple, competing objectives. For example, in a production planning model, you
may want to both maximize profits and minimize late orders, or in a workforce scheduling appli-
cation, you may want to minimize the number of shifts that are short-staffed while also respecting
worker’s shift preferences.

The main challenge you face when working with multiple, competing objectives is deciding how
to manage the trade-offs between them. Gurobi provides tools that simplify the task: Gurobi allows
you to blend multiple objectives, to treat them hierarchically, or to combine the two approaches.
In a blended approach, you optimize a weighted combination of the individual objectives. In
a hierarchical or lexicographic approach, you set a priority for each objective, and optimize in
priority order. When optimizing for one objective, you only consider solutions that would not
degrade the objective values of higher-priority objectives. Gurobi allows you to enter and manage
your objectives, to provide weights for a blended approach, and to set priorities for a hierarchical
approach.

21.1 Specifying Multiple Objectives
Let us first discuss the interface for managing multiple objectives. An empty model starts with
one objective function, which is initially just 0.0. We’ll refer to this as the primary objective. You
can modify the primary objective in two ways: you can set the Obj attribute, or you can use the
setObjective method from your language API (e.g., Model.setObjective in Python). For models
with a single objective, this primary objective can be linear, quadratic, or piecewise-linear. In
general, attributes and methods that aren’t specific to multi-objective optimization will work with
the primary objective function.

Every objective in a multi-objective model has the following settable attributes: ObjNCon with
default value 0, ObjNPriority with default value 0, ObjNWeight with default value 1, ObjNRelTol
with default value 0, ObjNAbsTol with default value 0, and ObjNName.

To provide additional objectives, use the setObjectiveN method from your language API (e.g.
Model.setObjectiveN in Python). Objectives are numbered 0 through NumObj-1. The order of
the objectives is arbitrary, but you must provide a unique index for each one (specified using the
index argument to setObjectiveN). You can query the number of objectives in your model using
the NumObj attribute. Note that all objectives, including the primary one, must be linear for
multi-objective models.

You can query and modify information about multiple objectives using the ObjNumber pa-
rameter, in conjunction with several model and variable attributes. For example, to retrieve the
coefficient for variable x in objective 2, you’d set the ObjNumber parameter to 2, then query the
ObjN attribute for x. Similarly, querying the ObjNName attribute after setting ObjNumber to 3
would give the name of objective 3.

We should note that there is one important exception to our statement above that the order of

888

objectives is arbitrary: objective 0 is treated as the primary objective. One consequence is that the
original objective automatically becomes objective 0 when you add a second objective. Another is
that querying the ObjN attribute is equivalent to querying the Obj attribute when ObjNumber is 0.

Note that a model has a single objective sense (controlled by the ModelSense attribute). This
means that you can’t maximize the first objective and minimize the second. However, you can
achieve the same result with a simple trick. Each objective has a weight, and these weights are
allowed to be negative. Minimizing an objective function is equivalent to maximizing the negation
of that function.

You can change the number of objectives in your model as many times as you like (by modifying
the NumObj attribute). When you increase the objective count, the new objectives and their
associated attributes are set to 0. When you decrease the count, objectives beyond the new count
are discarded. If you set the number of objectives to zero, the model becomes a pure feasibility
problem.

We have extended the LP and MPS file formats, so writing a model with multiple objectives
to a file will capture those objectives. Similarly, if you read a model file that contains multiple
objectives, then NumObj and ObjN will capture the objectives stored in the file. See the file
format section for details.

21.2 Working With Multiple Objectives
Of course, specifying a set of objectives is only the first step in solving a multi-objective optimization
problem. The next step is to indicate how the objectives should be combined. As noted earlier, we
support two approaches: blended and hierarchical.

Blended Objectives

A blending approach creates a single objective by taking a linear combination of your objectives.
You provide a weight for each objective as an argument to setObjectiveN. Alternatively, you can
use the ObjNWeight attribute, together with ObjNumber. The default weight for an objective is
1.0.

To give an example, if your model has two objectives, 1 + x + 2y and y + 2z, and if you give
weights of −1 and 2 to them, respectively, then Gurobi would solve your model with a blended
objective of −1 · (1 + x+ 2y) + 2 · (y + 2z) = −1− x+ 4z.

You should avoid weights that are very large or very small. A very large weight (i.e., larger
than 106) may lead to very large objective coefficients, which can cause numerical difficulties. A
very small weight (i.e., smaller than 1e− 6) may cause the contribution from that objective to the
overall blended objective to be smaller than tolerances, which may lead to that objective being
effectively ignored.

Hierarchical Objectives

A hierarchical or lexicographic approach assigns a priority to each objective, and optimizes for
the objectives in decreasing priority order. At each step, it finds the best solution for the current
objective, but only from among those that would not degrade the solution quality for higher-
priority objectives. You provide the priority for each objective as an argument to setObjectiveN.
Alternatively, you can use the ObjNPriority attribute. Priorities are integral, not continuous.
Larger values indicate higher priorities. The default priority for an objective is 0.

889

To give an example, if your model has two objectives, with priorities 10 and 5, and objective
weights 1.0 and -1.0. Assuming the optimal solution for the first objective has value 100, then the
solver will find the solution that optimizes minus the second objective from among all solutions
with objective 100 for the first objective.
Allowing Multiple-Objective Degradation

By default, our hierarchical approach won’t allow later objectives to degrade earlier objectives,
subject to the user-given ending gap conditions for the optimization problem. More precisely,
the base value used to define what solutions are acceptable for lower priorities objectives – for a
minimization problem – is computed as:

base_value = max{bestsol, bestbound+ |bestbound| ∗ rgap, bestbound+ agap},

where bestsol is the value of the best incumbent solution, bestbound is the value of the best
proven lower bound for the problem, rgap is the relative MIP gap, and agap is the absolute MIP
gap, and the set of feasible solutions for the next objective will consider solutions whose objective
value is at most that value.

This behavior can be relaxed for MIPs through a pair of tolerances: a relative and an absolute
tolerance. These are provided as arguments to setObjectiveN, or they can be set using attributes
ObjNRelTol and ObjNAbsTol. By setting one of these for a particular objective, you can indicate
that later objectives are allowed to degrade this objective by the specified relative or absolute
amount, respectively. In our earlier example, if the optimal value for the first objective is 100, and
if we set ObjNAbsTol for this objective to 20, then the second optimization step would find the best
solution for the second objective from among all solutions with objective 120 or better for the first
objective. Note that if you modify both tolerances, later optimizations would use the looser of the
two values (i.e., the one that allows the larger degradation).

Objective degradations are handled differently for multi-objective LP models. For LP models,
solution quality for higher-priority objectives is maintained by fixing some variables to their values
in previous optimal solutions. These fixings are decided using variable reduced costs. The value of
the ObjNAbsTol parameter indicates the amount by which a fixed variable’s reduced cost is allowed
to violate dual feasibility, whereas the ObjNRelTol parameter is simply ignored. If you want the
MIP behavior, where the degradation is controlled more directly, you can add a dummy binary
variable to the model, thus transforming it into a MIP. Solving the resulting multi-objective MIP
will be much more time consuming than solving the original multi-objective LP.
Combining Blended and Hierarchical Objectives

Actually, both weight and priority are always specified for each objective. This allows you to
seamlessly combine the blended and hierarchical approaches. To understand how this works, we
should first provide more detail on how hierarchical objectives are handled.

When you specify a different priority for each of n objectives, the solver performs n separate
optimization steps. In each step, in decreasing priority order, it optimizes for the current objective
multiplied by its ObjNWeight attribute, while imposing constraints that ensure that the quality of
higher-priority objectives isn’t degraded by more than the specified tolerances.

If you give the same priority to multiple objectives, then they will be handled in the same
optimization step, resulting in fewer than n total steps for n objectives. More precisely, one op-
timization step is performed per distinct priority value, in order of decreasing priority, and all

890

objectives with the same priority are blended together, using the weights for those objectives. This
gives you quite a bit of flexibility when combining the blended and hierarchical approaches.

One subtle point when blending multiple objectives within a single level in a hierarchical ap-
proach relates to the handling of degradations from lower-priority levels. The objective degrada-
tion allowed after a blended optimization step is the maximum absolute and relative degradations
allowed by each of the participating objectives. For example, if we have three objectives with
ObjNPriority equal to {2, 2, 1}, and ObjNRelTol equal to {0.10, 0.05, 0.00} and ObjNAbsTol equal
to {0, 1, 2}, and if the best solution for the first priority objective is 10, then the allowed degradation
for the first priority objective is max{10 · 0.10, 10 · 0.05, 0, 1} = 1.

Querying multi-objective results

Multiple objective values can be queried programmatically in all our APIs. The basic notion is
that you have to specify for which multi objective you want to query information (by setting the
parameter ObjNumber). Furthermore, you can also specify for which solution you want to query
this information (by setting the parameter SolutionNumber). For example, in Python you can do
the following:

Read and solve a model with multiple objectives
m = read(’input.mps ’)
m. optimize ()

get the set of variables
x = m. getVars ()

Ensure status is optimal
assert m. Status == GRB. Status . OPTIMAL

Query number of multiple objectives , and number of solutions
nSolutions = m. SolCount
nObjectives = m. NumObj
print(’Problem has ’, nObjectives , ’objectives ’)
print(’Gurobi found ’, nSolutions , ’solutions ’)

For each solution , print value of first three variables , and
value for each objective function
solutions = []
for s in range(nSolutions):

Set which solution we will query from now on
m. params . SolutionNumber = s

Print objective value of this solution in each objective
print (’Solution ’, s, ’:’, end=’’)
for o in range (nObjectives):

Set which objective we will query
m. params . ObjNumber = o
Query the o-th objective value
print (’ ’,m.ObjNVal , end=’’)

print first three variables in the solution
n = min(len(x),3)
for j in range (n):

print (x[j]. VarName , x[j].Xn , end=’’)
print (’’)

891

query the full vector of the o-th solution
solutions . append (m. getAttr (’Xn’,x))

21.3 Additional Details
Multi-Objective Environments

By default, the termination criteria (e.g. TimeLimit, SolutionLimit, etc.) for each pass in a
hierarchical multiple-objective optimization are controlled by the parameters defined in the model
environment. However, we provide a feature called multi-objective environments that allows you to
create a Gurobi environment for each objective function and set parameters on those environments.
Those settings will only affect the corresponding pass of the multi-objective optimization. Thus,
for example, if the TimeLimit parameter for the model is 100, but you use a multi-objective
environment to set the parameter to 10 for a particular multi-objective pass, then the multi-
objective optimization will spend at most 10 seconds on that particular pass (and at most 100
seconds in total).

To create a multi-objective environment for a particular multi-objective pass, use the getMultiobjEnv
method from your language API (e.g. Model.getMultiobjEnv in Python). The index argument
gives the index of the multi-objective pass that you want to control.

Note that multi-objective environments are tied to a given multi-objective optimization pass
and not to a given multi-objective function, so multi-objective environment 0 is always tied to the
highest priority (possibly blended) objective, while multi-objective environment 1 is always tied to
the second highest priority objective (if any).

Once you create multi-objective environments, they will be used for every subsequent multi-
objective optimization on that model. Use the discardMultiobjEnvs method from your language
API (e.g. Model.discardMultiobjEnvs in Python) to revert back to default multi-objective opti-
mization behavior.
Other Details

We haven’t attempted to generalize the notions of dual solutions or simplex bases for continuous
multi-objective models, so you can’t query attributes such as Pi, RC, VBasis, or CBasis for multi-
objective solutions. Because of this, we’ve concluded that the most consistent result to return
for attribute IsMIP is 1. Note, however, that several MIP-specific attributes such as ObjBound,
ObjBoundC and MIPGap don’t make sense for multi-objective models and are also not available.

Gurobi will only solve multi-objective models with strictly linear objectives. If the primary
objective is quadratic or piecewise linear, the solve call will return an error.

When solving a continuous multi-objective model using a hierarchical approach, you have a
choice of which optimization algorithm to use for the different steps (primal simplex, dual simplex,
or barrier). The first step will always use the algorithm specified in the Method parameter. The
algorithm for subsequent steps is controlled by the MultiObjMethod parameter. This parameter
has no effect for multi-objective MIP models. Note you can get finer-grained control over the
algorithm choice using our multi-objective environment feature, by setting the Method parameter
for individual objectives.

For the hierarchical approach, Gurobi will perform a conservative presolve step at the beginning
of the multi-objective optimization, and a more aggressive presolve step at the beginning of each step

892

(assuming presolve hasn’t been turned off). You can optionally perform a more aggressive presolve
step at the beginning of the multi-objective optimization by setting parameter MultiObjPre to
value 2. This can help performance, but it makes a few simplifying assumptions that could lead to
small degradations in the values achieved for lower-priority objectives.

The log file when using a hierarchical approach will show optimization progress for each step of
the process. You’ll see log lines that look like this:

Multi-objectives: optimize objective 1 (Obj1Name) ...
...
Multi-objectives: optimize objective 2 (weighted) ...
...

For further details, please see section Multi-Objective Logging.

893

Multiple Scenarios

When solving an optimization model, it is often useful to understand the sensitivity of the computed
solution to changes in the inputs. How would profits be affected if the price of a particular raw
material increased significantly? Would I still be able to satisfy customer orders if one of my
machines broke down? The most general form of this problem would fall into the domain of
stochastic or robust optimization, but those fields bring significant complexity with them. The
Gurobi Optimizer includes scenario analysis features that have a much more modest goal: to allow
the user to specify a set of scenarios, and to compute optimal solutions for all of these scenarios as
quickly as possible. These solutions often provide significant insight into how the solution would
change as inputs vary.

22.1 Definition of a Multi-Scenario Model
Before diving into the details of working with multiple scenarios, we first need to explain exactly
what we mean by the term. Let us start by claiming that it only makes sense to consider a
set of models as being different scenarios for the same underlying model if they have a lot in
common. They should definitely share the same set of variables. They should also have similar
sets of constraints and similar objectives. In our approach, scenarios are described as a set of
changes from a single base model. More specifically, scenarios can only modify model features that
are present in the base model. We should add that other modifications, including addition and
deletion of variables or constraints, can be achieved through the clever use of various tricks. For
now, though, it is best to think of scenarios as being small variations on the same base.

What variations do we allow from this base model? Scenarios can differ in the following at-
tributes:

• Linear objective function coefficients.

• Variable lower and upper bounds.

• Constraint right-hand side values.

A single scenario can have multiple changes from the base, so for example you could change an
objective coefficient, two variable bounds, and a right-hand side value in the same scenario.

After you have defined a set of scenarios (the specific mechanics for doing so will be described
shortly), the next step is to find solutions for all of the scenarios. A single call to the standard
Gurobi optimize method is all that is needed. This will of course be much more expensive than
finding an optimal solution for a single model, but our goal is for it to be faster and more convenient
than formulating and solving separate models for each scenario.

22.2 Specifying Multiple Scenarios
Your first step in building a multi-scenario model is to modify the NumScenarios attribute to
indicate how many scenarios you would like to consider. Once you have changed this attribute, you

894

can describe the different scenarios by changing various scenario-related attributes (listed below).
When you later call optimize on a multi-scenario model (a model where NumScenarios is greater
than 0), the solver will try to find optimal solutions for all specified scenarios. Note that it will not
try to find a solution for the base model.

Variations in the different scenarios are expressed through a set of four attributes:

• ScenNObj

• ScenNLB

• ScenNUB

• ScenNRHS

The first three are variable attributes, and the last is a linear constraint attribute. You can give
each scenario a name through the ScenNName attribute (a model attribute).

You use the ScenarioNumber parameter to modify scenario attributes for a specific scenario.
Scenarios are numbered 0 through NumScenarios-1. To give an example, to create a model where
binary variable x is fixed to 0 and 1 in two scenarios, you would:

• Set the NumScenarios attribute to 2, to indicate that your model has two scenarios.

• Set the ScenarioNumber parameter to 0, to indicate that you would first like to modify
scenario attributes for scenario 0.

• Set the ScenNUB attribute for variable x to 0 (to fix the binary variable to zero in this scenario).

• Set the ScenarioNumber parameter to 1, to move on to scenario 1.

• Set the ScenNLB attribute for variable x to 1 (to fix the binary variable to one in this scenario).

You query scenario attributes in a similar manner: set the ScenarioNumber parameter to choose
the scenario you would like to query, and then use the appropriate attribute query routine to obtain
the desired attribute values (consult our Attribute Examples for examples).

Note that unmodified scenario attributes take a special value of GRB.UNDEFINED. If you modified
a scenario attribute and would like to revert that modification, you can set the attribute back to
GRB.UNDEFINED.

You can change the number of scenarios in your model as many times as you like (by modifying
the NumScenarios attribute). When you increase the count, new empty scenarios are created (an
empty scenario is a scenario with no changes from the base model). When you decrease the count,
existing scenarios are discarded. When you set the count to zero, the model is no longer treated as
a multi-scenario model.

We have extended the LP and MPS file formats, so writing a model with multiple scenarios to a
file will capture those scenarios. Similarly, if you read a model file that contains multiple scenarios,
then NumScenarios and the various scenario attributes will capture the scenarios stored in the file.
See the file format section for details.

22.3 Logging
When solving a multi-scenario model, logging is somewhat different from standard MIP logging.
You should consult this section for details.

895

22.4 Retrieving Solutions for Multiple Scenarios
Your first step in retrieving the solutions computed by an optimize call on a multi-scenario model
is to query the Status attribute. A status of OPTIMAL indicates that optimal solutions were found
(subject to tolerances) for all scenarios that have feasible solutions, and that the other scenarios
were determined to be infeasible. If all scenarios were found to be infeasible, the status will be
INFEASIBLE. If any scenario is unbounded, the status will be UNBOUNDED. An early termination
status code (e.g., TIME_LIMIT) indicates that the outcomes may vary across the different scenarios,
and you will have to look at individual scenarios for more information.

Results for individual scenarios can be found in three attributes:

• ScenNObjVal: The objective value for the solution for scenario number n.

• ScenNObjBound: The best known bound on the optimal objective value for scenario number
n.

• ScenNX: The solution vector for scenario number n.

The ScenNObjVal and ScenNObjBound attributes are model attributes, while ScenNX is a variable
attribute. Again, use the ScenarioNumber parameter to select the scenario you’d like to query.

If your optimize call terminated early, you should use the ScenNObjBound attribute to inter-
pret the results. This attribute provides a bound on the optimal objective value for the selected
scenario (much like ObjBound provides a bound for a single model). For example, if ScenNObjVal
is 100 for a scenario and ScenNObjBound is 90 (assuming minimization), then you have a solution
with a 10% optimality gap for that scenario.

You can also query the ObjVal and ObjBound attributes for a multi-scenario model. The former
gives the best objective value for any solution found in any scenario. The latter provides a lower
bound on the objective value for any solution that was not found.

Note that ScenNObjVal and ScenNObjBound are computed using the objective function for the
corresponding scenario, which you may have changed from the base model.

If you query the ScenNX attribute and no feasible solution has been found for that scenario, you
will get a DATA_NOT_AVAILABLE error.

22.5 Tips and Tricks
Through clever use of the features provided in the multi-scenario interface, it is actually possible
to do a lot more than it may first appear.
Adding or Deleting Variables or Constraints

The multi-scenario interface provides no way to add or remove variables or constraints in a scenario,
but the same effect can be achieved by changing variable bounds and constraint right-hand side
values. To remove a variable in a scenario, simply change its lower and upper bounds to zero.
To add a variable, set its bounds to zero in the base model and change them to their true values
in the scenario. To remove a less-than constraint, change the right-hand-value in the scenario to
GRB.INFINITY. To add one, set its right-hand side to GRB.INFINITY in the base model and change
it to its true value in the scenario.

Changing the sense of a constraint can also be done using similar tricks. For example, you can
transform an equality constraint in the base model into an inequality in a scenario by splitting the

896

equality into a pair of inequalities. The right-hand side values for both inequalities in the base
model would be equal to the true value in the equality. The right-hand side value on one of the
two inequalities can then be relaxed to GRB.INFINITY in the scenario.

You can also change the type of a variable. For example, to transform an integer variable in the
base model into a continuous variable in a scenario, you can add both variables in the base model,
along with a split equality constraint that sets them equal to each other. That equality constraint
could then be relaxed in the scenario (using the techniques just described).

This isn’t meant to be an exhaustive list of all of the ways that you can use supported multi-
scenario features to achieve seemingly unsupported outcomes. The set of building blocks that we
have provided can be assembled in a variety of different ways.

If all scenarios in your multi-scenario model are infeasible, your optimize call will produce an
INFEASIBLE (or INF_OR_UNBD) status code. While you can’t compute an IIS on a multi-scenario
model, you can extract individual scenarios as Gurobi model objects using the singleScenarioModel
method (see below) and then compute an IIS on each scenario individually.
Solving The Base Model

As noted earlier, an optimize call on a multi-scenario model will not solve the base model. If you’d
like to solve that model too, include an empty scenario among your scenarios.
Extracting One Scenario

If you’d like to extract one scenario from a multi-scenario model, you can use the singleScenarioModel
method (in C, C++, Java, .NET, and Python).
Performance Considerations

While it may appear to be important to minimize the number of scenarios in your model, note
that some scenarios are trivial to solve and thus have no impact on overall solution cost. The main
thing to keep in mind is that, if (1) the solution for one scenario is feasible for another scenario, and
(2) the bounds and right-hand side values for the first scenario are never tighter than the bounds
for the other scenario, then the optimal solution for the first scenario is also optimal for the other
scenario. This means that some scenarios won’t increase solution cost significantly.

22.6 Limitations and Additional Considerations
We should note a few additional considerations for solving multi-scenario models.

Nearly any model can serve as the base model in a multi-scenario model. The base model
can be continuous or discrete, and it can contain quadratic constraints, general constraints, SOS
constraints, semi-continuous variables, etc. One important exception is multiple objectives; a multi-
scenario model can only have a single objective.

The IsMIP attribute will always be 1 for a multi-scenario model, even if the model is otherwise
continuous.

Multi-scenario models can have lazy constraints, specified either through a user callback or
through the Lazy attribute. Those that are provided through a callback must be valid across all
scenarios. Those that are specified through the Lazy attribute can have different right-hand side
values in different scenarios.

You can also add your own cutting planes to multi-scenario models through a user callback.
Cuts must be valid across all scenarios.

897

Batch Optimization

Batch optimization is a feature available with the Gurobi Cluster Manager. It allows a client
program to build an optimization model, submit it to a Compute Server cluster (through a Cluster
Manager), and later check on the status of the model and retrieve its solution. Once a batch is
submitted to the Cluster Manager, it is identified through a unique BatchID. The client program (or
any other program) can use this ID to query the BatchStatus of the batch (submitted, completed,
etc.). Once the batch has completed and a solution is available, the client can retrieve that solution
as a JSON string.

This section explains the steps required to perform the various tasks listed above. We’ll use the
batchmode.py Python example, which is included with the distribution, to illustrate these steps.

23.1 Setting Up a Batch Environment
Recall that the first step in building an optimization model is to create a Gurobi environment.
An environment provides a number of configuration options; among them is an option to indicate
where the model should be solved. You can solve a model locally, on a Compute Server, or using
a Gurobi Instant Cloud server. If you have a Cluster Manager installed, you also have the option
of using batch optimization.

To use batch optimization, you should configure your environment as if you will be using a
Compute Server through a Cluster Manager. You’ll need to set the CSManager parameter to point
to your Cluster Manager, and provide a valid UserName and ServerPassword. The difference is
that you will also need to set the CSBatchMode parameter to 1. This will cause the client to build
the model locally, and only submit it to the server once a call to the optimizeBatch method is
made. This is in contrast to a standard Compute Server job, where the connection to the server is
established immediately and the model is actually built on the server.

The following shows how you might set up your environment for batch optimization (in Python):

env = gp.Env(empty=True)
env. setParam (’LogFile ’, ’batchmode .log ’)
env. setParam (’CSManager ’, ’http :// localhost :61080 ’)
env. setParam (’UserName ’, ’gurobi ’)
env. setParam (’ServerPassword ’, ’pass ’)
env. setParam (’CSBatchMode ’, 1)

Note that you can also use CSAPIAccessID and CSAPISecret (instead of UserName and Server-
Password) to connect to a Cluster Manager.

23.2 Tagging Variables or Constraints
Batch optimization separates the process of building a model from the process of retrieving and
acting on its solution. For example, you can build your model on one machine, submit a batch

898

request, and then use the resulting BatchID to retrieve the solution on a completely different
machine.

Of course, disconnecting a model from its solution introduces a mapping problem: the process
that retrieves the solution needs to know how to map the elements of the solution back to the
corresponding elements of the model. This is done through tags. When a model is built, the user
associates unique strings with the variables and constraints of interest in the model. Solution values
are then associated with these strings. If the user doesn’t provide a tag for a model element, no
solution information is stored or returned for that element.

You can tag variables (using the VTag attribute), linear constraints (using the CTag attribute),
and quadratic constraints (using the QCTag attribute). We should point out that solutions to
mixed-integer models don’t contain any constraint information, so constraint tags have no effect
for such models.

For details on the information that is available in the solution in different situations, please
refer to the JSON solution format section.

Here’s a simple example that tags the first 10 variables in a model:
Define tags for some variables in order to access their values later
for count , v in enumerate (model. getVars ()):

v.VTag = " Variable {}". format (count)
if count >= 10:

break

23.3 Submitting a Batch Optimization Request
Once you have built your model and tagged the elements of interest, you are ready to submit
your batch request. This is done by invoking the optimizeBatch method (e.g., optimizeBatch in
Python). This method returns a BatchID string which is used for later queries. Here’s a simple
example:

Submit batch request
batchID = model. optimizeBatch ()

23.4 Interacting with Batch Requests
You can use a BatchID string to ask the Cluster Manager for more information about the corre-
sponding batch. Specifically, you can query the BatchStatus for that batch, and if the batch is
complete you can retrieve the computed solution as a JSON string.

Your first step in using a BatchID to gather more information is to create a Gurobi environment
that enables you to connect to your Cluster Manager. This is done in this line of our Python
example:

with setupbatchenv (). start () as env , gp.Batch(batchID , env) as batch:

The setupbatchenv method creates an environment with the CSManager, UserName, and Server-
Password parameters set to appropriate values.

With this environment and our BatchID, we can now create a Batch object (by calling the
Batch constructor in the above code segment) that holds information about the batch.

That Batch object can be used to query the BatchStatus:

899

with setupbatchenv (). start () as env , gp.Batch(batchID , env) as batch:

starttime = time.time ()
while batch. BatchStatus == GRB. BATCH_SUBMITTED :

Abort this batch if it is taking too long
curtime = time.time ()
if curtime - starttime > maxwaittime :

batch.abort ()
break

Wait for two seconds
time.sleep (2)

Update the resident attribute cache of the Batch object with the
latest values from the cluster manager .
batch. update ()

If the batch failed , we retry it
if batch. BatchStatus == GRB. BATCH_FAILED :

batch.retry ()

It can also be used to perform various operations on the batch, including aborting or retrying the
batch.

Once a batch has been completed, you can query the solution and all related attributes for
tagged elements in the model by retrieving the associated JSON solution string (or by saving it
into a file):

print("JSON solution :")
Get JSON solution as string , create dict from it
sol = json.loads(batch. getJSONSolution ())

By default, the Cluster Manager will keep the solution for the model and other information
for a while (the exact retention policy is set by the Cluster Manager). You can ask the Cluster
Manager to discard information for a batch by explicitly calling the discard method:

Remove batch request from manager
batch. discard ()

No further queries on that batch are possible after this has been done.

23.5 Interpreting the JSON Solution
Once you have retrieved a JSON solution string, you can use a JSON parser to retrieve solution
information for individual variables and constraints. This parser isn’t included in the Gurobi library.
Rather, programming languages have libraries for doing this. The appropriate package in Python
is (not surprisingly) called json. The following provides a simple example of how this library can
be used to parse a JSON solution string and extract a few pieces of solution information:

Get JSON solution as string , create dict from it
sol = json.loads(batch. getJSONSolution ())

Pretty printing the general solution information
print(json.dumps(sol[" SolutionInfo "], indent =4))

900

23.6 A Complete Example

#!/ usr/bin/env python3 .7

Copyright 2021 , Gurobi Optimization , LLC

This example reads a MIP model from a file , solves it in batch mode ,
and prints the JSON solution string .
#
You will need a Cluster Manager license for this example to work.

import sys
import time
import json
import gurobipy as gp
from gurobipy import GRB

Set up the environment for batch mode optimization .
#
The function creates an empty environment , sets all necessary parameters ,
and returns the ready -to -be - started Env object to caller . It is the
caller ’s responsibility to dispose of this environment when it’s no
longer needed .
def setupbatchenv ():

env = gp.Env(empty=True)
env. setParam (’LogFile ’, ’batchmode .log ’)
env. setParam (’CSManager ’, ’http :// localhost :61080 ’)
env. setParam (’UserName ’, ’gurobi ’)
env. setParam (’ServerPassword ’, ’pass ’)
env. setParam (’CSBatchMode ’, 1)

No network communication happened up to this point. This will happen
once the caller invokes the start () method of the returned Env object .

return env

Print batch job error information , if any
def printbatcherrorinfo (batch):

if batch is None or batch. BatchErrorCode == 0:
return

print ("Batch ID {}: Error code {} ({})". format (
batch.BatchID , batch. BatchErrorCode , batch. BatchErrorMessage))

Create a batch request for given problem file
def newbatchrequest (filename):

Start environment , create Model object from file
#
By using the context handlers for env and model , it is ensured that

901

model. dispose () and env. dispose () are called automatically
with setupbatchenv (). start () as env , gp.read(filename , env=env) as model:

Set some parameters
model. Params . MIPGap = 0.01
model. Params . JSONSolDetail = 1

Define tags for some variables in order to access their values later
for count , v in enumerate (model. getVars ()):

v.VTag = " Variable {}". format (count)
if count >= 10:

break

Submit batch request
batchID = model. optimizeBatch ()

return batchID

Wait for the final status of the batch.
Initially the status of a batch is " submitted "; the status will change
once the batch has been processed (by a compute server).
def waitforfinalstatus (batchID):

Wait no longer than one hour
maxwaittime = 3600

Setup and start environment , create local Batch handle object
with setupbatchenv (). start () as env , gp.Batch(batchID , env) as batch:

starttime = time.time ()
while batch. BatchStatus == GRB. BATCH_SUBMITTED :

Abort this batch if it is taking too long
curtime = time.time ()
if curtime - starttime > maxwaittime :

batch.abort ()
break

Wait for two seconds
time.sleep (2)

Update the resident attribute cache of the Batch object with the
latest values from the cluster manager .
batch. update ()

If the batch failed , we retry it
if batch. BatchStatus == GRB. BATCH_FAILED :

batch.retry ()

Print information about error status of the job that processed the batch
printbatcherrorinfo (batch)

def printfinalreport (batchID):
Setup and start environment , create local Batch handle object
with setupbatchenv (). start () as env , gp.Batch(batchID , env) as batch:

if batch. BatchStatus == GRB. BATCH_CREATED :
print("Batch status is ’CREATED ’")

902

elif batch. BatchStatus == GRB. BATCH_SUBMITTED :
print("Batch is ’SUBMITTED ")

elif batch. BatchStatus == GRB. BATCH_ABORTED :
print("Batch is ’ABORTED ’")

elif batch. BatchStatus == GRB. BATCH_FAILED :
print("Batch is ’FAILED ’")

elif batch. BatchStatus == GRB. BATCH_COMPLETED :
print("Batch is ’COMPLETED ’")
print("JSON solution :")
Get JSON solution as string , create dict from it
sol = json.loads(batch. getJSONSolution ())

Pretty printing the general solution information
print(json.dumps(sol[" SolutionInfo "], indent =4))

Write the full JSON solution string to a file
batch. writeJSONSolution (’batch -sol.json.gz’)

else:
Should not happen
print("Batch has unknown BatchStatus ")

printbatcherrorinfo (batch)

Instruct the cluster manager to discard all data relating to this BatchID
def batchdiscard (batchID):

Setup and start environment , create local Batch handle object
with setupbatchenv (). start () as env , gp.Batch(batchID , env) as batch:

Remove batch request from manager
batch. discard ()

Solve a given model using batch optimization
if __name__ == ’__main__ ’:

Ensure we have an input file
if len(sys.argv) < 2:

print ("Usage: {} filename ". format (sys.argv [0]))
sys.exit (0)

Submit new batch request
batchID = newbatchrequest (sys.argv [1])

Wait for final status
waitforfinalstatus (batchID)

Report final status info
printfinalreport (batchID)

Remove batch request from manager
batchdiscard (batchID)

print(’Batch optimization OK’)

903

Recording API Calls

The Gurobi Optimizer provides the option to record the set of Gurobi commands issued by your
program and store them to a file. The commands can be played back later using the Gurobi
Command-Line Tool. If you replay the commands on a machine with the same specs (operating
system, core count, and instruction set) as the machine where you created the recording, your
Gurobi calls will take the exact same computational paths that they took when you ran your
original program.

Recording can be useful in a number of situations.

• If you want to understand how much time is being spent in Gurobi routines, the replay will
show you the total time spent in Gurobi API routines, and the total time spent in Gurobi
algorithms.

• If you want to check for leaks of Gurobi data, the replay will show you how many Gurobi
models and environments were never freed by your program.

• If you run into a question or an issue and you would like to get help from Gurobi, your
recording will allow Gurobi technical support to reproduce the exact results that you are
seeing without requiring you to send your entire application.

Recording is useful for testing across deployment scenarios. In particular, you can do the
following:

• A recording made on a Compute Server can be replayed on a Compute Server or locally.
By default, the recording will use localhost:61000; this can be overridden by setting the
GRB_COMPUTESERVER environment variable. If GRB_COMPUTESERVER is set to an empty string,
the replay will occur locally.

• A Cluster Manager recording can be replayed via a Cluster Manager, on a Compute Server,
or locally. GRB_COMPUTESERVER has priority over GRB_CSMANAGER. If GRB_CSMANAGER is set to
"", the replay will run locally or on the specified Compute Server.

• A Gurobi Instant Cloud recording can be replayed on the cloud, on a Compute Server, or lo-
cally. Setting GRB_CLOUDACCESSID and GRB_CLOUDSECRETKEY will run the replay on the cloud.
GRB_COMPUTESERVER has priority over GRB_CLOUDACCESSID (and GRB_CLOUDSECRETKEY). If
GRB_CLOUDACCESSID is set to "", the replay will run locally or on the specified Compute
server.

• A token server recording can be replayed. The recording tries to use a token server at
localhost (with the default port 41954). This can be overridden by setting the GRB_TOKENSERVER
environment variable. If GRB_TOKENSERVER is set to an empty string, the replay will be done
using a local license.

904

• A recording that includes the WorkerPool parameter (used in the distributed MIP and dis-
tributed concurrent algorithms) can only be done by setting the GRB_WORKERPOOL environment
variable.

For recordings of optimization with Compute Server or Instant Cloud, the recording will query the
number of processors and cores from the remote worker and store this information in the recording
file. When replaying a recording file, Gurobi uses these stored values.

24.1 Recording
To enable recording, you simply need to set the Record parameter to 1 as soon as you create your
Gurobi environment. The easiest way to do this is with a gurobi.env file. This file should contain
the following line:

Record 1

If you put this file in the same directory as your application, Gurobi will pick up the setting when
your application makes its first Gurobi call. You can also set this parameter through the standard
parameter modification routines in your program.

Once this parameter is set, you should see the following in your log:

*** Start recording in file recording000.grbr

If your application creates more than one Gurobi environment, you may see more than one of
these messages. Each will write to a different file:

*** Start recording in file recording001.grbr

As your program runs, Gurobi will write the commands and data that are passed into Gurobi
routines to these files. Recording continues until you free your Gurobi environment (or until your
program ends). When you free the environment, if Gurobi logging is enabled you will see the
following message:

*** Recording complete - close file recording000.grbr

At this point, you have a recording file that is ready for later replay.

24.2 Replay
To replay a Gurobi recording, you issue the following command:

> gurobi_cl recording000.grbr

You should adjust the file name to match the file you wish to replay. If your program generated
multiple recording files, you will need to replay each one separately.

When the replay starts, the first output you will see will look like this:

Replay* Replay of file ’recording000.grbr’
Replay* Recording captured Tue Sep 13 19:28:48 2021
Replay* Recording captured with Gurobi version 9.1.2 (linux64)

After this output, the replay will start executing the commands issued by your program...

905

Replay Load new Gurobi environment
Replay Create new Gurobi model (0 rows, 0 cols)
Replay Update Gurobi model
Replay Change objective sense to -1
Replay Add 3 new variables

This continues until the recording file ends. At that point, the replay will print out a final
runtime accounting...

Replay Replay complete

Replay Gurobi API routine runtime: 0.05s
Replay Gurobi solve routine runtime: 2.31s

If your program leaked any Gurobi models or environments, you may also see that in the output:

Replay Models leaked: 2
Replay Environments leaked: 1

24.3 Limitations
Recording works with most programs that call Gurobi. There are a few Gurobi features that aren’t
supported, though:

• Recording won’t capture calls to the Gurobi tuning tool.

• Recording won’t capture data passed into control callbacks. In other words, you can’t record
a program that adds lazy constraints, user cuts, or solutions through callbacks.

• Recording is not yet compatible with Batch Mode.

906

Concurrent Optimizer

Concurrent optimization is a simple approach for exploiting multiple processors. It starts multiple,
independent solves on a model, using different strategies for each. Optimization terminates when
the first one completes. By pursuing multiple different strategies simultaneously, the concurrent
optimizer can often obtain a solution faster than it would if it had to choose a single strategy.

Concurrent optimization is our default choice for solving LP models, and a user-selectable
option for solving MIP models. The concurrent optimizer can be controlled in a few different
ways. These will be discussed in this section. To avoid confusion when reporting results from
multiple simultaneous solves, we’ve chosen to produce simplified logs and callbacks when performing
concurrent optimization. These will also be discussed in this section.

Controlling Concurrent Optimization

If you wish to use the concurrent optimizer to solve your model, the steps you need to take depend
on the model type. As mentioned earlier, the concurrent optimizer is the default choice for LP
models. This choice is controlled by the Method parameter. For MIP models, you can select the
concurrent optimizer by modifying the ConcurrentMIP parameter.

When controlling the concurrent optimizer using these parameters, the strategies used for the
different independent solves are chosen automatically. While we reserve the right to change our
choices in the future, for LP models we currently devote the first concurrent thread to dual sim-
plex, the second through fourth to a single parallel barrier solve, and the fifth to primal simplex.
Additional threads are devoted to the one parallel barrier solve. Thus, for example, a concurrent
LP solve using four threads would devote one thread to dual simplex and three to parallel barrier.
For MIP, we divide available threads evenly among the independent solves, and we choose different
values for the MIPFocus and Seed parameters for each.

If you want more control over concurrent optimization (e.g., to choose the exact strategies
used for each independent solve), you can do so by creating two or more concurrent environments.
These can be created via API routines (in C, C++, Java, .NET, or Python), or they can be
created from .prm files using the ConcurrentSettings parameter if you are using our command-line
interface. Once these have been created, subsequent optimization calls will start one independent
solve for each concurrent environment you created. To control the strategies used for each solve,
you simply set the parameters in each environment to the values you would like them to take in the
corresponding solve. For example, if you create two concurrent environments and set the MIPFocus
parameter to 1 in the first and 2 in the second, subsequent MIP optimize calls will perform two
solves in parallel, one with MIPFocus=1 and the other with MIPFocus=2.

Logging

Your first indication that the concurrent optimizer is being used is output in the Gurobi log that
looks like this...

Concurrent LP optimizer: dual simplex and barrier
Showing barrier log only...

907

...or like this...

Concurrent MIP optimizer: 2 concurrent instances (2 threads per instance)

These log lines indicate how many independent solves will be launched. For the LP case, the lines
also indicate which methods will be used for each.

Since it would be quite confusing to see results from multiple solves interleaved in a single log,
we’ve chosen to use a simplified log format for concurrent optimization. For concurrent LP, we
only present the log for a single solve. For concurrent MIP, the log is similar to our standard MIP
log, except that it only provides periodic summary information (see the MIP logging section if you
are unfamiliar with our standard MIP log). Each concurrent MIP log line shows the objective for
the best feasible solution found by any of the independent solves to that point, the best objective
bound proved by any of the independent solves, and the relative gap between these two values:

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 - - - 24.00000 13.00000 45.8% 0s
0 0 - - - 16.50000 13.21154 19.9% 0s
0 0 - - - 16.50000 13.25000 19.7% 0s
0 0 - - - 16.50000 13.37500 18.9% 0s
0 0 - - - 16.50000 13.37500 18.9% 0s
0 0 - - - 16.50000 13.37500 18.9% 0s
0 6 - - - 15.50000 13.37500 13.7% 0s

310 149 - - - 15.00000 13.66923 8.87% 0s
3873 1634 - - - 15.00000 14.00000 6.67% 5s
9652 4298 - - - 15.00000 14.12500 5.83% 10s

16535 6991 - - - 15.00000 14.18056 5.46% 15s
23610 9427 - - - 15.00000 14.22333 5.18% 20s
...

We also include node counts from one of the independent solves, as well as elapsed times, to give
some indication of forward progress.
Determinism

Concurrent optimization essentially sets up a race between multiple threads to solve your model,
with the winning thread returning the solution that it found. In cases where multiple threads solve
the model in roughly the same amount of time, small variations in runtime from one run to the next
could mean that the winning thread is not the same each time. If your model has multiple optimal
solutions (which is quite common in LP and MIP), then it is possible that running a concurrent
solver multiple times on the same model could produce different optimal solutions. This is known
as non-deterministic behavior.

By default, the Gurobi concurrent solvers all produce non-deterministic behavior. You can
obtain deterministic behavior for the concurrent LP solver by setting the Method parameter to
value 4. This setting typically increases runtimes slightly, but if your application is dependent on
deterministic behavior, deterministic concurrent LP is often your best option. There is no similar
setting for the concurrent MIP solver.

908

Callbacks

Rather than providing callbacks from multiple independent solves simultaneously, we’ve again cho-
sen to simplify behavior for the concurrent optimizer. In particular, we only supply callbacks from
a single solve. A few consequences of this choice:

• Information retrieved by your callback (solutions, objective bounds, etc.) will come from a
single model.

• User cutting planes are only applied to a single model.

• You aren’t allowed to use lazy constraints with concurrent MIP, since they would only be
applied to one model.

909

Parameter Tuning Tool

The Gurobi Optimizer provides a wide variety of parameters that allow you to control the operation
of the optimization engines. The level of control varies from extremely coarse-grained (e.g., the
Method parameter, which allows you to choose the algorithm used to solve continuous models) to
very fine-grained (e.g., the MarkowitzTol parameter, which allows you to adjust the tolerances used
during simplex basis factorization). While these parameters provide a tremendous amount of user
control, the immense space of possible options can present a significant challenge when you are
searching for parameter settings that improve performance on a particular model. The purpose of
the Gurobi tuning tool is to automate this search.

The Gurobi tuning tool performs multiple solves on your model, choosing different parameter
settings for each solve, in a search for settings that improve runtime. The longer you let it run,
the more likely it is to find a significant improvement. If you are using a Gurobi Compute Server,
you can harness the power of multiple machines to perform distributed parallel tuning in order to
speed up the search for effective parameter settings.

The tuning tool can be invoked through two different interfaces. You can either use the grbtune
command-line tool, or you can invoke it from one of our programming language APIs. Both
approaches share the same underlying tuning algorithm. The command-line tool offers more tuning
features. For example, it allows you to provide a list of models to tune, or specify a list of base
settings to try (TuneBaseSettings).

A number of tuning-related parameters allow you to control the operation of the tuning tool.
The most important is probably TuneTimeLimit, which controls the amount of time spent searching
for an improving parameter set. Other parameters include TuneTrials (which attempts to limit
the impact of randomness on the result), TuneCriterion (which specifies the tuning criterion),
TuneResults (which controls the number of results that are returned), and TuneOutput (which
controls the amount of output produced by the tool).

Before we discuss the actual operation of the tuning tool, let us first provide a few caveats
about the results. While parameter settings can have a big performance effect for many models,
they aren’t going to solve every performance issue. One reason is simply that there are many
models for which even the best possible choice of parameter settings won’t produce an acceptable
result. Some models are simply too large and/or difficult to solve, while others may have numerical
issues that can’t be fixed with parameter changes.

Another limitation of automated tuning is that performance on a model can experience signifi-
cant variations due to random effects (particularly for MIP models). This is the nature of search.
The Gurobi algorithms often have to choose from among multiple, equally appealing alternatives.
Seemingly innocuous changes to the model (such as changing the order of the constraint or vari-
ables), or subtle changes to the algorithm (such as modifying the random number seed) can lead
to different choices. Often times, breaking a single tie in a different way can lead to an entirely
different search. We’ve seen cases where subtle changes in the search produce 100X performance
swings. While the tuning tool tries to limit the impact of these effects, the final result will typically
still be heavily influenced by such issues.

910

The bottom line is that automated performance tuning is meant to give suggestions for param-
eters that could produce consistent, reliable improvements on your models. It is not meant to be
a replacement for efficient modeling or careful performance testing.

26.1 Command-Line Tuning
The grbtune command-line tool provides a very simple way to invoke parameter tuning on a model
(or a set of models). You specify a list of parameter=value arguments first, followed by the name
of the file containing the model to be tuned. For example, you can issue the following command
(in a Windows command window, or in a Linux/Mac terminal window)...

> grbtune TuneTimeLimit=10000 c:\gurobi912\win64\examples\data\misc07

(substituting the appropriate path to a model, stored in an MPS or LP file). The tool will try
to find parameter settings that reduce the runtime on the specified model. When the tuning run
completes, it writes a set of .prm files in the current working directory that capture the best
parameter settings that it found. It also writes the Gurobi log files for these runs (in a set of .log
files).

You can also invoke the tuning tool through our programming language APIs. That will be
discussed shortly.

If you specify multiple model files at the end of the command line, the tuning tool will try to
find settings that minimize the total runtime for the listed models.
Running the Tuning Tool

The first thing the tuning tool does is to perform a baseline run. The parameters for this run
are determined by your choice of initial parameter values. If you set a parameter, it will take the
chosen value throughout tuning. Thus, for example, if you set the Method parameter to 2, then
the baseline run and all subsequent tuning runs will include this setting. In the example above,
you’d do this by issuing the command:

> grbtune Method=2 TuneTimeLimit=100 misc07

For a MIP model, you will note that the tuning tool actually performs several baseline runs,
and captures the mean runtime over all of these trials. In fact, the tool will perform multiple runs
for each parameter set considered. This is done to limit the impact of random effects on the results,
as discussed earlier. Use the TuneTrials parameter to adjust the number of trials performed.

Once the baseline run is complete, the time for that run becomes the time to beat. The tool
then starts its search for improved parameter settings. Under the default value of the TuneOutput
parameter, the tool prints output for each parameter set that it tries...

Testing candidate parameter set 33...

Method 2 (fixed)
BranchDir -1
Heuristics 0.001
VarBranch 1
Presolve 2

911

Solving with random seed #1 ... runtime 0.50s
Solving with random seed #2 ... runtime 0.60s+

Progress so far:
baseline: mean runtime 0.76s
best: mean runtime 0.46s

Total elapsed tuning time 49s (51s remaining)

This output indicates that the tool has tried 33 parameter sets so far. For the 33rd set, it changed
the value of the BranchDir parameter, the Heuristics parameter, the VarBranch parameter and
the Presolve parameter (the Method parameter was changed in our initial parameter settings, so
this change will appear in every parameter set that the tool tries and is marked to be fixed). The
first trial solved the model in 0.50 seconds, while the second hit a time limit that was set by the
tuning tool (as indicated by the + after the runtime output). If any trial hits a time limit, the
corresponding parameter set is considered to be worse than any set that didn’t hit a time limit.
The output also shows that the best parameter set found so far gives a runtime of 0.46s. Finally,
it shows elapsed and remaining runtime.

Tuning normally proceeds until the elapsed time exceeds the tuning time limit. However, hitting
CTRL-C will also stop the tool.

When the tuning tool finishes, it prints a summary...

Tested 83 parameter sets in 98.87s

Baseline parameter set: mean runtime 0.76s

Method 2 (fixed)

Name 0 1 2 Avg Std Dev
0 MISC07 0.85s 0.76s 0.67s 0.76s 0.07

Improved parameter set 1 (mean runtime 0.40s):

Method 2 (fixed)
DegenMoves 1
Heuristics 0
VarBranch 1
CutPasses 5

Name 0 1 2 Avg Std Dev
0 MISC07 0.38s 0.41s 0.42s 0.40s 0.01

Improved parameter set 2 (mean runtime 0.44s):

Method 2 (fixed)
Heuristics 0

912

VarBranch 1
CutPasses 5

Name 0 1 2 Avg Std Dev
0 MISC07 0.42s 0.44s 0.45s 0.44s 0.01

Improved parameter set 3 (mean runtime 0.49s):

Method 2 (fixed)
Heuristics 0
VarBranch 1

Name 0 1 2 Avg Std Dev
0 MISC07 0.49s 0.50s 0.49s 0.49s 0.01

Improved parameter set 4 (mean runtime 0.67s):

Method 2 (fixed)
VarBranch 1

Name 0 1 2 Avg Std Dev
0 MISC07 0.74s 0.58s 0.70s 0.67s 0.07

Wrote parameter files: tune1.prm through tune4.prm
Wrote log files: tune1.log through tune4.log

The summary shows the number of parameter sets it tried, and provides details on a few of the
best parameter sets it found. It also shows the names of the .prm and .log files it writes. You can
change the names of these files using the ResultFile parameter. If you set ResultFile=model.prm,
for example, the tool would write model1.prm through model4.prm and model1.log through
model4.log. For each displayed parameter set, we print the parameters used and a small summary
table showing results for each model and each trial, together with the average runtime and the
standard deviation.

The number of sets that are retained by the tuning tool is controlled by the TuneResults
parameter. The default behavior is to keep the sets that achieve the best trade-off between runtime
and the number of changed parameters. In other words, we report the set that achieves the best
result when changing one parameter, when changing two parameters, etc. We actually report a
Pareto frontier, so for example we won’t report a result for three parameter changes if it is worse
than the result for two parameter changes.

Other Tuning Parameters

So far, we’ve only talked about using the tuning tool to minimize the time to find an optimal
solution. For MIP models, you can also minimize the optimality gap after a specified time limit.
You don’t have to take any special action to do this; you just set a time limit. Whenever a baseline
run hits this limit, the tuning tool will automatically try to minimize the MIP gap. To give an
example, the command...

913

> grbtune TimeLimit=100 glass4

...will look for a parameter set that minimizes the optimality gap achieved after 100s of runtime on
model glass4. If the tool happens to find a parameter set that solves the model within the time
limit, it will then try to find settings that minimize mean runtime.

For models that don’t solve to optimality in the specified time limit, you can gain more control
over the criterion used to choose a winning parameter set with the TuneCriterion parameter. This
parameter allows you to tell the tuning tool to search for parameter settings that produce the best
incumbent solution or the best lower bound, rather than always minimizing the MIP gap,

You can modify the TuneOutput parameter to produce more or less output. The default value
is 2. A setting of 0 produces no output; a setting of 1 only produces output when an improvement
is found; a setting of 3 produces a complete Gurobi log for each run performed.

If you would like to use a MIP start with your tuning run, you can include the name of the
start file immediately after the model name in the argument list. For example:

> grbtune misc07.mps misc07.mst

You can also use MIP starts when tuning over multiple models; any model that is immediately
followed by a start file in the argument list will use the corresponding start. For example:

> grbtune misc07.mps misc07.mst p0033.mps p0548.mps p0548.mst

26.2 Tuning API
The tuning tool can be invoked from our C, C++, Java, .NET, and Python interfaces. The tool
behaves slightly differently when invoked from these interfaces. Rather than writing the results to
a set of files, upon completion the tool populates a TuneResultCount attribute, which gives a count
of the number of improving parameter sets that were found and retained. The user program can
then query the value of this attribute, and then use the GetTuneResult method to copy any of
these parameter sets into a model (using C, C++, Java, .NET, or Python). Once loaded into the
model, the parameter set can be used to perform a subsequent optimization, or the list of changed
parameters can be written to a .prm file using the appropriate Write routine (from C, C++, Java,
.NET, or Python).

914

Gurobi Instant Cloud

Gurobi Instant Cloud allows you to start and stop Gurobi Compute Servers on the cloud. You
can start multiple machines without the need for your own hardware or local Gurobi licenses.
Computations are seamlessly offloaded to these servers. Depending on your cloud license type,
these machines provide the full set of Compute Server features, including queuing, load balancing,
and distributed parallel computing.

Overview

When using the Instant Cloud, there are always three systems involved: your client machine, the
Instant Cloud Manager, and a cloud Compute Server.

The program that requests a Gurobi Instant Cloud machine and submits optimization models
to this server runs on your client machine. Note, however, that this program does not actually need
to be aware that it will be using Gurobi Instant Cloud. You have a few options for configuring
the client to use the Instant Cloud. The simplest and most seamless is to set up a cloud license
file. The alternative is to use a programming language API, which gives your program additional
control over how it uses the cloud. Details on launching cloud machines from your client program
follow shortly.

The Instant Cloud Manager manages the configuration and launching of cloud machines. Your
client program will send credential information to this website, along with a request to launch an
Instant Cloud machine. The specific action taken in response to this request depend on configu-
ration information that you manage through the website. For each license, you set up things like
the number of servers to launch, the types and geographic regions of these machines, the maximum
number of simultaneous jobs to run on each server, etc.

Once the Instant Cloud Manager launches the requested Compute Servers, it passes information
about these servers back to your client program. The client program then directly interacts with the
servers, sending the Gurobi model, launching a solve on the model, requesting solution information,
etc. As with any Gurobi Compute Server, this process is entirely transparent to the client program.

Now that we’ve given a high-level description of the overall process, we need to cover a few
important details.

27.1 Client Setup
As noted previously, a client program that wishes to launch a Gurobi Instant Cloud machine must
pass credential information to the Instant Cloud Manager. Every Instant Cloud license has such
credentials associated with it. This information is captured in a pair strings, an access ID and a
secret key. These strings can be retrieved from your account on the Instant Cloud Manager. Note
that you shouldn’t share these credentials with others, since anyone who knows these two strings
can launch Instant Cloud machines in your account.

Once you have the credentials associated with your license, there are two ways to configure your
client program to use them. The simplest is to use a cloud license file. This is just like any other

915

https://cloud.gurobi.com
https://cloud.gurobi.com
https://cloud.gurobi.com

Gurobi license file, except that its fields are specific to the cloud. A cloud license file will contain
two lines with credential information:

CLOUDACCESSID=312e9gef-e0bc-4114-b6fb-26ed7klaeff9
CLOUDKEY=ae32L0H321dgaL

It may also contain an optional third line:

CLOUDPOOL=pool1

We’ll discuss cloud pools a bit later. You can download a gurobi.lic file containing this information
from the Instant Cloud website, or you can create one yourself in a text editor. If you follow the
standard process for setting up a Gurobi license file (refer to the Quick Start Guide for details),
then Gurobi will automatically use the Instant Cloud rather than running locally.

The other option for passing credential information to the Instant Cloud Manager is to call a
Gurobi API routine. The appropriate routine depends on your programming language. Our C and
Python APIs have calls devoted to launching cloud servers. Our C++, Java, and .NET APIs each
have a special GRBEnv constructor (look for the one that accepts an access ID and secret key in
its argument list). In all cases, you pass the access ID and secret key to the method or constructor,
and the method creates a Gurobi environment that you can use like any other Gurobi environment
(to build, solve, and modify optimization models, to retrieve solutions, etc.).

27.2 Instant Cloud Setup
As noted previously, cloud configuration is done via the Instant Cloud Manager. The client program
requests that a cloud machine be launched, but the Instant Cloud Manager determines exactly how
to respond to that request.

One essential concept when configuring your Instant Cloud license is the notion of a cloud pool.
Pools allow you to create multiple configurations within a single cloud license. For example, you
may set up one pool for jobs in the US and another for jobs in Europe, or one for short-running jobs
and another for long-running jobs, or one for single-machine jobs and another for distributed parallel
jobs. For each of the available cloud configuration options (which will be discussed below), you can
select different values for different pools. Every license always has a default pool, which comes pre-
configured with what we consider to be reasonable default values. Thus, you always have the option
of ignoring cloud pools and simply using the default pool if you don’t need multiple configurations.

The main things that a user may want to configure on the Instant Cloud website are the idle
shutdown time, the number of machines to launch, the number of distributed workers to launch,
the machine region, and the machine type. These can take different values in different pools.

The idle shutdown time is a vital concept in the Instant Cloud. When a client program requests
a cloud server, it takes some time (typically less than 2 minutes) to launch that server. Rather than
forcing client programs to incur this delay each time they run, the Gurobi Instant Cloud leaves a
server running until is has been idle for the specified idle shutdown time. In this way, later client
programs may find a cloud server already available. You can set this to a small value if you want
your server to shut down immediately after your job finishes, or to a very large value if you want
your server to always be available.

Another configuration option is the number of machines associated with the pool. Gurobi
Compute Server automatically handles queuing and load balancing between servers, so launching

916

https://cloud.gurobi.com

multiple machines allows you to distribute the work of many simultaneous client programs among
them. A pool can also be configured to launch any number of distributed workers, if you want to
use distributed computing.

Cloud machines can be launched in multiple geographic regions, including the US, Europe,
Asia, and South America. You should visit the website to see the full list. We offer several options
for machine type, although we’ve chosen what we believe is the best general-purpose machine for
running Gurobi as the default, so you are unlikely to want to change this setting.

917

Guidelines for Numerical Issues

Numerical instability is a generic label often applied to situations where solving an optimization
model produces results that are erratic, inconsistent, or unexpected, or when the underlying algo-
rithms exhibit poor performance or are unable to converge. There are many potential causes of
this behavior; however, most can be grouped into four categories:

• Rounding coefficients while building the model.

• Limitations of floating-point arithmetic.

• Unrealistic expectations about achievable precision.

• Ill conditioning, or geometry-induced issues.

This section explains these issues and how they affect both performance and solution quality.
We also provide some general rules and some advanced techniques to help avoid them. Although
we will treat each of these four sources separately, it is important to remember that their effects
often feed off of each other. We also provide tips on how to diagnose numerical instability in your
models.

Finally, we discuss the Gurobi parameters that can be modified to improve solution accuracy.
We should stress now, however, that the best way to improve numerical behavior and performance
is to reformulate your model. Parameters can help to manage the effects of numerical issues, but
there are limits to what they can do, and they typically come with a substantial performance cost.

28.1 Avoid rounding of input
A common source of numerical issues is numerical rounding in the numbers that are used to
represent constraint matrix coefficients. To illustrate the issue, consider the following example:

x− 6y = 1
0.333x− 2y = .333

It may be tempting to say that the two equations are equivalent, but adding both to a model will
lead to an incorrect result. This is an important point for our users: Gurobi will always trust the
input numbers that they provide, and will never change them unless the change can be shown to
not affect the solution.

So, with this in mind, during presolve Gurobi can use the second constraint to determine:

y := 0.1665x− 0.1665

When substituted into the first constraint, this yields

x− 6 · (0.1665x− 0.1665) = 1
⇔ 0.001x = 0.001

918

and thus x = 1, y = 0 as the only solution.
If user had provided these two equations instead:

x− 6y = 1
0.3333333333333333x− 2y = 0.3333333333333333

this would give:

y := 0.1666666666666667x− 0.1666666666666667

which yields:

x− 6 · (0.1666666666666667x− 0.1666666666666667) = 1
⇔ 2 · 10−16x+ 1 + 2 · 10−16 ≈ 1

Even with a very small threshold for treating a coefficient as zero, the result here is that the first
constraint is truly redundant. Any solution with x = 6y + 1 would be accepted as feasible.

The main point is that constraints that are exactly parallel, or linearly dependent (within
double-precision floating-point and small tolerances) are harmless, but constraints that are almost
parallel to each other produce tiny coefficients in the linear system solves and in preprocessing,
which can wreak havoc on the solution process. In the next section, we expand on the limits
double-precision floating-point numbers, and in particular why 1 ≈ 1 + 2 · 10−16.

28.2 Real numbers are not real
To say that real numbers aren’t real is not just a play on words, but a computational reality. Let’s
do a simple experiment: try the following in your favorite number-crunching tool. In Excel:

=IF(1+1E-016 = 1,1,0)

will print 1. In Python:
>>> 1 == 1+1e -16
True

In C, the code
#include <stdio.h>
int main(void)
{

if (1+1e -16 == 1) printf ("True\n");
else printf ("False\n");
return 0;

}

will print True. In R:
> 1 == 1+1e -16
[1] TRUE

Note that this behavior is not restricted to small numbers; it also happens with larger numbers.
For example:
>>> 1+1 e16 == 1e16
True

919

This shows that the precision of the result depends on the relative scale of the involved numbers.
Although this behavior is typical, there are some exceptions. One is the GNU-bc command line

tool:

> bc
1.0 == 1.0+10^(-16)
1
scale=20
1.0 == 1.0+10^(-16)
0
1.0 == 1.0+10^(-21)
1

When we set the scale parameter to 20, the code is able to recognize that the numbers are
different. This just shifts the bar, though; bc still fails to recognize the difference between the
last two numbers. Another library that allows for extended, or even unlimited (up to memory)
precision is the GNU Multiple Precision Arithmetic Library, but its details are beyond the scope
of this document.

The reason for these failures is that computers must store numbers as a sequence of bits, and
most common implementations adhere to the IEEE 754 standard. In particular, IEEE-754 sets the
standard for double-precision format. This standard is so pervasive that almost all computers have
specialized hardware to improve performance for operations on numbers represented as such. One
consequence is that mathematical operations on alternative extended number representations tend
to be significantly slower than operations on numbers represented following the IEEE 754 standard.
Degradation of 10X or even 100X are common.

Due to the performance obtained from hardware support for double-precision arithmetic, Gurobi
relies on this standard (as does most software). However, this speed comes at a cost: computed
results often differ from what mathematics may dictate. For example, the associative property (a +
(b + c) = (a + b) + c) is a fundamental property of arithmetic, but double-precision arithmetic
gives (in Python):
>>> (1+1e -16)+1e -16 == 1 + (1e -16 + 1e -16)
False

Furthermore, many common numbers (e.g. 0.1) cannot be represented exactly.
Consequently, simple questions like whether two numbers are equal, or whether a number is

equal zero, or whether a number is integral, can be quite complicated when using floating-point
arithmetic.

28.3 Tolerances and user-scaling
Gurobi will solve the model as defined by the user. However, when evaluating a candidate solution
for feasibility, in order to account for possible round-off errors in the floating-point evaluations, we
must allow for some tolerances.

To be more precise, satisfying Optimality Conditions requires us to test at least the following
three criteria:

IntFeasTol: Integrality of solutions, i.e., whether a integer variable x takes an integer value or not.
More precisely, x will be considered integral if abs(x - floor(x + 0.5)) ≤ IntFeasTol.

920

https://www.gnu.org/software/bc/manual/html_mono/bc.html
https://gmplib.org
https://en.wikipedia.org/wiki/IEEE_754

FeasibilityTol: Feasibility of primal constraints, i.e., whether a ·x ≤ b holds for the primal solu-
tion. More precisely, a ·x ≤ b will be considered to hold if (a * x) - b ≤ FeasibilityTol.

OptimalityTol: Feasibility of dual constraints, i.e., whether a · y ≤ c holds for the dual solution.
More precisely, a · y ≤ c will be considered to hold if (a * y) - c ≤ OptimalityTol.

Note that these tolerances are absolute; they do not depend on the scale of the quantities involved
in the computation. This means that when formulating a problem, these tolerances should be taken
into account, specially to select the units in which variables and constraints will be expressed.

It is very important to note that the usage of these tolerances implicitly defines a gray zone in
the search space in which solutions that are very slightly infeasible can still be accepted as feasible.
However, the solver will not explicitly search for such solutions.

For this reason, it is actually possible (although highly unlikely for well-posed problems) for a
model to be reported as being both feasible and infeasible (in the sense stated above). This can
occur if the model is infeasible in exact arithmetic, but there exists a solution that is feasible within
the solver tolerances. For instance, consider:

min 0
s.t. x ≤ 0

x ≥ 10−10

Gurobi tolerances and the limitations of double-precision arithmetic
The default values for these primal and dual feasibility tolerances are 10−6, and the default for the
integrality tolerance is 10−5. If you choose the range for your inequalities and variables correctly,
you can typically ignore tolerance issues entirely.

To give an example, if your constraint right-hand side is on the order of 103, then relative
numeric errors from computations involving the constraint (if any) are likely to be less than 10−9,
i.e., less than one in a billion. This is usually far more accurate than the accuracy of input data,
or even of what can be measured in practice.

However, if you define a variable x ∈ [−10−6, 10−6], then relative numeric error may be as big
as 50% of the variable range.

If, on the other hand, you have a variable x ∈ [−1010, 1010], and you are using default primal
feasibility tolerances; then what you are really asking is for the relative numeric error (if any) to
be less than 10−16. However, this is beyond the limits of comparison for double-precision numbers.
This implies that you are not allowing any round-off error at all when testing feasible solutions for
this particular variable. And although this might sound as a good idea, in fact, it is really bad, as
any round-off computation may result in your truly optimal solution being rejected as infeasible.

Why scaling and geometry is relevant
This section provides a simple example of how scaling problems can slow down problem solving
and, in extreme cases, result in unexpected answers. Consider the problem:

(P) max{cx : Ax = b, l ≤ x ≤ u}

and let D be a diagonal matrix where Dii > 0, ∀i. In theory, solving (P) should be equivalent to
solving the related problem (PD):

921

(PD) max{cDx′ : ADx′ = b,D−1l ≤ x′ ≤ D−1u}
However, in practice, the two models behave very differently. To demonstrate this, we use a simple
script rescale.py that randomly rescales the columns of the model. Let’s consider the impact
of rescaling on the problem pilotnov.mps.bz2. Solving the original problem gives the following
output:
Using license file /opt/gurobi910/gurobi.lic
Read MPS format model from file pilotnov.mps.bz2
Reading time = 0.01 seconds
PILOTNOV: 975 rows, 2172 columns, 13057 nonzeros
Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (linux64)
Thread count: 6 physical cores, 12 logical processors, using up to 12 threads
Optimize a model with 975 rows, 2172 columns and 13057 nonzeros
Model fingerprint: 0xe6e7cf84
Coefficient statistics:

Matrix range [1e-06, 1e+07]
Objective range [2e-03, 1e+00]
Bounds range [5e-06, 8e+04]
RHS range [1e-05, 4e+04]

Warning: Model contains large matrix coefficient range
Consider reformulating model or setting NumericFocus parameter
to avoid numerical issues.

Presolve removed 254 rows and 513 columns
Presolve time: 0.01s
Presolved: 721 rows, 1659 columns, 11455 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
0 -3.2008682e+05 1.274630e+05 0.000000e+00 0s

Extra simplex iterations after uncrush: 1
1085 -4.4972762e+03 0.000000e+00 0.000000e+00 0s

Solved in 1085 iterations and 0.05 seconds
Optimal objective -4.497276188e+03
Kappa: 1.841766e+07

Note the log message regarding the matrix coefficient range in the log (which in this case shows a
range of [1e-06, 1e+07]).

If we run rescale.py -f pilotnov.mps.bz2 -s 1e3 (randomly rescaling columns up or down
by as much as 103), we obtain:
Using license file /opt/gurobi910/gurobi.lic
Read MPS format model from file pilotnov.mps.bz2
Reading time = 0.01 seconds
PILOTNOV: 975 rows, 2172 columns, 13057 nonzeros
Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (linux64)
Thread count: 6 physical cores, 12 logical processors, using up to 12 threads
Optimize a model with 975 rows, 2172 columns and 13057 nonzeros
Model fingerprint: 0x79ed9354
Coefficient statistics:

Matrix range [6e-09, 1e+10]
Objective range [5e-06, 9e+02]
Bounds range [5e-09, 5e+07]
RHS range [1e-05, 4e+04]

Warning: Model contains large matrix coefficient range
Consider reformulating model or setting NumericFocus parameter

922

to avoid numerical issues.
Presolve removed 100 rows and 255 columns
Presolve time: 0.00s
Presolved: 875 rows, 1917 columns, 11899 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
0 -6.2390277e+32 7.095340e+31 6.239028e+02 0s

Extra simplex iterations after uncrush: 2
1141 -4.4972762e+03 0.000000e+00 0.000000e+00 0s

Solved in 1141 iterations and 0.05 seconds
Optimal objective -4.497276188e+03
Kappa: 1.166265e+18

This time, the optimization process takes a more iterations, and also, we get an extra warning:

Extra 2 simplex iterations after uncrush,

This indicates that extra simplex iterations were performed on the unpresolved model. Also, note
the very large value for Kappa; its meaning will be discussed in this section.

If we run rescale.py -f pilotnov.mps.bz2 -s 1e6, we obtain:

Using license file /opt/gurobi910/gurobi.lic
Read MPS format model from file pilotnov.mps.bz2
Reading time = 0.01 seconds
PILOTNOV: 975 rows, 2172 columns, 13057 nonzeros
Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (linux64)
Thread count: 6 physical cores, 12 logical processors, using up to 12 threads
Optimize a model with 975 rows, 2172 columns and 13057 nonzeros
Model fingerprint: 0xf2c9bd15
Coefficient statistics:

Matrix range [9e-12, 1e+13]
Objective range [2e-09, 1e+06]
Bounds range [6e-12, 4e+10]
RHS range [1e-05, 4e+04]

Warning: Model contains large matrix coefficient range
Warning: Model contains large bounds

Consider reformulating model or setting NumericFocus parameter
to avoid numerical issues.

Presolve removed 101 rows and 255 columns
Presolve time: 0.00s
Presolved: 874 rows, 1917 columns, 11897 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
0 -6.8659608e+34 7.041252e+31 6.865961e+04 0s

Extra simplex iterations after uncrush: 47
1537 -4.4972762e+03 0.000000e+00 0.000000e+00 0s

Solved in 1537 iterations and 0.07 seconds
Optimal objective -4.497276188e+03
Kappa: 1.851538e+25

Now we get a much larger number of extra simplex iterations, and more troublingly, we get a
warning about the quality of the resulting solution:

923

Warning: unscaled primal violation = 5.65274e-05 and residual = 5.65274e-05,

This message indicates that the solver had trouble finding a solution that satisfies the default
tolerances.

Finally, if we run rescale.py -f pilotnov.mps.bz2 -s 1e8, we obtain:

Using license file /opt/gurobi910/gurobi.lic
Read MPS format model from file pilotnov.mps.bz2
Reading time = 0.01 seconds
PILOTNOV: 975 rows, 2172 columns, 13057 nonzeros
Gurobi Optimizer version 9.1.0 build v9.1.0rc0 (linux64)
Thread count: 6 physical cores, 12 logical processors, using up to 12 threads
Optimize a model with 975 rows, 2172 columns and 13057 nonzeros
Model fingerprint: 0xfea2a63e
Coefficient statistics:

Matrix range [3e-13, 1e+15]
Objective range [6e-11, 2e+08]
Bounds range [6e-14, 5e+12]
RHS range [1e-05, 4e+04]

Warning: Model contains large matrix coefficient range
Warning: Model contains large bounds

Consider reformulating model or setting NumericFocus parameter
to avoid numerical issues.

Presolve removed 103 rows and 258 columns
Presolve time: 0.00s
Presolved: 872 rows, 1914 columns, 11795 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
0 -9.3067584e+36 7.106821e+31 9.306758e+06 0s

Solved in 1469 iterations and 0.06 seconds
Infeasible model

In this case, the optimization run terminates almost instantly, but with the unexpected Infeasible
result.

As you can see, as we performed larger and larger rescalings, we continued to obtain the same
optimal value, but there were clear signs that the solver struggled. We see warning messages, as well
increasing iteration counts, runtimes, and Kappa values. However, once we pass a certain rescaling
value, the solver is no longer able to solve the model and instead reports that it is Infeasible.

Note that this is not a bug in Gurobi. It has to do with changing the meaning of numbers
depending on their range, the use of fixed tolerances, and in the changing geometry of the problem
due to scaling. We will discuss this topic further in a later section.

Recommended ranges for variables and constraints

Keeping the lessons of the previous section in mind, we recommended that right-hand sides of
inequalities representing physical quantities (even budgets) should be scaled so that they are on
the order of 104 or less. The same applies to variable domains, as variable bounds are again linear
constraints.

In the case of objective functions, we recommend that good solutions should have an optimal
value that is less than 104, and ideally also above one (unless the objective coefficients are all zero).

924

This is because the OptimalityTol is used to ensure that reduced cost are close enough to zero.
If coefficients are too large, we again face difficulties in determining whether an LP solution truly
satisfies the optimality conditions or not. On the other hand, if the coefficients are too small, then
it may be too easy to satisfy the feasibility conditions.

The coefficients of the constraint matrix are actually more important than the right-hand side
values, variable bounds, and objective coefficients mentioned here. We’ll discuss those shortly.

Improving ranges for variables and constraints
There are three common ways to improve ranges for objectives, constraints and variables:

• Use problem-specific information to tighten bounds:
Although presolve, and, in particular, bound strengthening, is quite good at deriving implied
variables bounds, it may not have access to all of the information known to the modeler.
Incorporating tighter bounds directly into the model can not only improve the numerical
behavior, but it can also speed up the optimization process.

• Choose the right units to express your variables and constraints:
When defining your variables and constraints, it is important to choose units that are con-
sistent with tolerances. To give an example, a constraint with a 1010 right-hand side value
is not going to work well with the default 10−6 feasibility tolerance. By changing the units
(e.g., replacing pounds with tons, or dollars with millions of dollars, or ...), it is often possible
to significantly improve the numerics of the problems.

• Disaggregate multiple objectives:
A common source for very large range of objective coefficients is the practice of modeling
hierarchical objectives as an aggregation of objective functions with large multipliers. For
example, if the user wants to optimize a problem P with objective function f1(x) and then,
subject to f1(x) being optimal, optimize f2(x), a common trick is to use as surrogate objective
f̄(x) = Mf1(x) + f2(x) where M is a large constant. When you combine a large M with
a relatively tight dual feasibility tolerance, it becomes much harder for the solver to find
solutions that achieve dual feasibility. We recommend that you either use as small a constant
M as possible or reformulate your model using a hierarchical objective (which is made easier
by our multi-objective optimization features).

These techniques are usually sufficient to eliminate the problems that arise from bad scaling.

Advanced user scaling
In the previous sections, we presented some simple strategies to limit the ranges of variable bounds,
constraint right-hand sides, objective values, and constraint matrix coefficients. However, it could
happen that by scaling constraints or variables, some constraint coefficients become too small. Note
that Gurobi will treat any constraint coefficient with absolute value under 10−13 as zero. Consider
the following example:

10−7x+ 10y ≤ 10
x+ 104z ≤ 103

x, y, z ≥ 0,

925

In this example, the matrix coefficients range in [10−7, 104]. If we multiply all x coefficients by 105,
and divide all coefficients in the second constraint by 103, we obtain:

10−2x′ + 10y ≤ 10
102x′ + 10z ≤ 1

x′, y, z ≥ 0,

where x = 105x′. The resulting matrix coefficients have a range in [10−2, 102]. Essentially the trick
is to simultaneously scale a column and a row to achieve a smaller range in the coefficient matrix.

We recommend that you scale the matrix coefficients so that their range is contained in six
orders of magnitude or less, and hopefully within [10−3, 106].

Avoid hiding large coefficients

As we said before, a typical recommendation for improving numerics is to limit the range of con-
straint matrix coefficients. The rationale behind this guideline is that terms to be added in a
linear expression should be of comparable magnitudes so that rounding errors are minimized. For
example:

x− 106y ≥ 0
y ∈ [0, 10]

is usually considered a potential source of numerical instabilities due to the wide range of the
coefficients in the constraint. However, it is easy to implement a simple (but useless) alternative:

x− 10y1 ≥ 0
y1 − 10y2 = 0
y2 − 10y3 = 0
y3 − 10y4 = 0
y4 − 10y5 = 0
y5 − 10y = 0

y ∈ [0, 10]

This form certainly has nicer values in the matrix. However, the solution y = −10−6, x = −1 might
still be considered feasible as the bounds on variables and constraints might be violated within the
tolerances. A better alternative is to reformulate

x− 106y ≥ 0
y ∈ [0, 10]

as

x− 103y′ ≥ 0
y′ ∈ [0, 104]

where 10−3y′ = y. In this setting, the most negative values for x which might be considered feasible
would be −10−3, and for the original y variable it would be −10−9, which is a clear improvement
over the original situation.

926

Dealing with big-M constraints

Big-M constraints are a regular source of instability for optimization problems. They are so named
because they typically involve a large coefficient M that is chosen to be larger than any reasonable
value that a continuous variable or expression may take. Here’s a simple example:

x ≤ 106y
x ≥ 0
y ∈ {0, 1},

Big-M constraints are typically used to propagate the implications of a binary, on-off decision to
a continuous variable. For example, a big-M might be used to enforce the condition that an edge
can only admit flow if you pay the fixed charge associated with opening the edge, or a facility can
only produce products if you build it. In our example, note that the y = 0.0000099999 satisfies the
default integrality tolerance (IntFeasTol=10−5), which allows x to take a value of 9.999. In other
words, x can take a positive value without incurring an expensive fixed charge on y, which subverts
the intent of only allowing a non-zero value for x when the binary variable y has the value of 1.
You can reduce the effect of this behavior by adjusting the IntFeasTol parameter, but you can’t
avoid it entirely.

However, if the modeler has additional information that the x variable will never be larger than
103, then you could reformulate the earlier constraint as:

x ≤ 103y
x ≥ 0
y ∈ {0, 1}

And now, y = 0.0000099999 would only allow for x ≤ 0.01.
For cases when it is not possible to either rescale variable x or tighten its bounds, an SOS

constraints or an indicator constraint (of the form y = 0 ⇒ x = 0) may produce more accurate
solutions, but often at the expense of additional processing time.

28.4 Does my model have numerical issues?
You can follow these steps to help determine whether a model is experiencing numerical issues:

1. Isolate the model for testing by exporting a model file and a parameter file. The easiest way
to do this is to create a gurobi.env file in your working directory that contains the following
line:

Record 1

Once you have done this, running your program will produce one recordingXYZ.grbr file for
each Gurobi environment your program creates (where XYZ is a three-digit, 0-padded value
that increases from 000). You can replay this recording file using gurobi_cl (e.g., gurobi_cl
recording000.grbr). Consult this section for more information on recording files.

2. Using the Gurobi Interactive shell, run some simple Python code to read the model that the
replay produces, and print the summary statistics:

927

m = read(’gurobi .rew ’)
m. printStats ()

The output will look like:

Statistics for model (null) :
Linear constraint matrix : 25050 Constrs, 15820 Vars, 94874 NZs
Variable types : 14836 Continuous, 984 Integer
Matrix coefficient range : [0.00099, 6e+06]
Objective coefficient range : [0.2, 65]
Variable bound range : [1, 5e+07]
RHS coefficient range : [1, 5e+07]

The range of numerical coefficients is one indication of potential numerical issues. As a very
rough guideline, the ratio of the largest to the smallest coefficient should be less than 109;
smaller is better.
In this example, the matrix range is

6 · 106/0.00099 = 6.0606 · 109.

3. If possible, re-solve the model using the same parameters and review the logs. With the
Python shell, use code like the following:
m.read(’gurobi .prm ’)
m. optimize ()

Here are some examples of warning messages that suggest numerical issues:

Warning: Model contains large matrix coefficient range
Consider reformulating model or setting NumericFocus parameter
to avoid numerical issues.

Warning: Markowitz tolerance tightened to 0.5
Warning: switch to quad precision
Numeric error
Numerical trouble encountered
Restart crossover...
Sub-optimal termination
Warning: ... variables dropped from basis
Warning: unscaled primal violation = ... and residual = ...
Warning: unscaled dual violation = ... and residual = ...

4. When the optimize function completes, print solution statistics. With the Python shell, use
code like the following:
m. printQuality ()

which provides a summary of solution quality:

Solution quality statistics for model Unnamed :
Maximum violation:

Bound : 2.98023224e-08 (X234)
Constraint : 9.30786133e-04 (C5)
Integrality : 0.00000000e+00

928

Violations that are larger than the tolerances are another indication of numerical issues. Also,
for a pure LP (without integer variables), print the condition number via the following Python
command:
m. KappaExact

The condition number measures the potential for error in linear calculations; a large condition
number, such as 1012, is another indication of possible numerical issues, see this section for
more details.

5. If changing parameters (e.g., Method or Seed) leads to a different optimization status (e.g.,
Infeasible instead of optimal), or if the optimal objective values changes, this is usually
a sign of numerical issues. To further assess this you can tighten tolerances (to the order of
10−8 or even 10−9), and see if the behavior of the solver becomes consistent again. Note that
tightening tolerances usually comes at the price of more computing time, and should not be
considered as a solution for numerical issues.

28.5 Solver parameters to manage numerical issues
Reformulating a model may not always be possible, or it may not completely resolve numerical
issues. When you must solve a model that has numerical issues, some Gurobi parameters can be
helpful. We discuss these now, in descending order of relevance.

Presolve
Gurobi presolve algorithms are designed to make a model smaller and easier to solve. However,
in some cases, presolve can contribute to numerical issues. The following Python code can help
you determine if this is happening. First, read the model file and print summary statistics for the
presolved model:
m = read(’gurobi .rew ’)
p = m. presolve ()
p. printStats ()

If the numerical range looks much worse than the original model, try the parameter Aggregate=0:
m.reset ()
m. Params . Aggregate = 0
p = m. presolve ()
p. printStats ()

If the resulting model is still numerically problematic, you may need to disable presolve completely
using the parameter Presolve=0; try the steps above using
m.reset ()
m. Params . Presolve = 0
p = m. presolve ()
p. printStats ()

If the statistics look better with Aggregate=0 or Presolve=0, you should further test these
parameters. For a continuous (LP) model, you can test them directly. For a MIP, you should
compare the LP relaxation with and without these parameters. The following Python commands
create three LP relaxations: the model without presolve, the model with presolve, and the model
with Aggregate=0:

929

m = read(’gurobi .rew ’)
r = m.relax ()
r.write(’gurobi .relax -nopre.rew ’)
p = m. presolve ()
r = p.relax ()
r.write(’gurobi .relax -pre.rew ’)
m.reset ()
m. Params . Aggregate = 0
p = m. presolve ()
r = p.relax ()
r.write(’gurobi .relax -agg0.rew ’)

With these three files, use the techniques mentioned earlier to determine if Presolve=0 or Aggregate=0
improves the numerics of the LP relaxation.

Finally, if Aggregate=0 helps numerics but makes the model too slow, try AggFill=0 instead.

Choosing the right algorithm
Gurobi Optimizer provides two main algorithms to solve continuous models and the continuous
relaxations of mixed-integer models: barrier and simplex.

The barrier algorithm is usually fastest for large, difficult models. However, it is also more
numerically sensitive. And even when the barrier algorithm converges, the crossover algorithm
that usually follows can stall due to numerical issues.

The simplex method is often a good alternative, since it is generally less sensitive to numerical
issues. To use dual simplex or primal simplex, set the Method parameter to 1 or 0, respectively.

Note that, in many optimization applications, not all problem instances have numerical issues.
Thus, choosing simplex exclusively may prevent you from taking advantage of the performance
advantages of the barrier algorithm on numerically well-behaved instances. In such cases, you
should use the concurrent optimizer, which uses multiple algorithms simultaneously and returns
the solution from the first one to finish. The concurrent optimizer is the default for LP models,
and can be selected for MIP by setting the Method parameter to 3 or 4.

For detailed control over the concurrent optimizer, you can create concurrent environments,
where you can set specific algorithmic parameters for each concurrent solve. For example, you can
create one concurrent environment with Method=0 and another with Method=1 to use primal and
dual simplex simultaneously. Finally, you can use concurrent optimization with multiple distinct
computers using distributed optimization. On a single computer, the different algorithms run on
multiple threads, each using different processor cores. With distributed optimization, independent
computers run the separate algorithms, which can be faster since the computers do not compete
for access to memory.

Making the algorithm less sensitive
When all else fails, try the following parameters to make the algorithms more robust:

ScaleFlag, ObjScale (All models): It is always best to reformulate a model yourself. However,
for cases when that is not possible, these two parameters provide some of the same benefits.
Set ScaleFlag=2 for aggressive scaling of the coefficient matrix. ObjScale rescales the ob-
jective row; a negative value will use the largest objective coefficient to choose the scaling.

930

For example, ObjScale=-0.5 will divide all objective coefficients by the square root of the
largest objective coefficient.

NumericFocus (All models): The NumericFocus parameter controls how the solver manages nu-
merical issues. Settings 1-3 increasingly shift the focus towards more care in numerical com-
putations, which can impact performance. The NumericFocus parameter employs a number
of strategies to improve numerical behavior, including the use of quad precision and a tighter
Markowitz tolerance. It is generally sufficient to try different values of NumericFocus. How-
ever, when NumericFocus helps numerics but makes everything much slower, you can try
setting Quad=1 and/or larger values of MarkowitzTol such as 0.1 or 0.5.

NormAdjust (Simplex): In some cases, the solver can be more robust with different values of the
simplex pricing norm. Try setting NormAdjust to 0, 1, 2 or 3.

BarHomogeneous (Barrier): For models that are infeasible or unbounded, the default barrier
algorithm may have numerical issues. Try setting BarHomogeneous=1.

CrossoverBasis (Barrier): Setting CrossoverBasis=1 takes more time but can be more robust
when creating the initial crossover basis.

GomoryPasses (MIP): In some MIP models, Gomory cuts can contribute to numerical issues. Set-
ting GomoryPasses=0 may help numerics, but it may make the MIP more difficult to solve.

Cuts (MIP): In some MIP models, various cuts can contribute to numerical issues. Setting Cuts=1
or Cuts=0 may help numerics, but it may make the MIP more difficult to solve.

Tolerance values (FeasibilityTol, OptimalityTol, IntFeasTol) are generally not helpful for
addressing numerical issues. Numerical issues are better handled through model model reformula-
tion.

28.6 Instability and the geometry of optimization problems
As we have seen, whenever we solve a problem numerically, we have to accept that the input we
provide and the output we obtain may differ from the theoretical or mathematical solution to the
given problem. For example, 0.1, in a computer, will be represented by a number that differs from
0.1 by about 10−17. Thus, a natural thing to worry about is if these small differences may induce
large differences in the computed solution.

This is the idea behind the notion of the Condition Number for a given problem. While it is
true that for most practical optimization problems, small perturbations in the input only induce
small perturbations in the final answer to the problem, there are some special situations where this
is not the case. These ill behaving problems are called Ill Conditioned or Numerically Unstable.

This sections aims to show, in the context of linear optimization problems, the most common
sources for this behavior, and also how to avoid the behavior altogether. We will review first the
problem of solving linear systems with unique solutions, and then move into the more central issue
of linear optimization problems, its geometric interpretation, and then describe some of the most
common bad cases. We then provide two thought experiments with interactive material to help
illustrate the concepts of this section. We conclude with some further thoughts on this topic.

931

Note that although the notion of the Condition Number has received a lot of attention from the
academic community, reviewing this literature is beyond the scope of this document. If you want to
start looking into this topic, a good entry point can be the Condition Number page at Wikipedia.

The case of linear systems:

Solving linear systems is a very common sub-routine in any MI(QC)P-solver, as we have to solve
many linear systems during the full execution of the algorithm.

So, consider that we have a linear system Ax = b with an unique solution (i.e. A is a square
matrix with full rank), and you want to evaluate how the solution to the system might change if
we perturb the right-hand side b. Since the system has a unique solution, we know that given b,
the solution will be A−1b, and if we perturb b with ε, the solution will be A−1(b + ε). A measure
for the relative change in the solution with respect to the relative change in the input would be the
ratio

η(b, ε) := ‖A−1b‖
‖A−1(b+ε)‖/

‖b‖
‖b+ε‖ .

Note that the above definition is independent of the magnitudes of b and ε. From there, the worst
possible ratio would be the result of

κ(A) := maxb,ε η(b, ε).

This quantity is known as the condition number of the matrix A. It is not hard to prove that

κ(A) = λmax
λmin

,

where λmax and λmin are the maximum and minimum, respectively, eigenvalues of A. Equivalently

κ(A) = ‖A‖‖A−1‖.

A common interpretation of κ(A) = 10k is that, when solving the system Ax = b, you may lose up
to k digits of accuracy in x from the accuracy you have in b.

The condition number for the optimal simplex basis in an LP is captured in the KappaExact
attribute. A very large κ value might be an indication that the result might be unstable.

When this is indeed the case, the best advice is to scale the constraint matrix coefficients so
that the resulting range of coefficients is small. This transformation will typically reduce the κ
value of the final basis; please refer to the Scaling section for a discussion on how to perform this
rescaling, and also for caveats on scaling in general.

The geometry of linear optimization problems

Before showing optimization models that exhibit bad behavior, we first need to understand the
geometry behind them. Consider a problem of the form

max cx
s.t. Ax ≤ b.

For example:

932

https://en.wikipedia.org/wiki/Condition_number

max x+ y ~c = (1, 1)
s.t. −x ≤ 0 A1· = (−1, 0)

x ≤ 1 A2· = (1, 0)
−y ≤ 0 A3· = (0,−1)
y ≤ 1 A4· = (0, 1).

Note that if we denote bt := (0, 1, 0, 1), then the problem can be stated as

maxx∈R2{~cx : Ax ≤ b}.

The feasible region, direction of improvement ~c, and optimal solution x∗ can be depicted as

x

y ~c

A1·

A2·

A3· A4·

x∗

Note that whenever we move in the direction of ~c, the value ~cx increases. Furthermore, since we
can not move from x∗ to another feasible point with better objective value, we can conclude that
x∗ is indeed the optimal solution for the problem. Note that x∗ is a corner point of the feasible
region. This is not a coincidence; you will always find an optimal solution at a corner point if the
feasible region is bounded and ~c is not zero. If the objective is zero then all feasible solutions are
optimal; we will talk more about zero objectives and their implications later.

To understand how changes in the input data affect the feasible region and the optimal solution,
consider a small modification: b̃t = (ε, 1, 0, 1), ~̃c = (1+ε, 1), and Ã4· = (ε, 1). Then our optimization
problem would look like

933

x

y ~c ~̃c

A1·

A2·

A3·
Ã4·

A4·

x̃∗x∗

Note that although we changed the right-hand side, this change had no effect in the optimal
solution to the problem, but it did change the feasible region by enlarging the bottom part of the
feasible area.

Changing the objective vector tilts the corresponding vector in the graphical representation.
This of course also changes the optimal objective value. Perturbing a constraint tilts the graphical
representation of the constraint. The change in A4· changes the primal solution itself. The amount
of tilting constraint undergoes depends on the relative value of the perturbation. For example,
although the constraint x ≤ 1 and the constraint 100x ≤ 100 induce the same feasible region, the
perturbation x+ εy ≤ 1 will induce more tilting that the perturbation 100x+ εy ≤ 100.

Multiple optimal solutions
A common misconception among beginners in optimization is the idea that optimization problems
really have just one solution. Surprisingly, this is typically not true. For many practical problems,
the objective (whether it is cost or revenue or ...) is dominated by a handful of variables, while most
variables are just there to ensure that the actual operation of the solution is possible. Consider a
staffing problem, for example, where cost is typically driven by the number of people who work on
a given day, not by the specific people.

These kind of situations naturally lead to problems similar to
max y ~c = (0, 1)
s.t. −x ≤ 0 A1· = (−1, 0)

x ≤ 1 A2· = (1, 0)
−y ≤ 0 A3· = (0,−1)
y ≤ 1 A4· = (0, 1).

934

Graphically this can be depicted as

x

y ~c

A1·

A2·

A3· A4·

x1 x2 x3

In this situation is clear that x1, x3, and all solutions lying on the line between these two points
are optimal. The simplex algorithm will return either x1 or x3 (and may switch if you change
parameters). The barrier algorithm (without crossover) will return x2. These solutions are all
correct; the problem as stated has no reason to prefer one over the other. If you do have a
preference, you’ll need to state it in your objective function.

Dealing with epsilon-optimal solutions

The previous section considered the case of multiple (true) optimal solutions. What happens when
we have several ε-optimal solutions? To be more specific, consider

max εx+ y ~c = (ε, 1)
s.t. −x ≤ 0 A1· = (−1, 0)

x ≤ 1 A2· = (1, 0)
−y ≤ 0 A3· = (0,−1)
y ≤ 1 A4· = (0, 1).

Graphically this can be depicted as

935

x

y ~co~c−ε ~cε

A1·

A2·

A3· A4·

x1 x2

If ε is zero, then we are in the situation described before. Note, however, that a small perturbation of
the objective vector may lead to either x1 or x2 being reported as optimal. And tolerances can play
a big role here. If ε is negative, for example, then x1 would be the mathematically optimal result,
but due to the optimality tolerance, simplex might conclude that x2 is optimal. More precisely, if ε
is less than the default optimality tolerance of 10−6, then simplex is free to declare either solution
optimal (within tolerances).

The above statement is true whenever the distance between x1 and x2 is not too large. To see
this, consider what happens when we change the right-hand side of A4· from 1 to 106. Then the
feasible region would then be a very long rectangular box, with vertices (0, 0), (0, 1), (106, 1) and
(106, 0). Perhaps somewhat surprisingly, if ε is below the dual tolerance, simplex may consider
(106, 1) optimal, even though its objective value is 1− 106ε, which can be very relevant in terms of
the final objective value.

Note that both situations share one ingredient: The objective function is (almost) parallel to
one of the sides of the feasible region. In the first case, this side is relatively short, and thus jumping
from x2 to x1 translate into a small change in objective value. In the second case, the side almost
parallel to the objective function is very long, and now the jump from x2 to x1 can have a significant
impact on the final objective function.

If you take out either of these two ingredients, namely the objective vector being almost parallel
to a constraint, or the edge induced by this nearly-parallel constraint being very long, then this
problem can not arise. For the reasons discussed at the beginning of this section, it is common for
the objective function to be close to parallel to one or more constraints. Thus, the best way to
avoid this situation is to avoid the second condition. The simplest way to do this is to ensure that
the ranges for your variables are not too large. Please refer to the Scaling section for guidance on
this.

936

Thin feasible regions
We now consider another extreme situation that can lead to unexpected results. Consider the
problem defined as

max y ~c = (0, 1)
s.t. −x+ εy ≤ 1 A1· = (−1, ε)

x+ εy ≤ 1 A2· = (1, ε)
−y ≤ 0 A3· = (0,−1)

and its graphical representation

x

~c

A1·

A2·

A3·

x∗

It is clear from the graphical representation that the optimal solution for the problem will be at
the intersection of constraints A1· with A2·; and if we do the algebra, we will get that x∗ = (0, 1

ε).
Also note that as you decrease ε the feasible region stretches upwards, leaving its base unchanged.
We will consider the case where ε is a very small, positive number (between 10−9 and 10−6).

If we perturb the right-hand side vector b from (1, 1) to (1 + δ, 1), the new solution will be
x̃∗ = (− δ

2 ,
2+δ
2ε). To assess the impact of this perturbation, we compute the L1 distance between

this modified solution and the previous solution, which is given by

‖x∗ − x̃∗‖1 = |δ|
2 + |δ|

ε

This quantity can be either small or very large, depending on the relative magnitude between δ
and ε. If δ is much smaller than ε, then this quantity will be small. However, if δ is larger than or
even the same order of magnitude as ε, the opposite will be true. Very small perturbations in the
input data can lead to big changes in the optimal solution.

937

A similar issue arises if we perturb A1· to (−1, δ); the new optimal solution becomes x̃∗ =
(1 − 2ε

ε+δ ,
2
ε+δ). But now, if δ = ε/2, then the new solution for y will change from 1

ε to 4
3ε (a 33%

relative difference). Again, small changes in the input can produce big changes in the optimal
solution.

What is driving this bad behavior? The problem is that the optimal point is defined by two
constraints that are nearly parallel. The smaller ε is, the closer to parallel the are. When the
constraints are so close parallel, small changes in the slopes can lead to big movements in the point
where they intersect. Mathematically speaking:

limε→0+ ‖x∗‖ =∞

Note however that, if the original problem had an additional variable bound of the form y ≤ 104,
then neither of these bad behavior would have been possible. For any ε value smaller than 10−4,
the optimal point would be defined by the new constraint and one of the constraints A2· or A1·,
which would lead again to a well-behaved (i.e. stable) solutions. In summary, this sort of issue can
only arise when either the feasible region is either unbounded or very large. See the Scaling section
for further guidance on bounding the feasible region.

Optimizing over the circle:

Now we provide our first thought experiment: Consider the problem of optimizing a linear function
over the feasible region defined by the constraints

sin(2π i
106)x+ cos(2π i

106)y ≤ 1, ∀i ∈ {1, . . . , 106},

i.e. the feasible region is essentially a unit circle in R2. Note that for all objective functions,
the corresponding optimal point will be defined by two linear constraints that are very close to
be parallel. What will happen to the numerical solution to the problem? Can you guess? The
situation is depicted in the figure below:

938

~c

To perform the experiment, we execute the code circleOpt.py, where we randomly select an
objective vector, find the optimal solution to the resulting optimization problem, and compute
several relevant quantities:

• The worst distance between the reported primal solution, and the theoretical solution to the
problem of actually optimizing over a perfect circle, over all previous runs.

• The worst bound violation reported by Gurobi over all previous runs.

• The worst constraint violation reported by Gurobi over all previous runs.

• The worst dual violation reported by Gurobi over all previous runs.

• The number of previous experiments.

• Accumulated number of simplex iterations.

• The κ (KappaExact attribute) value for the current optimal basis.

Sample output is shown below:

Added 2 Vars and 1048576 constraints in 19.19 seconds
Errors: 8.65535e-08 0 2.94137e-07 2.77556e-17 Iter 0 10 Kappa 3150.06
Errors: 4.81978e-07 0 3.22359e-07 2.77556e-17 Iter 1 21 Kappa 3009.12
Errors: 4.81978e-07 0 3.4936e-07 1.11022e-16 Iter 2 33 Kappa 2890.58
Errors: 1.53201e-06 0 9.78818e-07 1.11022e-16 Iter 6 79 Kappa 1727.89
Errors: 1.61065e-06 0 8.26005e-07 1.11022e-16 Iter 46 536 Kappa 1880.73

939

Errors: 1.61065e-06 0 8.84782e-07 1.11022e-16 Iter 52 602 Kappa 1817.27
Errors: 1.61065e-06 0 9.4557e-07 1.11022e-16 Iter 54 625 Kappa 1757.96
Errors: 1.69167e-06 0 9.78818e-07 1.11022e-16 Iter 64 742 Kappa 1727.89
Errors: 1.69167e-06 0 3.8268e-07 1.66533e-16 Iter 88 1022 Kappa 2761.99
Errors: 1.69167e-06 0 9.04817e-07 1.66533e-16 Iter 92 1067 Kappa 1797.06
Errors: 1.69167e-06 0 2.94137e-07 2.22045e-16 Iter 94 1089 Kappa 3150.06
Errors: 1.69167e-06 0 3.29612e-07 2.22045e-16 Iter 95 1101 Kappa 2975.84
Errors: 1.69167e-06 0 3.4936e-07 2.22045e-16 Iter 98 1137 Kappa 2890.58
Errors: 1.69167e-06 0 9.25086e-07 2.22045e-16 Iter 99 1147 Kappa 1777.3
Errors: 1.69167e-06 0 9.78818e-07 2.22045e-16 Iter 107 1237 Kappa 1727.89
Errors: 1.69167e-06 0 9.99895e-07 2.22045e-16 Iter 112 1293 Kappa 1709.61
Errors: 1.84851e-06 0 9.78818e-07 2.22045e-16 Iter 132 1523 Kappa 1727.89
Errors: 1.96603e-06 0 9.99895e-07 2.22045e-16 Iter 134 1545 Kappa 1709.61

Surprisingly the reported errors are rather small. Why is this? There are at least two con-
tributing factors: the model has a bounded feasible region (in this case the range of both variables
is [−1, 1]). In addition, the distance from one extreme point (a point at the intersection of two
neighboring constraints) to its neighbor is also relatively small, so all ε-optimal solutions are close
to each other.

We encourage you to play with this code, perturb some of the input data, and analyze the
results. You will see the discrepancies between the theoretical and the numerical optimal solution
will be comparable to the sizes of the perturbations.

Optimizing over thin regions:

Now we move to our second thought experiment: Consider a feasible region consisting of a triangle
in R2 with a very wide base and very short height, as depicted here:

~c 1

~c2

Consider the case where the ratio of the base to the height is on the order of 105, and that we
consider a nominal objective function ~c1 as in the figure.

In theory, the optimal solution should be the apex of the triangle, but assume that we randomly
perturb both the right-hand side and the objective function with terms in the order of 10−6. What
will happen with the numerical solution?

To perform the experiment, we execute the code thinOpt.py, where we perform a series of
re-optimizations with different perturbations as described above. To be more precise, whenever
the new computed solution is further from the mathematical solution by more than it has been in
previous trials, we print:

• The new maximum distance among solutions.

• The current iteration.

• The κ (KappaExact attribute) value for the current optimal basis.

• The bound violation as reported by Gurobi for the current solution.

940

• The constraint violation as reported by Gurobi for the current solution.

• The dual violation as reported by Gurobi for the current solution.

Sample output is shown below:

New maxdiff 4e+16 Iter 0 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 1 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 2 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 7 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 83 Kappa 3.31072 Violations: 0 0 2.64698e-23
New maxdiff 4e+16 Iter 194 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 1073 Kappa 3.31072 Violations: 0 1.13687e-13 0
New maxdiff 4e+16 Iter 4981 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 19514 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 47117 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 429955 Kappa 3.31072 Violations: 0 0 0
New maxdiff 4e+16 Iter 852480 Kappa 3.31072 Violations: 0 0 0

Results look very different from what we saw in our first test. The distance between the
solution to the unperturbed model and the solution to the perturbed one is huge, even from the
very first iteration. Also, the κ values are relatively small, and the reported primal, dual, and
bound violations are almost zero. So, what happened? Note that when we choose ~c1 = (0, 1),
we are choosing an optimal point where a small tilting of the objective function may move us to
another extreme point very far away, and hence the large norm. This is possible because the region
is very large and, in principle, without any bounds, i.e. this is related to the case of ε-optimal
solutions and very long sides.

Again, we encourage you to play with this example. For example, what would happen if the
nominal objective function is ~c2 = (1, 0)?

Stability and convergence
The algorithms used to solve linear programming problems are all forced to make an assumption:
that tiny changes to the system (e.g., making a small step in barrier) lead to small changes in the
solution. If this is not true (due to ill-conditioning), then the algorithm may jump around in the
solution space and have a hard time converging.

Finally, one way to improve the geometry of a problem is by suitably scaling variables and con-
straints as explained in the Scaling section, and working with bounded feasible sets with reasonable
ranges for all variables.

28.7 Further reading
• A Characterization of Stability in Linear Programming, Stephen M. Robinson, 1977, Opera-
tions Research 25-3:435--447.

• IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754), IEEE Computer Society,
1985.

• What every computer scientist should know about floating-point arithmetic, David Goldberg,
1991, ACM Computing Surveys (CSUR), 23:5--48.

941

• Numerical Computing with IEEE Floating Point Arithmetic, Michael L. Overton, SIAM, 2001.

• Practical guidelines for solving difficult linear programs, Ed Klotz and Alexandra M. Newman,
2013, Surveys in Operations Research and Management Science, 18-1:1--17.

• Identification, Assessment, and Correction of Ill-Conditioning and Numerical Instability in
Linear and Integer Programs, Ed Klotz, Bridging Data and Decisions, Chapter 3, 54--108.

Source code examples:
Source code for the experiment of optimizing over a circle

from gurobipy import *
from math import *
import random
import time
import sys

Work on a circle defined on a million constraints
t0 = time.time ()
n = 1024 * 1024
m = Model(’Circle Optimization ’)
X = m. addVars (2,lb=-2,ub =2)
Wb = 0
Wc = 0
Wd = 0
maxdiff = 0
niter = 0
margin = 1.01

m. addConstrs (X[0]* cos ((2* pi*i)/n) + X[1]* sin ((2* pi*i)/n) <= 1
for i in range(n))

print(’Added 2 Vars and %d constraints in %.2f seconds ’ %
(n, time.time ()-t0))

m. Params . OutputFlag = 0
m. Params . Presolve = 0

Now select random objectives and optimize . Resulting optimal
solution must be in the circle
for i in range (4096):

theta =2* pi* random . random ()
a = cos(theta)
b = sin(theta)
m. setObjective (X[0] * a + X[1] * b)
m. optimize ()
niter += m. IterCount

See how far is the solution from the boundary of a circle of
radius one , if we minimize (a,b) the optimal solution should be (-a,-b)
error = (X[0].X+a)*(X[0].X+a) + (X[1].X+b)*(X[1].X+b)

Display most inacurate solution
if (error > margin * maxdiff or

m. BoundVio > margin * Wb or

942

m. ConstrVio > margin * Wc or
m. DualVio > margin * Wd):

maxdiff = max(maxdiff , error)
Wb = max(Wb , m. BoundVio)
Wc = max(Wb , m. ConstrVio)
Wd = max(Wd , m. DualVio)
print(’Errors : %g %g %g %g Iter %d %d Kappa %g’ %

(maxdiff , Wb , Wc , Wd , i, niter , m. KappaExact))
sys. stdout .flush ()

Source code for the experiment on a thin feasible region

from gurobipy import *
import random
import sys

Test the effect of small perturbations on the optimal solutions
for a problem with a thin feasible region
rhs = 1e3
m = Model(’Thin line Optimization ’)
x = m. addVar (obj =1)
y = m. addVar (obj =0, lb=-GRB.INFINITY , ub=GRB. INFINITY)
c1 = m. addConstr (1e-5 * y + 1e-0 * x <= rhs)
c2 = m. addConstr (- 1e-5 * y + 1e-0 * x <= rhs)
m. Params . OutputFlag = 0
m. Params . Presolve = 0
m. optimize ()
xval = x.X
yval = y.X
maxdiff = 0
for i in range (1024*1024):

c1.Rhs = rhs + 2e-6 * random . random ()
c2.Rhs = rhs + 2e-6 * random . random ()
x.Obj = 1 + 2e-6 * random . random ()
y.Obj = 0 + 2e-6 * random . random ()
m. optimize ()
x2val = x.X
y2val = y.X
error = (xval -x2val)*(xval -x2val) + (yval -y2val)*(yval -y2val)
if error > 1e-5 + maxdiff :

print(’New maxdiff %g Iter %d Kappa %g Violations : %g %g %g’ %
(error , i, m.KappaExact , m.BoundVio , m.ConstrVio ,

m. DualVio))
sys. stdout .flush ()
maxdiff = error

Source code for the experiment with column scalings

import sys
import random
import argparse
import gurobipy as gp

Use parameters for greater flexibility
parser = argparse . ArgumentParser (formatter_class = argparse . ArgumentDefaultsHelpFormatter)
parser . add_argument (’-f’,’--infile ’, help=’Problem File ’,

943

default =None , required =True)
parser . add_argument (’-s’,’--scale ’, help=’Scaling Factor ’,

type=float , default =10000.0)
args = parser . parse_args ()

Load input problem
m = gp.read(args. infile)

Scale domain of all columns randomly in the given domain
for var in m. getVars ():

if var.vtype == gp.GRB. CONTINUOUS :
scale = random . uniform (args.scale /2.0 , args.scale *2.0)
flip = random . randint (0 ,3)
if flip == 0:

scale = 1.0
elif flip == 1:

scale = 1.0/ scale
col = m. getCol (var)
for i in range (col.size ()):

coeff = col. getCoeff (i)
row = col. getConstr (i)
m. chgCoeff (row , var , coeff*scale)

var.obj = var.obj*scale
if var.lb > -gp.GRB. INFINITY :

var.lb = var.lb/scale
if var.ub < gp.GRB. INFINITY :

var.ub = var.ub/scale

Optimize
m. optimize ()
if m. Status == gp.GRB. OPTIMAL :

print(’Kappa: %e\n’ % m. KappaExact)

Copyright Notices for 3rd Party Libraries

The Gurobi Optimizer use several open-source libraries: libcurl, OpenSSL, JWT, Jansson, and
zlib. This section provides license information for these libraries.

The JWT library is distributed under the Mozilla Public License 2.0. The zlib library is dis-
tributed under the zlib/libpng License.

The Jansson library is distributed under the following (MIT) license:

Copyright (c) 2009-2020 Petri Lehtinen <petri@digip.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is

944

https://www.mozilla.org/en-US/MPL/2.0
https://opensource.org/licenses/Zlib

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

The libcurl library is distributed under the following license:
COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1996 - 2019, Daniel Stenberg, <daniel@haxx.se>, and many
contributors, see the THANKS file.

All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose
with or without fee is hereby granted, provided that the above copyright
notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN
NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization of the copyright holder.

The OpenSSL library is distributed under the following license:
The OpenSSL toolkit stays under a double license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts.

OpenSSL License

/* ==
* Copyright (c) 1998-2019 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright

945

* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*

946

* This library is free for commercial and non-commercial use as long as
* the following conditions are adhered to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young’s, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word ’cryptographic’ can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publicly available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/

947

	Introduction
	C API Overview
	Environment Creation and Destruction
	GRBloadenv
	GRBemptyenv
	GRBstartenv
	GRBloadclientenv
	GRBloadcloudenv
	GRBfreeenv
	GRBgetconcurrentenv
	GRBgetmultiobjenv
	GRBdiscardconcurrentenvs
	GRBdiscardmultiobjenvs

	Model Creation and Modification
	GRBloadmodel
	GRBnewmodel
	GRBcopymodel
	GRBaddconstr
	GRBaddconstrs
	GRBaddgenconstrXxx
	GRBaddgenconstrMax
	GRBaddgenconstrMin
	GRBaddgenconstrAbs
	GRBaddgenconstrAnd
	GRBaddgenconstrOr
	GRBaddgenconstrIndicator
	GRBaddgenconstrPWL
	GRBaddgenconstrPoly
	GRBaddgenconstrExp
	GRBaddgenconstrExpA
	GRBaddgenconstrLog
	GRBaddgenconstrLogA
	GRBaddgenconstrPow
	GRBaddgenconstrSin
	GRBaddgenconstrCos
	GRBaddgenconstrTan
	GRBaddqconstr
	GRBaddqpterms
	GRBaddrangeconstr
	GRBaddrangeconstrs
	GRBaddsos
	GRBaddvar
	GRBaddvars
	GRBchgcoeffs
	GRBdelconstrs
	GRBdelgenconstrs
	GRBdelq
	GRBdelqconstrs
	GRBdelsos
	GRBdelvars
	GRBsetobjectiven
	GRBsetpwlobj
	GRBupdatemodel
	GRBfreemodel
	GRBXaddconstrs
	GRBXaddrangeconstrs
	GRBXaddvars
	GRBXchgcoeffs
	GRBXloadmodel

	Model Solution
	GRBoptimize
	GRBoptimizeasync
	GRBcomputeIIS
	GRBfeasrelax
	GRBfixmodel
	GRBreset
	GRBsync

	Model Queries
	GRBgetcoeff
	GRBgetconstrbyname
	GRBgetconstrs
	GRBgetenv
	GRBgetgenconstrMax
	GRBgetgenconstrMin
	GRBgetgenconstrAbs
	GRBgetgenconstrAnd
	GRBgetgenconstrOr
	GRBgetgenconstrIndicator
	GRBgetgenconstrPWL
	GRBgetgenconstrPoly
	GRBgetgenconstrExp
	GRBgetgenconstrExpA
	GRBgetgenconstrLog
	GRBgetgenconstrLogA
	GRBgetgenconstrPow
	GRBgetgenconstrSin
	GRBgetgenconstrCos
	GRBgetgenconstrTan
	GRBgetjsonsolution
	GRBgetpwlobj
	GRBgetq
	GRBgetqconstr
	GRBgetqconstrbyname
	GRBgetsos
	GRBgetvarbyname
	GRBgetvars
	GRBsinglescenariomodel
	GRBXgetconstrs
	GRBXgetvars

	Input/Output
	GRBreadmodel
	GRBread
	GRBwrite

	Attribute Management
	GRBgetattrinfo
	GRBgetintattr
	GRBsetintattr
	GRBgetintattrelement
	GRBsetintattrelement
	GRBgetintattrarray
	GRBsetintattrarray
	GRBgetintattrlist
	GRBsetintattrlist
	GRBgetdblattr
	GRBsetdblattr
	GRBgetdblattrelement
	GRBsetdblattrelement
	GRBgetdblattrarray
	GRBsetdblattrarray
	GRBgetdblattrlist
	GRBsetdblattrlist
	GRBgetcharattrelement
	GRBsetcharattrelement
	GRBgetcharattrarray
	GRBsetcharattrarray
	GRBgetcharattrlist
	GRBsetcharattrlist
	GRBgetstrattr
	GRBsetstrattr
	GRBgetstrattrelement
	GRBsetstrattrelement
	GRBgetstrattrarray
	GRBsetstrattrarray
	GRBgetstrattrlist
	GRBsetstrattrlist
	GRBgetbatchattrinfo

	Parameter Management and Tuning
	GRBtunemodel
	GRBgettuneresult
	GRBgetdblparam
	GRBgetintparam
	GRBgetstrparam
	GRBsetdblparam
	GRBsetintparam
	GRBsetstrparam
	GRBgetdblparaminfo
	GRBgetintparaminfo
	GRBgetstrparaminfo
	GRBreadparams
	GRBwriteparams

	Monitoring Progress - Logging and Callbacks
	GRBmsg
	GRBsetcallbackfunc
	GRBgetcallbackfunc
	GRBcbget
	GRBversion

	Modifying Solver Behavior - Callbacks
	GRBcbcut
	GRBcblazy
	GRBcbsolution
	GRBcbstoponemultiobj
	GRBterminate

	Batch Requests
	GRBabortbatch
	GRBdiscardbatch
	GRBfreebatch
	GRBgetbatch
	GRBgetbatchenv
	GRBgetbatchintattr
	GRBgetbatchjsonsolution
	GRBgetbatchstrattr
	GRBoptimizebatch
	GRBretrybatch
	GRBupdatebatch
	GRBwritebatchjsonsolution

	Error Handling
	GRBgeterrormsg

	Advanced simplex routines
	GRBFSolve
	GRBBSolve
	GRBBinvColj
	GRBBinvRowi
	GRBgetBasisHead

	C++ API Overview
	GRBEnv
	GRBEnv()
	GRBEnv::get()
	GRBEnv::getErrorMsg()
	GRBEnv::getParamInfo()
	GRBEnv::message()
	GRBEnv::readParams()
	GRBEnv::resetParams()
	GRBEnv::set()
	GRBEnv::start()
	GRBEnv::writeParams()

	GRBModel
	GRBModel()
	GRBModel::addConstr()
	GRBModel::addConstrs()
	GRBModel::addGenConstrXxx()
	GRBModel::addQConstr()
	GRBModel::addRange()
	GRBModel::addRanges()
	GRBModel::addSOS()
	GRBModel::addVar()
	GRBModel::addVars()
	GRBModel::chgCoeff()
	GRBModel::chgCoeffs()
	GRBModel::computeIIS()
	GRBModel::discardConcurrentEnvs()
	GRBModel::discardMultiobjEnvs()
	GRBModel::feasRelax()
	GRBModel::fixedModel()
	GRBModel::get()
	GRBModel::getCoeff()
	GRBModel::getCol()
	GRBModel::getConcurrentEnv()
	GRBModel::getConstrByName()
	GRBModel::getConstrs()
	GRBModel::getGenConstrXxx()
	GRBModel::getGenConstrs()
	GRBModel::getJSONSolution()
	GRBModel::getMultiobjEnv()
	GRBModel::getObjective()
	GRBModel::getPWLObj()
	GRBModel::getQCRow()
	GRBModel::getQConstrs()
	GRBModel::getRow()
	GRBModel::getSOS()
	GRBModel::getSOSs()
	GRBModel::getTuneResult()
	GRBModel::getVarByName()
	GRBModel::getVars()
	GRBModel::optimize()
	GRBModel::optimizeasync()
	GRBModel::optimizeBatch()
	GRBModel::presolve()
	GRBModel::read()
	GRBModel::remove()
	GRBModel::reset()
	GRBModel::setCallback()
	GRBModel::set()
	GRBModel::setObjective()
	GRBModel::setObjectiveN()
	GRBModel::setPWLObj()
	GRBModel::singleScenarioModel()
	GRBModel::sync()
	GRBModel::terminate()
	GRBModel::tune()
	GRBModel::update()
	GRBModel::write()

	GRBVar
	GRBVar::get()
	GRBVar::index()
	GRBVar::sameAs()
	GRBVar::set()

	GRBConstr
	GRBConstr::get()
	GRBConstr::index()
	GRBConstr::sameAs()
	GRBConstr::set()

	GRBQConstr
	GRBQConstr::get()
	GRBQConstr::set()

	GRBSOS
	GRBSOS::get()

	GRBGenConstr
	GRBGenConstr::get()
	GRBGenConstr::set()

	GRBExpr
	GRBExpr::getValue()

	GRBLinExpr
	GRBLinExpr()
	GRBLinExpr::addTerms()
	GRBLinExpr::clear()
	GRBLinExpr::getConstant()
	GRBLinExpr::getCoeff()
	GRBLinExpr::getValue()
	GRBLinExpr::getVar()
	GRBLinExpr::operator=
	GRBLinExpr::operator+
	GRBLinExpr::operator-
	GRBLinExpr::operator+=
	GRBLinExpr::operator-=
	GRBLinExpr::operator*=
	GRBLinExpr::remove()
	GRBLinExpr::size()

	GRBQuadExpr
	GRBQuadExpr()
	GRBQuadExpr::addTerm()
	GRBQuadExpr::addTerms()
	GRBQuadExpr::clear()
	GRBQuadExpr::getCoeff()
	GRBQuadExpr::getLinExpr()
	GRBQuadExpr::getValue()
	GRBQuadExpr::getVar1()
	GRBQuadExpr::getVar2()
	GRBQuadExpr::operator=
	GRBQuadExpr::operator+
	GRBQuadExpr::operator-
	GRBQuadExpr::operator+=
	GRBQuadExpr::operator-=
	GRBQuadExpr::operator*=
	GRBQuadExpr::remove()
	GRBQuadExpr::size()

	GRBTempConstr
	GRBColumn
	GRBColumn()
	GRBColumn::addTerm()
	GRBColumn::addTerms()
	GRBColumn::clear()
	GRBColumn::getCoeff()
	GRBColumn::getConstr()
	GRBColumn::remove()
	GRBColumn::size()

	GRBCallback
	GRBCallback()
	GRBCallback::abort()
	GRBCallback::addCut()
	GRBCallback::addLazy()
	GRBCallback::getDoubleInfo()
	GRBCallback::getIntInfo()
	GRBCallback::getNodeRel()
	GRBCallback::getSolution()
	GRBCallback::getStringInfo()
	GRBCallback::setSolution()
	GRBCallback::stopOneMultiObj()
	GRBCallback::useSolution()

	GRBException
	GRBException()
	GRBException::getErrorCode()
	GRBException::getMessage()

	GRBBatch
	GRBBatch()
	GRBBatch::abort()
	GRBBatch::discard()
	GRBBatch::getJSONSolution()
	GRBBatch::get()
	GRBBatch::retry()
	GRBBatch::update()
	GRBBatch::writeJSONSolution()

	Non-Member Functions
	operator==
	operator<=
	operator>=
	operator+
	operator-
	operator*
	operator/

	Attribute Enums
	GRB_CharAttr
	GRB_DoubleAttr
	GRB_IntAttr
	GRB_StringAttr

	Parameter Enums
	GRB_DoubleParam
	GRB_IntParam
	GRB_StringParam

	Java API Overview
	GRBEnv
	GRBEnv()
	GRBEnv.dispose()
	GRBEnv.get()
	GRBEnv.getErrorMsg()
	GRBEnv.getParamInfo()
	GRBEnv.message()
	GRBEnv.readParams()
	GRBEnv.release()
	GRBEnv.resetParams()
	GRBEnv.set()
	GRBEnv.start()
	GRBEnv.writeParams()

	GRBModel
	GRBModel()
	GRBModel.addConstr()
	GRBModel.addConstrs()
	GRBModel.addGenConstrXxx()
	GRBModel.addQConstr()
	GRBModel.addRange()
	GRBModel.addRanges()
	GRBModel.addSOS()
	GRBModel.addVar()
	GRBModel.addVars()
	GRBModel.chgCoeff()
	GRBModel.chgCoeffs()
	GRBModel.computeIIS()
	GRBModel.discardConcurrentEnvs()
	GRBModel.discardMultiobjEnvs()
	GRBModel.dispose()
	GRBModel.feasRelax()
	GRBModel.fixedModel()
	GRBModel.get()
	GRBModel.getCoeff()
	GRBModel.getCol()
	GRBModel.getConcurrentEnv()
	GRBModel.getConstrByName()
	GRBModel.getConstrs()
	GRBModel.getGenConstrXxx()
	GRBModel.getGenConstrs()
	GRBModel.getJSONSolution()
	GRBModel.getMultiobjEnv()
	GRBModel.getObjective()
	GRBModel.getPWLObj()
	GRBModel.getQCRow()
	GRBModel.getQConstrs()
	GRBModel.getRow()
	GRBModel.getSOS()
	GRBModel.getSOSs()
	GRBModel.getTuneResult()
	GRBModel.getVarByName()
	GRBModel.getVars()
	GRBModel.optimize()
	GRBModel.optimizeasync()
	GRBModel.optimizeBatch()
	GRBModel.presolve()
	GRBModel.read()
	GRBModel.remove()
	GRBModel.reset()
	GRBModel.setCallback()
	GRBModel.set()
	GRBModel.setObjective()
	GRBModel.setObjectiveN()
	GRBModel.setPWLObj()
	GRBModel.singleScenarioModel()
	GRBModel.sync()
	GRBModel.terminate()
	GRBModel.tune()
	GRBModel.update()
	GRBModel.write()

	GRBVar
	GRBVar.get()
	GRBVar.index()
	GRBVar.sameAs()
	GRBVar.set()

	GRBConstr
	GRBConstr.get()
	GRBConstr.index()
	GRBConstr.sameAs()
	GRBConstr.set()

	GRBQConstr
	GRBQConstr.get()
	GRBQConstr.set()

	GRBSOS
	GRBSOS.get()

	GRBGenConstr
	GRBGenConstr.get()
	GRBGenConstr.set()

	GRBExpr
	GRBExpr.getValue()

	GRBLinExpr
	GRBLinExpr()
	GRBLinExpr.add()
	GRBLinExpr.addConstant()
	GRBLinExpr.addTerm()
	GRBLinExpr.addTerms()
	GRBLinExpr.clear()
	GRBLinExpr.getConstant()
	GRBLinExpr.getCoeff()
	GRBLinExpr.getValue()
	GRBLinExpr.getVar()
	GRBLinExpr.multAdd()
	GRBLinExpr.remove()
	GRBLinExpr.size()

	GRBQuadExpr
	GRBQuadExpr()
	GRBQuadExpr.add()
	GRBQuadExpr.addConstant()
	GRBQuadExpr.addTerm()
	GRBQuadExpr.addTerms()
	GRBQuadExpr.clear()
	GRBQuadExpr.getCoeff()
	GRBQuadExpr.getLinExpr()
	GRBQuadExpr.getValue()
	GRBQuadExpr.getVar1()
	GRBQuadExpr.getVar2()
	GRBQuadExpr.multAdd()
	GRBQuadExpr.remove()
	GRBQuadExpr.size()

	GRBColumn
	GRBColumn()
	GRBColumn.addTerm()
	GRBColumn.addTerms()
	GRBColumn.clear()
	GRBColumn.getCoeff()
	GRBColumn.getConstr()
	GRBColumn.remove()
	GRBColumn.size()

	GRBCallback
	GRBCallback()
	GRBCallback.abort()
	GRBCallback.addCut()
	GRBCallback.addLazy()
	GRBCallback.getDoubleInfo()
	GRBCallback.getIntInfo()
	GRBCallback.getNodeRel()
	GRBCallback.getSolution()
	GRBCallback.getStringInfo()
	GRBCallback.setSolution()
	GRBCallback.stopOneMultiObj()
	GRBCallback.useSolution()

	GRBException
	GRBException()
	GRBException.getErrorCode()

	GRBBatch
	GRBBatch()
	GRBBatch.abort()
	GRBBatch.discard()
	GRBBatch.dispose()
	GRBBatch.getJSONSolution()
	GRBBatch.get()
	GRBBatch.retry()
	GRBBatch.update()
	GRBBatch.writeJSONSolution()

	GRB
	Constants
	GRB.CharAttr
	GRB.DoubleAttr
	GRB.DoubleParam
	GRB.IntAttr
	GRB.IntParam
	GRB.StringAttr
	GRB.StringParam

	.NET API Overview
	GRBEnv
	GRBEnv()
	GRBEnv.Dispose()
	GRBEnv.ErrorMsg
	GRBEnv.Get()
	GRBEnv.GetParamInfo()
	GRBEnv.Message()
	GRBEnv.ReadParams()
	GRBEnv.Release()
	GRBEnv.ResetParams()
	GRBEnv.Set()
	GRBEnv.Start()
	GRBEnv.WriteParams()

	GRBModel
	GRBModel()
	GRBModel.AddConstr()
	GRBModel.AddConstrs()
	GRBModel.AddGenConstrXxx()
	GRBModel.AddQConstr()
	GRBModel.AddRange()
	GRBModel.AddRanges()
	GRBModel.AddSOS()
	GRBModel.AddVar()
	GRBModel.AddVars()
	GRBModel.ChgCoeff()
	GRBModel.ChgCoeffs()
	GRBModel.ComputeIIS()
	GRBModel.DiscardConcurrentEnvs()
	GRBModel.DiscardMultiobjEnvs()
	GRBModel.Dispose()
	GRBModel.FeasRelax()
	GRBModel.FixedModel()
	GRBModel.Get()
	GRBModel.GetCoeff()
	GRBModel.GetCol()
	GRBModel.GetConcurrentEnv()
	GRBModel.GetConstrByName()
	GRBModel.GetConstrs()
	GRBModel.GetGenConstrXxx()
	GRBModel.GetGenConstrs()
	GRBModel.GetJSONSolution()
	GRBModel.GetMultiobjEnv()
	GRBModel.GetObjective()
	GRBModel.GetPWLObj()
	GRBModel.GetQConstr()
	GRBModel.GetQConstrs()
	GRBModel.GetQCRow()
	GRBModel.GetRow()
	GRBModel.GetSOS()
	GRBModel.GetSOSs()
	GRBModel.GetTuneResult()
	GRBModel.GetVarByName()
	GRBModel.GetVars()
	GRBModel.Optimize()
	GRBModel.OptimizeAsync()
	GRBModel.OptimizeBatch()
	GRBModel.Presolve()
	GRBModel.Read()
	GRBModel.Remove()
	GRBModel.Reset()
	GRBModel.SetCallback()
	GRBModel.Set()
	GRBModel.SetObjective()
	GRBModel.SetObjectiveN()
	GRBModel.SetPWLObj()
	GRBModel.SingleScenarioModel()
	GRBModel.Sync()
	GRBModel.Terminate()
	GRBModel.Tune()
	GRBModel.Update()
	GRBModel.Write()

	GRBVar
	GRBVar.Get()
	GRBVar.Index
	GRBVar.SameAs()
	GRBVar.Set()

	GRBConstr
	GRBConstr.Get()
	GRBConstr.Index
	GRBConstr.SameAs()
	GRBConstr.Set()

	GRBQConstr
	GRBQConstr.Get()
	GRBQConstr.Set()

	GRBSOS
	GRBSOS.Get()

	GRBGenConstr
	GRBGenConstr.Get()
	GRBGenConstr.Set()

	GRBExpr
	GRBExpr.Value

	GRBLinExpr
	GRBLinExpr()
	GRBLinExpr.Add()
	GRBLinExpr.AddConstant()
	GRBLinExpr.AddTerm()
	GRBLinExpr.AddTerms()
	GRBLinExpr.Clear()
	GRBLinExpr.Constant
	GRBLinExpr.GetCoeff()
	GRBLinExpr.GetVar()
	GRBLinExpr.MultAdd()
	GRBLinExpr.Remove()
	GRBLinExpr.Size
	GRBLinExpr.Value

	GRBQuadExpr
	GRBQuadExpr()
	GRBQuadExpr.Add()
	GRBQuadExpr.AddConstant()
	GRBQuadExpr.AddTerm()
	GRBQuadExpr.AddTerms()
	GRBQuadExpr.Clear()
	GRBQuadExpr.GetCoeff()
	GRBQuadExpr.GetVar1()
	GRBQuadExpr.GetVar2()
	GRBQuadExpr.LinExpr()
	GRBQuadExpr.MultAdd()
	GRBQuadExpr.Remove()
	GRBQuadExpr.Size
	GRBQuadExpr.Value

	GRBTempConstr
	GRBColumn
	GRBColumn()
	GRBColumn.AddTerm()
	GRBColumn.AddTerms()
	GRBColumn.Clear()
	GRBColumn.GetCoeff()
	GRBColumn.GetConstr()
	GRBColumn.Remove()
	GRBColumn.Size

	Overloaded Operators
	operator <=
	operator >=
	operator ==
	operator +
	operator -
	operator *
	operator /
	implicit cast

	GRBCallback
	GRBCallback()
	GRBCallback.Abort()
	GRBCallback.AddCut()
	GRBCallback.AddLazy()
	GRBCallback.GetDoubleInfo()
	GRBCallback.GetIntInfo()
	GRBCallback.GetNodeRel()
	GRBCallback.GetSolution()
	GRBCallback.GetStringInfo()
	GRBCallback.SetSolution()
	GRBCallback.StopOneMultiObj()
	GRBCallback.UseSolution()

	GRBException
	GRBException()
	GRBException.ErrorCode

	GRBBatch
	GRBBatch()
	GRBBatch.Abort()
	GRBBatch.Discard()
	GRBBatch.GetJSONSolution()
	GRBBatch.Get()
	GRBBatch.Retry()
	GRBBatch.Update()
	GRBBatch.WriteJSONSolution()

	GRB
	Constants
	GRB.CharAttr
	GRB.DoubleAttr
	GRB.DoubleParam
	GRB.IntAttr
	GRB.IntParam
	GRB.StringAttr
	GRB.StringParam

	Python API Overview
	Global Functions
	models()
	disposeDefaultEnv()
	multidict()
	paramHelp()
	quicksum()
	read()
	readParams()
	resetParams()
	setParam()
	system()
	writeParams()

	Model
	Model()
	Model.addConstr()
	Model.addConstrs()
	Model.addGenConstrXxx()
	Model.addGenConstrMax()
	Model.addGenConstrMin()
	Model.addGenConstrAbs()
	Model.addGenConstrAnd()
	Model.addGenConstrOr()
	Model.addGenConstrIndicator()
	Model.addGenConstrPWL()
	Model.addGenConstrPoly()
	Model.addGenConstrExp()
	Model.addGenConstrExpA()
	Model.addGenConstrLog()
	Model.addGenConstrLogA()
	Model.addGenConstrPow()
	Model.addGenConstrSin()
	Model.addGenConstrCos()
	Model.addGenConstrTan()
	Model.addLConstr()
	Model.addMConstr()
	Model.addMQConstr()
	Model.addMVar()
	Model.addQConstr()
	Model.addRange()
	Model.addSOS()
	Model.addVar()
	Model.addVars()
	Model.cbCut()
	Model.cbGet()
	Model.cbGetNodeRel()
	Model.cbGetSolution()
	Model.cbLazy()
	Model.cbSetSolution()
	Model.cbStopOneMultiObj()
	Model.cbUseSolution()
	Model.chgCoeff()
	Model.computeIIS()
	Model.copy()
	Model.discardConcurrentEnvs()
	Model.discardMultiobjEnvs()
	Model.dispose()
	Model.feasRelaxS()
	Model.feasRelax()
	Model.fixed()
	Model.getA()
	Model.getAttr()
	Model.getCoeff()
	Model.getCol()
	Model.getConcurrentEnv()
	Model.getConstrByName()
	Model.getConstrs()
	Model.getGenConstrMax()
	Model.getGenConstrMin()
	Model.getGenConstrAbs()
	Model.getGenConstrAnd()
	Model.getGenConstrOr()
	Model.getGenConstrIndicator()
	Model.getGenConstrPWL()
	Model.getGenConstrPoly()
	Model.getGenConstrExp()
	Model.getGenConstrExpA()
	Model.getGenConstrLog()
	Model.getGenConstrLogA()
	Model.getGenConstrPow()
	Model.getGenConstrSin()
	Model.getGenConstrCos()
	Model.getGenConstrTan()
	Model.getGenConstrs()
	Model.getJSONSolution()
	Model.getMultiobjEnv()
	Model.getObjective()
	Model.getParamInfo()
	Model.getPWLObj()
	Model.getQConstrs()
	Model.getQCRow()
	Model.getRow()
	Model.getSOS()
	Model.getSOSs()
	Model.getTuneResult()
	Model.getVarByName()
	Model.getVars()
	Model.message()
	Model.optimize()
	Model.optimizeBatch()
	Model.presolve()
	Model.printAttr()
	Model.printQuality()
	Model.printStats()
	Model.read()
	Model.relax()
	Model.remove()
	Model.reset()
	Model.resetParams()
	Model.setAttr()
	Model.setMObjective()
	Model.setObjective()
	Model.setObjectiveN()
	Model.setPWLObj()
	Model.setParam()
	Model.singleScenarioModel()
	Model.terminate()
	Model.tune()
	Model.update()
	Model.write()

	Var
	Var.getAttr()
	Var.sameAs()
	Var.index
	Var.setAttr()

	MVar
	MVar()
	MVar.copy()
	MVar.tolist()
	MVar.getAttr()
	MVar.setAttr()
	MVar.sum()

	Constr
	Constr.getAttr()
	Constr.index
	Constr.sameAs()
	Constr.setAttr()

	MConstr
	MConstr.tolist()
	MConstr.getAttr()
	MConstr.setAttr()

	QConstr
	QConstr.getAttr()
	QConstr.setAttr()

	SOS
	SOS.getAttr()

	GenConstr
	GenConstr.getAttr()
	GenConstr.setAttr()

	LinExpr
	LinExpr()
	LinExpr.add()
	LinExpr.addConstant()
	LinExpr.addTerms()
	LinExpr.clear()
	LinExpr.copy()
	LinExpr.getConstant()
	LinExpr.getCoeff()
	LinExpr.getValue()
	LinExpr.getVar()
	LinExpr.remove()
	LinExpr.size()
	LinExpr.__eq__()
	LinExpr.__le__()
	LinExpr.__ge__()

	QuadExpr
	QuadExpr()
	QuadExpr.add()
	QuadExpr.addConstant()
	QuadExpr.addTerms()
	QuadExpr.clear()
	QuadExpr.copy()
	QuadExpr.getCoeff()
	QuadExpr.getLinExpr()
	QuadExpr.getValue()
	QuadExpr.getVar1()
	QuadExpr.getVar2()
	QuadExpr.remove()
	QuadExpr.size()
	QuadExpr.__eq__()
	QuadExpr.__le__()
	QuadExpr.__ge__()

	GenExpr
	MLinExpr
	MLinExpr.copy()
	MLinExpr.getValue()
	MLinExpr.__eq__()
	MLinExpr.__le__()
	MLinExpr.__ge__()

	MQuadExpr
	MQuadExpr.copy()
	MQuadExpr.getValue()
	MQuadExpr.__eq__()
	MQuadExpr.__le__()
	MQuadExpr.__ge__()

	TempConstr
	Column
	Column()
	Column.addTerms()
	Column.clear()
	Column.copy()
	Column.getCoeff()
	Column.getConstr()
	Column.remove()
	Column.size()

	Callbacks
	GurobiError
	Env
	Env()
	Env.ClientEnv()
	Env.CloudEnv()
	Env.resetParams()
	Env.setParam()
	Env.start()
	Env.writeParams()
	Env.dispose()

	Batch
	Batch()
	Batch.abort()
	Batch.discard()
	Batch.dispose()
	Batch.getJSONSolution()
	Batch.retry()
	Batch.update()
	Batch.writeJSONSolution()

	GRB
	Constants
	GRB.Attr
	GRB.Param

	tuplelist
	tuplelist()
	tuplelist.select()
	tuplelist.clean()
	tuplelist.__contains__()

	tupledict
	tupledict()
	tupledict.select()
	tupledict.sum()
	tupledict.prod()
	tupledict.clean()

	General Constraint Helper Functions
	abs_()
	and_()
	max_()
	min_()
	or_()

	MATLAB API Overview
	Common Arguments
	The model argument
	The params argument
	The env argument

	Solving a Model
	gurobi()
	gurobi_iis()
	gurobi_feasrelax()
	gurobi_relax()

	Input/Output
	gurobi_read()
	gurobi_write()

	Using Gurobi within MATLAB's Problem-Based Optimization
	Setting up the Gurobi MATLAB interface

	R API Overview
	Common Arguments
	The model argument
	The params argument
	The env argument

	Solving a Model
	gurobi()
	gurobi_iis()
	gurobi_feasrelax()
	gurobi_relax()

	Input/Output
	gurobi_read()
	gurobi_write()

	Installing the R package

	Variables and Constraints and Objectives
	Variables
	Constraints
	Objectives
	Tolerances and Ill Conditioning --A Caveat

	Environments
	Session boundaries
	Configuration parameters
	Algorithmic parameters
	Concurrent environments
	Multi-objective environments

	Attributes
	Model Attributes
	NumConstrs
	NumVars
	NumSOS
	NumQConstrs
	NumGenConstrs
	NumNZs
	DNumNZs
	NumQNZs
	NumQCNZs
	NumIntVars
	NumBinVars
	NumPWLObjVars
	ModelName
	ModelSense
	ObjCon
	Fingerprint
	ObjVal
	ObjBound
	ObjBoundC
	PoolObjBound
	PoolObjVal
	MIPGap
	Runtime
	Status
	SolCount
	IterCount
	BarIterCount
	NodeCount
	IsMIP
	IsQP
	IsQCP
	IsMultiObj
	IISMinimal
	MaxCoeff
	MinCoeff
	MaxBound
	MinBound
	MaxObjCoeff
	MinObjCoeff
	MaxRHS
	MinRHS
	MaxQCCoeff
	MinQCCoeff
	MaxQCLCoeff
	MinQCLCoeff
	MaxQCRHS
	MinQCRHS
	MaxQObjCoeff
	MinQObjCoeff
	Kappa
	KappaExact
	FarkasProof
	TuneResultCount
	NumStart
	LicenseExpiration
	Server

	Variable Attributes
	LB
	UB
	Obj
	VarName
	VTag
	VType
	X
	Xn
	RC
	BarX
	Start
	VarHintVal
	VarHintPri
	BranchPriority
	Partition
	VBasis
	PStart
	IISLB
	IISUB
	PWLObjCvx
	SAObjLow
	SAObjUp
	SALBLow
	SALBUp
	SAUBLow
	SAUBUp
	UnbdRay

	Linear Constraint Attributes
	Sense
	RHS
	ConstrName
	CTag
	Pi
	Slack
	CBasis
	DStart
	Lazy
	IISConstr
	SARHSLow
	SARHSUp
	FarkasDual

	SOS Attributes
	IISSOS

	Quadratic Constraint Attributes
	QCSense
	QCRHS
	QCName
	QCPi
	QCSlack
	QCTag
	IISQConstr

	General Constraint Attributes
	FuncPieceError
	FuncPieceLength
	FuncPieceRatio
	FuncPieces
	GenConstrType
	GenConstrName
	IISGenConstr

	Quality Attributes
	BoundVio
	BoundSVio
	BoundVioIndex
	BoundSVioIndex
	BoundVioSum
	BoundSVioSum
	ConstrVio
	ConstrSVio
	ConstrVioIndex
	ConstrSVioIndex
	ConstrVioSum
	ConstrSVioSum
	ConstrResidual
	ConstrSResidual
	ConstrResidualIndex
	ConstrSResidualIndex
	ConstrResidualSum
	ConstrSResidualSum
	DualVio
	DualSVio
	DualVioIndex
	DualSVioIndex
	DualVioSum
	DualSVioSum
	DualResidual
	DualSResidual
	DualResidualIndex
	DualSResidualIndex
	DualResidualSum
	DualSResidualSum
	ComplVio
	ComplVioIndex
	ComplVioSum
	IntVio
	IntVioIndex
	IntVioSum

	Multi-objective Attributes
	ObjN
	ObjNCon
	ObjNPriority
	ObjNWeight
	ObjNRelTol
	ObjNAbsTol
	ObjNVal
	ObjNName
	NumObj

	Multi-Scenario Attributes
	ScenNLB
	ScenNUB
	ScenNObj
	ScenNRHS
	ScenNName
	ScenNObjBound
	ScenNObjVal
	ScenNX
	NumScenarios

	Batch Attributes
	BatchErrorCode
	BatchErrorMessage
	BatchID
	BatchStatus

	Attribute Examples
	C Attribute Examples
	C++ Attribute Examples
	C# Attribute Examples
	Java Attribute Examples
	Python Attribute Examples
	Visual Basic Attribute Examples

	Parameters
	Parameter Guidelines
	Continuous Models
	MIP Models

	Parameter Descriptions
	AggFill
	Aggregate
	BarConvTol
	BarCorrectors
	BarHomogeneous
	BarIterLimit
	BarOrder
	BarQCPConvTol
	BestBdStop
	BestObjStop
	BQPCuts
	BranchDir
	CliqueCuts
	CloudAccessID
	CloudHost
	CloudSecretKey
	CloudPool
	ComputeServer
	ConcurrentJobs
	ConcurrentMIP
	ConcurrentSettings
	CoverCuts
	Crossover
	CrossoverBasis
	CSAPIAccessID
	CSAPISecret
	CSAppName
	CSAuthToken
	CSBatchMode
	CSClientLog
	CSGroup
	CSIdleTimeout
	CSManager
	CSPriority
	CSQueueTimeout
	CSRouter
	CSTLSInsecure
	CutAggPasses
	Cutoff
	CutPasses
	Cuts
	DegenMoves
	Disconnected
	DisplayInterval
	DistributedMIPJobs
	DualReductions
	FeasibilityTol
	FeasRelaxBigM
	FlowCoverCuts
	FlowPathCuts
	FuncPieceError
	FuncPieceLength
	FuncPieceRatio
	FuncPieces
	FuncMaxVal
	GomoryPasses
	GUBCoverCuts
	Heuristics
	IgnoreNames
	IISMethod
	ImpliedCuts
	ImproveStartGap
	ImproveStartNodes
	ImproveStartTime
	InfProofCuts
	InfUnbdInfo
	InputFile
	IntegralityFocus
	IntFeasTol
	IterationLimit
	JobID
	JSONSolDetail
	LazyConstraints
	LogFile
	LogToConsole
	MarkowitzTol
	Method
	MinRelNodes
	MIPFocus
	MIPGap
	MIPGapAbs
	MIPSepCuts
	MIQCPMethod
	MIRCuts
	ModKCuts
	MultiObjMethod
	MultiObjPre
	MultiObjSettings
	NetworkCuts
	NodefileDir
	NodefileStart
	NodeLimit
	NodeMethod
	NonConvex
	NoRelHeurTime
	NoRelHeurWork
	NormAdjust
	NumericFocus
	ObjNumber
	ObjScale
	OptimalityTol
	OutputFlag
	PartitionPlace
	PerturbValue
	PoolGap
	PoolGapAbs
	PoolSearchMode
	PoolSolutions
	PreCrush
	PreDepRow
	PreDual
	PreMIQCPForm
	PrePasses
	PreQLinearize
	Presolve
	PreSOS1BigM
	PreSOS2BigM
	PreSparsify
	ProjImpliedCuts
	PSDCuts
	PSDTol
	PumpPasses
	QCPDual
	Quad
	Record
	ResultFile
	RINS
	RelaxLiftCuts
	RLTCuts
	ScaleFlag
	ScenarioNumber
	Seed
	ServerPassword
	ServerTimeout
	Sifting
	SiftMethod
	SimplexPricing
	SolutionLimit
	SolFiles
	SolutionNumber
	StartNodeLimit
	StartNumber
	StrongCGCuts
	SubMIPCuts
	SubMIPNodes
	Symmetry
	Threads
	TimeLimit
	TokenServer
	TSPort
	TuneBaseSettings
	TuneCleanup
	TuneCriterion
	TuneJobs
	TuneOutput
	TuneResults
	TuneTimeLimit
	TuneTrials
	UpdateMode
	UserName
	VarBranch
	WorkerPassword
	WorkerPool
	ZeroHalfCuts
	ZeroObjNodes

	Parameter Examples
	C Parameter Examples
	C++ Parameter Examples
	C# Parameter Examples
	Java Parameter Examples
	MATLAB Parameter Examples
	Python Parameter Examples
	R Parameter Examples
	Visual Basic Parameter Examples

	Optimization Status Codes
	Batch Status Codes
	Callback Codes
	Error Codes
	Model File Formats
	MPS format
	REW format
	LP format
	RLP format
	ILP format
	OPB format
	MST format
	HNT format
	ORD format
	BAS format
	SOL format
	JSON solution format
	ATTR format
	PRM format

	Logging
	Header
	Simplex Logging
	Barrier Logging
	Sifting Logging
	MIP Logging
	Solution Pool and Multi-Scenario Logging
	Multi-Objective Logging
	Distributed MIP Logging
	IIS Logging

	Gurobi Command-Line Tool
	Solving a Model
	Replaying Recording Files

	Solution Pool
	Finding Multiple Solutions
	Retrieving Solutions
	Examples
	Subtleties and Limitations

	Multiple Objectives
	Specifying Multiple Objectives
	Working With Multiple Objectives
	Additional Details

	Multiple Scenarios
	Definition of a Multi-Scenario Model
	Specifying Multiple Scenarios
	Logging
	Retrieving Solutions for Multiple Scenarios
	Tips and Tricks
	Limitations and Additional Considerations

	Batch Optimization
	Setting Up a Batch Environment
	Tagging Variables or Constraints
	Submitting a Batch Optimization Request
	Interacting with Batch Requests
	Interpreting the JSON Solution
	A Complete Example

	Recording API Calls
	Recording
	Replay
	Limitations

	Concurrent Optimizer
	Parameter Tuning Tool
	Command-Line Tuning
	Tuning API

	Gurobi Instant Cloud
	Client Setup
	Instant Cloud Setup

	Guidelines for Numerical Issues
	Avoid rounding of input
	Real numbers are not real
	Tolerances and user-scaling
	Gurobi tolerances and the limitations of double-precision arithmetic
	Why scaling and geometry is relevant
	Recommended ranges for variables and constraints
	Improving ranges for variables and constraints
	Advanced user scaling
	Avoid hiding large coefficients
	Dealing with big-M constraints

	Does my model have numerical issues?
	Solver parameters to manage numerical issues
	Presolve
	Choosing the right algorithm
	Making the algorithm less sensitive

	Instability and the geometry of optimization problems
	The case of linear systems:
	The geometry of linear optimization problems
	Multiple optimal solutions
	Dealing with epsilon-optimal solutions
	Thin feasible regions
	Optimizing over the circle:
	Optimizing over thin regions:
	Stability and convergence

	Further reading
	Source code for the experiment of optimizing over a circle
	Source code for the experiment on a thin feasible region
	Source code for the experiment with column scalings

	Copyright Notices for 3rd Party Libraries

