GUROBI OPTIMIZER
QUICK START GUIDE

GUROBI

OPTIMIZATION

Version 9.0, Copyright (©) 2020, Gurobi Optimization, LLC

1 Introduction

2 Obtaining a Gurobi License

2.1 Creating a new academic license L o L Lo

3 Software Installation Guide

4 Retrieving and Setting Up a Gurobi License
4.1 Retrieving a Free Academic license
Academic validation L
4.2 Retrieving a Named-User or Single-Machine or Single-Use license
4.3 Setting up and using a Floating license Lo
Retrieving a Floating license
Starting a token server Lo
Upgrading a token server
Creating a token server client license
4.4 Setting up and using a Compute Server license
Retrieving a Compute Server license
Creating a Compute Server client license
4.5 Starting Gurobi Remote Services
4.6 Using an Instant Cloud license oo
4.7 Testing your license

4.8 Setting environment variables Lo L

5 Solving a Simple Model - The Gurobi Command Line

6 Interactive Shell

7 Attributes

Contents

28

41

8 C Interface 42

9 C++ Interface 49
10 Java Interface 55
11 .NET Interface (C#) 61
12 Python Interface 67
12.1 Simple Python Example o 68
12.2 Python Matrix Example oo 72
12.3 Python Dictionary Example oo 76
12.4 Building and running the examples oo 88
13 MATLAB Interface 89
14 R Interface 93
15 Recommended Reading 97
16 Installing the Anaconda Python distribution 98
16.1 Using the Spyder IDE 100
16.2 Using Jupyter oL 102
17 Windows Command Line 104

18 File Overview 106

ii

Introduction

Welcome to the Gurobi™ Optimizer Quick Start Guide for Windows users! This document pro-
vides a basic introduction to the Gurobi Optimizer, including:

e Information on Obtaining a Gurobi License.

e A Software Installation Guide, which includes information on Retrieving and Setting Up your
License.

e An example of how to create a simple optimization model and solve it with the Gurobi
Command Line, and

e A discussion of the Gurobi Interactive Shell.

We suggest that all users read these first five sections.

Once you have done this, you will probably want to choose a programming environment from which
to use Gurobi. If you don’t have a strong preference, we recommend that you use our Python®
interface, which provides a number of benefits. First, Python is a very nice programming language
that can be used for anything from experimentation to prototyping to deployment. Beyond this,
though, our Python interface includes a set of higher-level modeling constructs that make it much
easier to build optimization models. We also include instructions for installing the Anaconda
Python distribution, which includes both a graphical development environment (Spyder) and a
notebook-style interface (Jupyter).

If you already have a preferred programming language, you can select from among our available
interfaces:

e C interface,

e C++ interface,

Java®) interface,

Microsoft® .NET interface,

Python interface,

MATLAB®) interface, or

R interface.

At the end of the Quick Start Guide, you’ll find a File Overview that lists the files included in the
Gurobi distribution.

Additional resources

Once you are done with the Quick Start Guide, the next step is to explore these additional resources:

e [f you are familiar with mathematical modeling and are ready to use Gurobi from one of our
programming language APIs, consult the Gurobi Reference Manual.

e If you would like to see examples of ways to use Gurobi, consult the Gurobi Example Tour.

e If you are a Gurobi Compute Server user, consult the Gurobi Remote Services Reference
Manual.

e If you would like to learn more about mathematical programming or modeling, we’ve collected
a set of references in our recommended reading section.

Getting help

If you have a question that is not answered in this document, please visit the Gurobi support site at
https://support.gurobi.com. There, you can read knowledge base articles and join the community
discussion forum. Also, if you have a current maintenance contract, you can use the Gurobi support
site to submit a request to the Gurobi support team.

Ready to get started? Your first step is to Obtain a License.

http://www.gurobi.com/documentation/9.0/refman/index.html
http://www.gurobi.com/documentation/9.0/examples/index.html
../remoteservices/remoteservices.html
../remoteservices/remoteservices.html
https://support.gurobi.com

Obtaining a Gurobi License

You will need a license in order to install and use the Gurobi Optimizer. There are several ways to
obtain one, depending on your situation:

e If you would like a free evaluation license, please email us at sales@gurobi.com to request one.
e If you are an academic user, you can obtain a free academic license on our website.

e If you have purchased a license from us, that license should be visible through the Current
tab of your Licenses page on our website (you will need to login to your account to see this

page).

e If you plan to use Gurobi as a client of a Gurobi Compute Server, you will need to create a
compute server client license.

e If you plan to use Gurobi as a client of a Gurobi token server, you will need to create a token
server client license.

Once you have a license, your next step is to install the software.

2.1 Creating a new academic license

If you are an academic user at a degree-granting institution and wish to use an academic Gurobi
license, you can create one yourself. To do so, visit the Free Academic License page on our website.
You will need to read and agree to the End User License Agreement and the Conditions for academic
use. Once you have done so, click on Request License. Your new license will be visible immediately
on the Current page. You can create as many academic licenses as you like.

Your next step is to install the software.

mailto:sales@gurobi.com
http://www.gurobi.com/download/licenses/current
http://www.gurobi.com/download/licenses/free-academic
http://www.gurobi.com/download/licenses/current

Before using the Gurobi Optimizer, you’ll need to install the software on your computer. If you

Software Installation Guide

haven’t already done so, please go to our download page. Find your platform (64-bit Windows)

and choose the corresponding file to download.

Documentation

GUROBI

OPTIMIZATION

Products Customers

Gurobi Optimizer - Get the Software

Get the software

Downloads & Licenses

Resources

Support

Academia

My Account

Company

English Q

Partners

Gurobi Optimizer is the Gurobi optimization libraries. In addition to the software, the corresponding README file contains installation instructions. Here is the list of bug

fixes for each release

Current version 64-bit Windows 64-bit Linux

64-bit macOS

64-bit AIX

9.0.0 EADME Surobi-9.0.0-winéd ms: qurchi9.0.0_linux6d targ

md5 Checksum 176cf70e1804f0a7bd5056709030003 | 7878005185227620572d 16003

-818c7265ff24c3f9c219c596e2

3a943980d36828fc8a7daa7alb78cf28

Old versions

811 EADME

Surobi-8.1.1-wins4. ms qurcbig. 1.1 linuxéd.targz

md5 Checksum 17dfc21f0edb4daaadbd7634eab705b

52065eeefc15516d9aach

801 EADME

Gurobi-8.0.1-win64.ms

md5 Checksum d9363f13daab3b79c0cdaa

Make a note of the name and location of the downloaded file.

Your next step is to double-click on the Gurobi installer that you downloaded from our website

(e.g., Gurobi-9.0.3-win64.msi for the 64-bit version of Gurobi 9.0.3).

Note: if you selected Run when downloading you’ve already run the installer and don’t need to do

it again.

By default, the installer will place the Gurobi 9.0.3 files in directory c:\gurobi903\win64. The
installer gives you the option to change the installation target.

directory as <installdir>.

877f94a02e602346ee76709894df4030

We'll refer to the installation

http://www.gurobi.com/downloads/gurobi-optimizer

Command-Line Installation

You can also install Gurobi using the command-line interface to the Windows Installer. Open a
cmd prompt, use cd to go to the directory that contains the Gurobi installer image, and enter the
following command:

msiexec /i Gurobi-9.0.3-win64.msi /norestart

If you are unfamiliar with running command-line commands on a Windows system, you can learn
more here.

Helpful tools

To work with compressed files within the Gurobi Optimizer, we recommend that you install gzip
(www.gzip.org) and/or 7zip (www.7-zip.org).

You are now ready to proceed to the section on Retrieving Your Gurobi License.

If you would like an overview of the files included in the Gurobi distribution, you can also view the
File Overview section.

http://www.gzip.org
http://www.7-zip.org

Once your license is visible on the Current Page of the website, click on the License ID to view the
License Detail page:

GUROBI

OPTIMIZATION PRODUCTS DOWNLOADS RESOURCES ACADEMIA SUPPORT ABOUT

License Detall

License ID 106290

Information and installation instructions

License ID 106290

Date Issued 2015-10-28
Purpose Trial
License Type Free Trial
Key Type TRIAL
ersion i
Distributed Limit 0
Expiration Date 2016-04-25
Host Name

Host ID

To install this license on a computer where Gurobi Optimizer is installed, copy and paste the following command to the Start/Run menu (Windows
only) or a command/terminal prompt (any system):

grbgetkey 9f712a83-32db-0e1@-8285-5630dfa56756

The grbgetkey command requires an active internet connection. If you get no response or an error message such as "Unable to contact key
server”, please click here for additional instructions.

Your next step is to install this Gurobi license on your machine. You do this by obtaining a license
key file.

We strongly recommend that you place your client gurobi.lic file in a default location for your
platform (either your home directory or c:\gurobi). Setting up a non-default location is error-
prone and a frequent source of trouble.

Please consult the License Type field on the License Detail page to identify your license type, and
click on the appropriate link below to proceed:

e Free Academic

e Named User

Retrieving and Setting Up a Gurobi License

http://www.gurobi.com/download/licenses/current

Single-Machine

Single-Use

Floating

Compute Server

Instant Cloud

If your license includes the Distributed Add-On and you plan to use any of the Gurobi distributed
algorithms, you’ll also need to set up Gurobi Remote Services on your distributed worker machines.

4.1 Retrieving a Free Academic license

To obtain a Gurobi license key you’ll need to run the grbgetkey command on your machine to
retrieve your Gurobi license key. Note that the machine must be connected to the Internet in order
to run this command. An Internet connection is not required after you have obtained your license
key.

The exact command to run for a specific license is indicated at the bottom of the License Detail
page (e.g., grbgetkey 253e22f3-...). We recommend that you use copy-paste to copy the entire

grbgetkey command from our website and paste it directly into the Windows Search box (and
then hit Enter):

Jo grbgetkey bbab0259-a126-e141-
dab2-580a56acddze

If you are unfamiliar with running command-line commands on a Windows system, you can learn
more here.

The grbgetkey program passes identifying information about your machine back to our website,
and the website responds with your license key. Once this exchange has occurred, grbgetkey will
ask for the name of the directory in which to store your license key file (gurobi.lic). You should
see a prompt that looks like this:

Gurobi license key client (version 9.0.3)
Copyright (c) 2020, Gurobi Optimization, LLC

Contacting Gurobi key server...

Key for license ID 146542 was successfully retrieved.

In which folderwould you like to store the Gurobi license key file?
[hit Enter to store it in c:\gurobi]:

-> License key saved to file ’c:\gurobilgurobi.lic’.

You can store the license key file anywhere, but we strongly recommend that you accept the default
location (either your home directory or c:\gurobi) by hitting Enter. Setting up a non-default
location is error-prone and a frequent source of trouble.

If you receive an error message at this stage, it typically means that we were unable to validate
your academic domain. Please consult the Academic Validation section for more information.

Using a non-default license file location

When you run the Windows version of the Gurobi Optimizer, it will look for the gurobi.lic
key file in two different default locations: c:\gurobi and c:\gurobi903 (for Gurobi 9.0.3). Note
that these default paths are absolute, so for example Gurobi will look for the license key file in
c:\gurobi, even if the software is installed in d:\gurobi. Note that the token server won’t look
for the license file in your home directory (it runs under username LocalService, so it doesn’t have
access to your home directory). If you would like to use a non-default license key file location, you
can do so by setting a system environment variable GRB_LICENSE_FILE to point to the license key
file. See Setting environment variables for details on how to do this.

Important note: the environment variable should point to the license key file itself, not to the
directory that contains the file.

Next steps
If your license includes the Distributed Add-On and you plan to use any of the Gurobi distributed
algorithms, you’ll also need to set up Gurobi Remote Services on your distributed worker machines.

Once you have followed the steps above and have obtained a license key file, your next step is to
test your license.

Academic validation

If you are using a free academic license, grbgetkey will perform an academic validation step before
retrieving your license key. This step checks your domain name against our list of known academic
domains. This section will help you resolve validation errors.

Not a recognized academic domain
If grbgetkey produces a message that looks like this:

ERROR 303: hostname mymachine.mydomain (234.28.234.144) not recognized as
belonging to an academic domain

it means your domain isn’t on our academic domain list. Please make sure you are connected to
your university network. If you are validating a home machine and the university provides a VPN,
please connect to it before retrieving your license. If the reported host name is a valid university
address, please visit our support site for assistance.

If you are having trouble validating your license through a VPN, note that some VPNs are con-
figured to use split tunneling, where traffic to public internet sites is routed through your ISP.
You should ask your network administrator whether the VPN can be configured to route traffic to
gurobi.com through the private network.

Some machines connect to the internet through a proxy server. You can use the HTTPS_PROXY or
HTTP_PROXY environment variables to enable grbgetkey to work with your proxy server. Type
grbgetkey —-help for details.

No reverse DNS information
If grbgetkey produces a message that only references a numerical IP address, like this:

ERROR 303: hostname 234.28.234.12 (234.28.234.100) not recognized as
belonging to an academic domain

it means your machine has no reverse DNS information. This usually happens when you are
connecting to the Internet through a DHCP server that does NAT (network address translation) or
PAT (port address translation), but does not provide DNS information for its clients. The simplest
way to resolve this issue is to ask your network administrator to add a DNS entry (a PTR record)
for the DHCP device itself.

There is unfortunately no way for us to validate your academic license without reverse DNS infor-
mation. You can visit this site to check DNS information for your IP address and to obtain more
information about reverse DNS.

4.2 Retrieving a Named-User or Single-Machine or Single-Use license

To obtain a Gurobi license key you’ll need to run the grbgetkey command on your machine to
retrieve your Gurobi license key. Note that the machine must be connected to the Internet in order
to run this command. An Internet connection is not required after you have obtained your license
key.

If your computer isn’t connected to the Internet or if your network security system does not allow
the command below to function, we also offer a manual license key process. You’ll find manual
instructions at the bottom of the License Detail page (by following the link labeled click here for
additional instructions).

https://support.gurobi.com
http://www.gurobi.com/dns

The exact command to run for a specific license is indicated at the bottom of the License Detail
page (e.g., grbgetkey 253e22f3-...). We recommend that you use copy-paste to copy the entire
grbgetkey command from our website and paste it directly into the Windows Search box (and
then hit Enter):

Jo grbgetkey bbab0259-a12b6-e14f-
dab2-580a56acdd’le

If you are unfamiliar with running command-line commands on a Windows system, you can learn
more here.

The grbgetkey program passes identifying information about your machine back to our website,
and the website responds with your license key. Once this exchange has occurred, grbgetkey will
ask for the name of the directory in which to store your license key file (gurobi.lic). You should
see a prompt that looks like this:

Gurobi license key client (version 9.0.3)
Copyright (c) 2020, Gurobi Optimization, LLC

Contacting Gurobi key server...

Key for license ID 146542 was successfully retrieved.

In which folderwould you like to store the Gurobi license key file?
[hit Enter to store it in c:\gurobi]:

-> License key saved to file ’c:\gurobi\gurobi.lic’.

You can store the license key file anywhere, but we strongly recommend that you accept the default
location (either your home directory or c:\gurobi) by hitting Enter. Setting up a non-default
location is error-prone and a frequent source of trouble.

Using a non-default license file location

When you run the Windows version of the Gurobi Optimizer, it will look for the gurobi.lic
key file in two different default locations: c:\gurobi and c:\gurobi903 (for Gurobi 9.0.3). Note

10

that these default paths are absolute, so for example Gurobi will look for the license key file in
c:\gurobi, even if the software is installed in d:\gurobi. Note that the token server won’t look
for the license file in your home directory (it runs under username LocalService, so it doesn’t have
access to your home directory). If you would like to use a non-default license key file location, you
can do so by setting a system environment variable GRB_LICENSE_FILE to point to the license key
file. See Setting environment variables for details on how to do this.

Important note: the environment variable should point to the license key file itself, not to the
directory that contains the file.

Next steps

If your license includes the Distributed Add-On and you plan to use any of the Gurobi distributed
algorithms, you’ll also need to set up Gurobi Remote Services on your distributed worker machines.

Once you have followed the steps above and have obtained a license key file, your next step is to
test your license.

4.3 Setting up and using a Floating license

When using a floating license, a program that calls the Gurobi Optimizer must obtain a token from
a Gurobi token server before it can solve an optimization model. There are a few steps involved
in setting up such licenses. The first is to retrieve your license key. The key should be installed
on the machine that will act as your token server. Once you have your key, you will need to start
the Gurobi token server. The token server is a process that runs in the background, handing out
available tokens to programs as they request them. Finally, each client for the token server will
need to create a token server client license to allow client programs to find the token server.

Note that if you are setting up a machine as a client of an existing token server, you just need to
create a token server client license.

Retrieving a Floating license

If you are using a floating license, you will need to choose a machine to act as your Gurobi token
server. This token server doles out tokens to client machines. A client will request a token from the
token server when it creates a Gurobi environment, and it will return the token when it destroys
that environment. The client machine can be any machine that can reach the token server over your
network (including the token server itself). The client can run any supported operating system.
Thus, for example, a Linux client can request tokens from a Windows token server.

Once you've chosen a machine to act as your token server, you’ll need to run the grbgetkey
command on your machine to retrieve your Gurobi license key. Note that the machine must be
connected to the Internet in order to run this command. An Internet connection is not required
after you have obtained your license key.

If your computer isn’t connected to the Internet or if your network security system does not allow
the command below to function, we also offer a manual license key process. You’ll find manual

11

instructions at the bottom of the License Detail page (by following the link labeled click here for
additional instructions).

The exact command to run for a specific license is indicated at the bottom of the License Detail
page (e.g., grbgetkey 253e22f3-...). We recommend that you use copy-paste to copy the entire
grbgetkey command from our website and paste it directly into the Windows Search box (and
then hit Enter):

Jo grbgetkey bbab0259-a12b-e14f-
dab2-580a56acddze

If you are unfamiliar with running command-line commands on a Windows system, you can learn
more here.

The grbgetkey program passes identifying information about your machine back to our website,
and the website responds with your license key. Once this exchange has occurred, grbgetkey will
ask for the name of the directory in which to store your license key file (gurobi.lic). You should
see a prompt that looks like this:

Gurobi license key client (version 9.0.3)
Copyright (c) 2020, Gurobi Optimization, LLC

Contacting Gurobi key server...

In which folderwould you like to store the Gurobi license key file?
[hit Enter to store it in c:\gurobi]:

-> License key saved to file ’c:\gurobilgurobi.lic’.

You can store the license key file anywhere, but we strongly recommend that you accept the default
location (either your home directory or c:\gurobi) by hitting Enter. Setting up a non-default
location is error-prone and a frequent source of trouble.

12

Setting a password for your token server

If you want to require clients of your token server to specify a password in order to check out a
token, you’ll need to add one line to your gurobi.lic file:

PASSWORD=abcd1234

You should of course choose your own password. Clients will need to place this same line in their
client license files.

When adding this line to your gurobi.lic file, please be careful not to modify anything else in the
file.

Using a non-default license file location

When you run the Windows version of the Gurobi Optimizer, it will look for the gurobi.lic
key file in two different default locations: c:\gurobi and c:\gurobi903 (for Gurobi 9.0.3). Note
that these default paths are absolute, so for example Gurobi will look for the license key file in
c:\gurobi, even if the software is installed in d:\gurobi. Note that the token server won’t look
for the license file in your home directory (it runs under username LocalService, so it doesn’t have
access to your home directory). If you would like to use a non-default license key file location, you
can do so by setting a system environment variable GRB_LICENSE_FILE to point to the license key
file. See Setting environment variables for details on how to do this.

Important note: the environment variable should point to the license key file itself, not to the
directory that contains the file.

Once you have followed the steps above and have obtained a license key file, your next step is to
start the token server.

Starting a token server

Important note: most Gurobi licenses do not use the token server. You should
only follow these instructions if you are setting up a floating license. If you are
not sure whether you need to start a token server, you can examine the contents of
your gurobi.lic file. If it contains the line TYPE=TOKEN, and does not contain the line
MACHINELIMIT=0, then you need a token server.

On a Windows system, you can start the token service by selecting the Gurobi Token Server menu
item from the Gurobi folder of the Start menu. You should only do so after you have installed the
Gurobi license key file.

By default, the token server only produces logging output when it starts. To obtain more detailed
logging information, start the token server with the -v switch. This will produce a log message
each time a token is checked in or out.

The token server runs as a Windows service. If you’d like to run it in the foreground, start it from
and command window and use the —n switch.

13

Firewalls

The next step after starting the Gurobi token server depends on your anti-virus software and
firewall settings. Most anti-virus software will immediately ask you to confirm that you are allowing
program grb_ts.exe to receive network traffic. Once you confirm this, the token server will start
serving tokens. If you don’t receive such a prompt, you will need to add grb_ts.exe to the firewall
exceptions list. To do this, select Allow a program through Windows firewall under the Security
area of the Control Panel (labeled Allow an app through Windows firewall in Windows 8).

Some machines have more restrictive firewalls that may require additional action. The Gurobi
token server uses port 41954 by default. If you are unable to reach the token server after taking
the steps described, you should ask your network administrator for more information on how to
open the required port.

Starting and stopping the grb_ts Windows service

Once the token service has been started, you should see the grb_ts service listed in the Services tab
of the Task Manager. To start or stop the service, click on the Services button at the bottom-right
of the Services tab, and then right-click on the Gurobi Token Server item on this screen.

You can also start or stop the Gurobi Token Server service from a Console window with adminis-
trator privileges. Running grb_ts -h lists command-line options. Issuing a grb_ts -s command
stops a running token server. If you are unfamiliar with running command-line commands on a
Windows system, you can learn more here.

Add the line
VERBOSE=1

to your gurobi.lic file to start the license service in verbose mode. Verbose mode produces a log
message (in the Windows Event Log) each time a token is checked in or out.

Next steps

Clients of the token server also need simple license files. Your next step is to set up a client license.

Once your token server is running and you’ve set up a client license, you can move on to testing
the license.

Once you’ve set up a client license, you can test the state of the token server at any time, as well
as get a list of the clients that are currently using tokens, by typing gurobi_cl --tokens.

Upgrading a token server

To upgrade your token server from an earlier version of the Gurobi Optimizer, you will need to
perform the following steps (on the machine running the token server):

1. Stop the old token server.

2. Install the new version of the Gurobi Optimizer.

14

3. Upgrade your license file (or modify GRB_LICENSE_FILE to point to the new license file).

4. Start the new token server.

Creating a token server client license

The purpose of a token server client license is quite simple: it tells the client where to find the
Gurobi token server. You can create this file yourself (using a text editor like WordPad, for example).
The client gurobi.lic file typically contains a single line of text:

TOKENSERVER=mymachine.mydomain.com
or:

TOKENSERVER=192.168.1.100

You should of course substitute the name or IP address of your token server in the example above.

If your token server was configured to use a non-default port, you’ll also need a line that provides
the port number:

PORT=46325

The client license file may also include four optional lines. A QUEUETIMEQOUT line allows you to set a
limit (in seconds) on how long a new Compute Server job will wait in queue before it gives up (and
reports a JOB_REJECTED error). Any negative value will allow a job to sit in the Compute Server
queue indefinitely.

An IDLETIMEOUT line allows you to set a limit on how long a Compute Server job can sit idle
before the server kills the job (in seconds). A job is considered idle if the server is not currently
performing an optimization and the client has not issued any additional commands. The default
value will allow a job to sit idle indefinitely in all but a few circumstances. The first exception is the
Gurobi Instant Cloud, where the default setting will automatically impose a 30 minute idle time
limit (1800 seconds). If you are using an Instant Cloud pool, the actual value will be the maximum
between this parameter value and the idle timeout defined by the pool. The second exception is
any program that uses the Gurobi Python interface (including the Gurobi Interactive Shell). Such
programs will also get a 30 minute idle time limit by default.

A SERVERTIMEQUT line allows you to specify the timeout (in seconds) in case the token server is
unavailable. The default value is 30 seconds. If the client program is unable to contact the server
for more than the specified amount of time, the client will quit with a network error.

A PASSWORD line allows you to connect to a password-protected token server (you’ll need to get the
password from the owner of the token server).

A more complex client token file might look like this:

TOKENSERVER=192.168.1.100
IDLETIMEOUT=60
QUEUETIMEOUT=120
SERVERTIMEOUT=10
PASSWORD=abcd1234

15

We strongly recommend that you place your client gurobi.lic file in a default location for your
platform (either your home directory or c:\gurobi). Setting up a non-default location is error-
prone and a frequent source of trouble. (If you still want to use a non-default location, please
refer to the instructions that appeared earlier in this section).

If your client and the token server are both running on the same machine, they can share a single

gurobi.lic file. You just need to add the following line to the gurobi.lic file you obtained from
our website:

TOKENSERVER=1localhost

The token server will ignore this line, and the client will ignore everything but this line. Your
other option when both client and server are running on the same machine is to create a separate
gurobi.lic file for the client, and to set the GRB_LICENSE_FILE environment variable to point to
this file (following the earlier instructions for using a non-default license location).

Once your client license is in place, you can test the license. If you are unable to connect to the
server, you'll need to make sure the server is installed and running. Please consult the instructions
for starting a token server for more information.

4.4 Setting up and using a Compute Server license

When using a Compute Server license, programs that call the Gurobi Optimizer can offload Gurobi
computations onto one or more machines. There are a few steps involved in setting up such licenses.
The first is to retrieve your license key. The key should be installed on the machine that will act
as a Compute Server. Once you have your key, you will need to start Gurobi Remote Services.
Finally, client machines will need a Compute Server client license in order to find the Compute
Server(s).

Note that if you are setting up a machine as a client of an existing Compute Server, you just need
to create a Compute Server client license.

Retrieving a Compute Server license

If you have purchased one or more Gurobi Compute Server licenses, you’ll need to perform a
few setup steps in order to start your Compute Servers. Once started, client machines will be
able to offload the work of solving an optimization model onto these servers. The clients and the
Compute Servers can run any mix of supported operating systems. Thus, for example, multiple
Linux machines could submit jobs to a pair of Compute Servers, one running Windows and the
other running Linux. Any machine that can reach the Compute Server(s) over your network can
be a client (including the Compute Servers themselves).

Once you've chosen a machine to act as a Compute Server (or a node in a Compute Server cluster),
you’ll need to run the grbgetkey command on your machine to retrieve your Gurobi license key.
Note that the machine must be connected to the Internet in order to run this command. An
Internet connection is not required after you have obtained your license key.

16

If your computer isn’t connected to the Internet or if your network security system does not allow
the command below to function, we also offer a manual license key process. You’ll find manual
instructions at the bottom of the License Detail page (by following the link labeled click here for
additional instructions).

The exact command to run for a specific license is indicated at the bottom of the License Detail
page (e.g., grbgetkey 253e22f3-...). We recommend that you use copy-paste to copy the entire
grbgetkey command from our website and paste it directly into the Windows Search box (and
then hit Enter):

Jo grbgetkey bbab0259-a126-e141-
dab2-580a56acddle

If you are unfamiliar with running command-line commands on a Windows system, you can learn
more here.

The grbgetkey program passes identifying information about your machine back to our website,
and the website responds with your license key. Once this exchange has occurred, grbgetkey will
ask for the name of the directory in which to store your license key file (gurobi.lic). You should
see a prompt that looks like this:

Gurobi license key client (version 9.0.3)
Copyright (c) 2020, Gurobi Optimization, LLC

Contacting Gurobi key server...

In which folderwould you like to store the Gurobi license key file?
[hit Enter to store it in c:\gurobi]:

-> License key saved to file ’c:\gurobilgurobi.lic’.

You can store the license key file anywhere, but we strongly recommend that you accept the default
location (either your home directory or c:\gurobi) by hitting Enter. Setting up a non-default
location is error-prone and a frequent source of trouble.

17

Using a non-default license file location

When you run the Windows version of the Gurobi Optimizer, it will look for the gurobi.lic
key file in two different default locations: c:\gurobi and c:\gurobi903 (for Gurobi 9.0.3). Note
that these default paths are absolute, so for example Gurobi will look for the license key file in
c:\gurobi, even if the software is installed in d:\gurobi. Note that the token server won’t look
for the license file in your home directory (it runs under username LocalService, so it doesn’t have
access to your home directory). If you would like to use a non-default license key file location, you
can do so by setting a system environment variable GRB_LICENSE_FILE to point to the license key
file. See Setting environment variables for details on how to do this.

Important note: the environment variable should point to the license key file itself, not to the
directory that contains the file.

Once you have followed the steps above and have obtained a license key file, your next step is to
start Gurobi Remote Services.

Creating a Compute Server client license

If you are a Compute Server user, we recommend that you read the Gurobi Remote Services
Reference Manual for information about configuring and using Remote Services. We’ll provide a
few relevant details here, but this other document provides a much broader overview.

You have two options for indicating that a Gurobi program will act as a client of a Compute Server.
If you are writing a program that calls the Gurobi C, C++, Java, .NET, or Python APIs, these
APIs provide routines that allow you to specify the name of a Compute Server node (by creating an
empty environment and then setting parameters related to Compute Server on that environment).
If you use these routines, Gurobi licenses aren’t required on the client.

Alternately, you can set up a gurobi.lic file that points to the Compute Server. This option
allows you to use a Compute Server with nearly any program that calls Gurobi, without the need

to modify the calling program. You can create your client gurobi.lic with a text editor like
WordPad. The file should contain a line that looks like this:

COMPUTESERVER=server .mydomain.com:61000
or like this:
COMPUTESERVER=192.168.1.100:61000

This line should provide the name or IP address of any machine in your Compute Server cluster,
optionally followed by the chosen port number on that server (which was chosen when you set up
the Compute Server on that machine). If your Compute Server uses a password, you should also
include a line that gives the password:

PASSWORD=cspwd

Please consult the Using Remote Services section of the Gurobi Remote Services Reference Manual
for more information.

18

../remoteservices/remoteservices.html
../remoteservices/remoteservices.html
../remoteservices/remoteservices.html

Note that if your client and server are both running on the same machine, you’ll need to create
a separate gurobi.lic file for the client, and set the GRB_LICENSE_FILE environment variable to
point to this file (following the earlier instructions for using a non-default license location).

Once your client license is in place, you can test the license. If you are unable to connect to the
server, you’ll need to make sure the server is installed and running. Please consult the Cluster Setup
and Administration section of the Gurobi Remote Services Reference Manual for more information.

4.5 Starting Gurobi Remote Services

Important note: you only need to start Gurobi Remote Services if you are setting
up a Compute Server or a distributed worker (for use in distributed algorithms). If
you are not sure whether you need to start Gurobi Remote Services, you can examine
the contents of your gurobi.lic file. If it contains the line CSENABLED=1, then you need
Gurobi Remote Services. If it contains a line that begins with DISTRIBUTED=, and if
you plan to run distributed algorithms, then you also need Gurobi Remote Services.

Gurobi Remote Services is a Windows Service that allows one or more machines to perform Gurobi
computations on behalf of other client machines. The set of services a server can provide will depend
on your license. If you are setting up a machine as a distributed worker, no license is required. In
this case, the only service provided by the server is to act as a worker in a distributed algorithm.
If you have a Compute Server license, then servers running Gurobi Remote Services can provide a
variety of services, including offloading computation from a set of clients, balancing computational
load among the servers, and providing failover capabilities, in addition to acting as a distributed
worker. In this case, be sure that your license key file has been installed before starting Gurobi
Remote Services.

You’ll find instructions for installing, starting, and stopping Gurobi Remote Services in the Cluster
Setup and Administration section of the Gurobi Remote Services Reference Manual.

Note that Gurobi Remote Services is distributed as a separate installer (named
gurobi__server8.0.0.msion the Windowsplatform). You’ll need to download that file separately from
our download page.

Next steps

Once you've set up Gurobi Remote Services, you should test the state of the server. Type this
command on your server (assuming you have configured your Compute Server to use port 61000):

gurobi_cl --server=localhost:61000
If the output includes the following line:

Capacity available on ’localhost:61000’ - connecting...

then Remote Services is ready for use.

Client programs will need to know how to reach your server. If you are using Gurobi Compute
Server, this is typically done with a client license file. You should set that up now.

19

../remoteservices/remoteservices.html
../remoteservices/remoteservices.html
http://www.gurobi.com/downloads/gurobi-optimizer

4.6 Using an Instant Cloud license

You have two options for indicating that a Gurobi program will act as a client of a Gurobi Instant
Cloud instance. If you are writing a program that calls the Gurobi C, C++, Java, .NET, or
Python APIs, these APIs provide routines that allow you to launch cloud instances (by creating
an empty environment and then setting parameters related to the cloud on that environment). If
you use these routines, Gurobi licenses aren’t required on the client.

Alternately, you can install a gurobi.lic file that points to your Gurobi Instant Cloud. This
option allows you to use Instant Cloud with nearly any program that calls Gurobi, without the
need to modify the calling program. You can download a client gurobi.lic file from your account
on the Instant Cloud website. You should place this file in a default location (either your home
directory or c:\gurobi), or set the GRB_LICENSE_FILE environment variable to point to it.

This file will contain two lines that look like this:

CLOUDACCESSID=312e9gef-eObc-4114-b6fb-26ed7klaeff9
CLOUDKEY=ae32LOH321dgal

If you are using a non-default pool, the file should also indicate the name of that pool:

CLOUDPOOL=myPool

These lines allow your client program to launch and use cloud instances from your account. You
should keep this information private, since anyone with access to it can also use your cloud instances.

Please consult the Gurobi Instant Cloud section of the Gurobi Remote Services Reference Manual
for more information.

4.7 Testing your license

Once you have obtained a license key for your machine, you are ready to test your license using the
Gurobi Interactive Shell. To do this, double-click on the Gurobi icon on your desktop. The shell
should produce the following output:

Using license file c:\gurobilgurobi.lic

Set parameter LogFile to value gurobi.log
Gurobi Interactive Shell, Version 9.0.3
Copyright (c) 2020, Gurobi Optimization, LLC
Type "help()" for help

gurobi>
If you are running as a client of a Gurobi Compute Server, the message above will be preceded by
a message like this:

Capacity available on ’myserver’ - connecting...
Established HTTP unencrypted connection

Congratulations, your license is functioning correctly! You are now ready to use the Gurobi Opti-
mizer. The next section will show you how to solve a simple optimization model.

20

../remoteservices/remoteservices.html

Possible errors

If the Gurobi shell didn’t produce the desired output, there’s a problem with your license. We’ll
list a few common errors here.

The following message...

ERROR: No Gurobi license found (user smith, host mymachine, hostid 9d3128ce)

indicates that your gurobi.lic file couldn’t be found.

Did you use a non-default license file location? When you run the Windows version of the Gurobi
Optimizer, it will look for the gurobi.lic key file in three different default locations. It will always
look in your home directory. In addition, Gurobi Optimizer 9.0.3 will also look in c:\gurobi and
c:\gurobi903. Note that these default paths are absolute, so for example Gurobi will look for
the license key file in c:\gurobi, even if the software is installed in d:\gurobi. If you used a
non-default license key file location, you should set environment variable GRB_LICENSE_FILE to
point to the license key file. See Setting environment variables for details on how to do this.

Important note: the environment vartable should point to the license key file itself, not to the
directory that contains the file.

The following message:

ERROR: HostID mismatch (licensed to 9d3128ce, hostid is 7de025e9)

indicates that your gurobi.lic isn’t valid for this machine. You should make sure that you are
using the right gurobi.lic file.

If you are running as a client of a Gurobi token server and receive this message:
ERROR: Failed to connect to token server ’myserver’ (port 41954)
the token server isn’t currently running. If you receive this message:

ERROR: No TOKENSERVER specified for TOKEN license

your license file is missing the TOKENSERVER= line that provides the name of your token server.
Please consult the section on setting up a token server.

If you are running as a client of a Gurobi Compute Server and receive this message:

ERROR: No server available

the Compute Server isn’t currently running. Please consult the section on setting up a Compute
Server.

If, after following the instructions, you still experience problems while setting up or testing your
license, please visit our support site for assistance.

21

https://support.gurobi.com

4.8 Setting environment variables

Gurobi uses system variables for multiple configuration purposes. For example, to specify where to
look for a license file, you must set the variable GRB_LICENSE_FILE.

On Windows systems, environment variables are created and modified through the Control Panel.
Searching for Environment Variables from the Control Panel search box will lead you to the ap-
propriate screen. You will need to add a new System variable named GRB_LICENSE_FILE, and set
it to the location of your license file (e.g., d:\gurobi\gurobi.lic). Important note: your new
environment variable must be a System variable, not a User variable.

22

Now that the Gurobi Optimizer is installed and the license key has been tested, you're ready to
solve a simple math programming model.

This section includes instructions on how to create a simple math programming model and how to
use the Gurobi command-line interface to compute an optimal solution. If you are already familiar
with mathematical modeling and LP-format files, feel free to skip to the end of this section.

Note that this section gives only a brief glimpse into the capabilities of the Gurobi command-
line interface. This interface plays a number of different roles. In addition to providing a simple
interface for solving a model, it can also be used to launch a model on a Compute Server or on a
cloud system, and it can check on the status of a token server. If you’d like additional information,
consult the Command-Line Tool section of our Reference Manual.

The problem statement - producing coins

We’ll begin by stating the problem to be solved.

Imagine that it is the end of the calendar year at the United States Mint. The Mint keeps an
inventory of the various minerals used to produce the coins that are put into circulation, and it
wants to use up the minerals on hand before retooling for next year’s coins.

The Mint produces several different types of coins, each with a different composition. The table
below shows the make-up of each coin type (as reported in the US Mint coin specifications).

Penny Nickel Dime Quarter Dollar

Copper (Cu) 0.06g 3.8¢ 2.1g 5.2g 7.2¢g
Nickel (Ni) 1.2¢g 0.2¢g 0.5g 0.2g

Zinc (Zi) 2.4¢g 0.5g
Manganese (Mn) 0.3g

Suppose the Mint wants to use the available materials to produce coins with the maximum total
dollar value. Which coins should they produce?

The optimization model

In order to formulate this as an optimization problem, we’ll need to do three things.

e First, we’ll need to define the decision variables. The goal of the optimization is to choose
values for these variables.

23

Solving a Simple Model - The Gurobi Command Line

../refman/grb_command_line_tool.html
http://www.usmint.gov/about_the_mint/?action=coin_specifications

e Second, we’ll define a linear objective function. This is the function we’d like to minimize (or
maximize).

e Third, we’ll define the linear constraints.

The Gurobi Optimizer will consider all assignments of values to decision variables that satisfy the
specified linear constraints, and return one that optimizes the stated objective function.

The variables in this problem are quite straightforward. The solver will need to decide how many
of each coin to produce. It is convenient to give the decision variables meaningful names. In this
case, we'll call the variables Pennies, Nickels, Dimes, Quarters, and Dollars. We’ll also introduce
variables that capture the quantities of the various minerals actually used by the solution. We’ll
call them Cu, Ni, Zi, and Mn.

Recall that the objective of our optimization problem is to maximize the total dollar value of the

coins produced. Each penny produced is worth 0.01 dollars, each nickel is worth 0.05 dollars, etc.
This gives the following linear objective:

maximize: 0.01 Pennies + 0.05 Nickels + 0.1 Dimes + 0.25 Quarters + 1 Dollars

The constraints of this model come from the fact that producing a coin consumes certain quantities
of the available minerals, and the supplies of those minerals are limited. We’ll capture these
relationships in two parts. First, we’ll create an equation for each mineral that captures the
amount of that mineral that is consumed. For copper, that equation would be:

Cu = 0.06 Pennies + 3.8 Nickels + 2.1 Dimes + 5.2 Quarters + 7.2 Dollars

The coefficients for this equation come from the earlier coin specification table: one penny uses
0.06g of copper, one nickel uses 3.8g, etc.

The model must also capture the available quantities of each mineral. If we have 1000 grams of
copper available, then the constraint would be:

Cu <= 1000

For our example, we’ll assume we have 1000 grams of copper and 50 grams of the other minerals.

There is actually one other set of constraints that must be captured in order for our model to
accurately reflect the physical realities of our problem. While a dime is worth 10 cents, half of a
dime isn’t worth 5 cents. The variables that capture the number of each coin produced must take
integer values.

The model file

The Gurobi Optimizer provides a variety of options for expressing an optimization model. Typically,
you would build the model using an interface to a programming languages (C, C++, C#, Java,
etc.) or using a higher-level application environment (a notebook, spreadsheet, a modeling system,
MATLAB, R, etc.). However, to keep our example as simple as possible, we’re going to read the
model from an LP format file. The LP format was designed to be human readable, and as such it
is well suited for our needs.

The LP format is mostly self-explanatory. Here is our model:

24

Maximize
.01 Pennies + .05 Nickels + .1 Dimes + .25 Quarters + 1 Dollars

Subject To
Copper: .06 Pennies + 3.8 Nickels + 2.1 Dimes + 5.2 Quarters + 7.2 Dollars -
Cu=0
Nickel: 1.2 Nickels + .2 Dimes + .5 Quarters + .2 Dollars -
Ni=0

Zinc: 2.4 Pennies + .5 Dollars - Zi =0
Manganese: .3 Dollars - Mn = 0

Bounds

Cu <= 1000

Ni <= 50

Zi <= 50

Mn <= 50
Integers

Pennies Nickels Dimes Quarters Dollars
End

You’ll find this model in file coins.lp in the <installdir>/examples/data directory of your
Gurobi distribution. Specifically, assuming you’ve installed Gurobi 9.0.3 in the recommended loca-
tion, you’ll find the file in c:\gurobi903\win64\examples\data\coins.1lp.

To modify this file, open it in a text editor (like WordPad).

Editing the LP file

Before you consider making any modifications to this file or creating your own, we should point
out a few rules about LP format files.

1. Ordering of the sections

Our example contains an objective section (Maximize. . .), a constraint section (Subject To...), a
variable bound section (Bounds. ..), and an integrality section (Integers...). The sections must
come in that order. The complete list of section types and the associated ordering rules can be
found in the file format section of the Gurobi Reference Manual.

2. Separating tokens

Tokens must be separated by either a space or a newline. Thus, for example, the term:

+ .1 Dimes

must include a space or newline between + and .1, and another between .1 and Dimes.
3. Arranging variables
Variables must always appear on the left-hand side of a constraint. The right-hand side is always
a constant. Thus, our constraint:
Cu = .06 Pennies + 3.8 Nickels + 2.1 Dimes + 5.2 Quarters + 7.2 Dollars

...becomes...

.06 Pennies + 3.8 Nickels + 2.1 Dimes + 5.2 Quarters + 7.2 Dollars - Cu = 0

25

http://www.gurobi.com/documentation/9.0/refman/index.html

4. Variable default bounds

Unless stated otherwise, a variable has a zero lower bound and an infinite upper bound. Thus,
Cu <= 1000 really means 0 <= Cu <= 1000. Similarly, any variable not mentioned in the Bounds
section may take any non-negative value.

Full details on the LP file format are provided in the file format section of the Gurobi Reference
Manual.

Solving the model using the Gurobi command-line interface

The final step in solving our optimization problem is to pass the model to the Gurobi Optimizer.
We'll use the Gurobi command-line interface, as it is typically the simplest of our interfaces to use
when solving a model stored in a file.

To use the command-line interface, you’ll first need to open a Console window. If you are unfamiliar
with running command-line commands on a Windows system, you can learn more here. (Note that
the Gurobi Interactive Shell, which was used earlier to test your license, does not directly accept
command-line program input).

The name of the Gurobi command-line tool is gurobi_cl. To invoke it, type gurobi_cl, followed
by the name of the model file. For example, if our model is stored in the file
c:\gurobi903\win64\examples\data\coins.1lp, you would type the following command into your
command-line window...

>gurobi_cl c:\gurobi903\win64\examples\data\coins.lp

This command should produce the following output...

Using license file c:\gurobilgurobi.lic
Set parameter LogFile to value gurobi.log

Gurobi Optimizer version 9.0.3 build v9.0.3rcO (linux64)
Copyright (c) 2020, Gurobi Optimization, LLC

Read LP format model from file c:/gurobi903/win64/examples/data/coins.lp
Reading time = 0.00 seconds

: 4 rows, 9 columns, 16 nonzeros

Optimize a model with 4 rows, 9 columns and 16 nonzeros
Model fingerprint: Oxa0c5449c

Variable types: 4 continuous, 5 integer (O binary)
Coefficient statistics:

Matrix range [6e-02, 7e+00]
Objective range [1e-02, 1e+00]
Bounds range [6e+01, 1e+03]
RHS range [0e+00, 0e+00]

Found heuristic solution: objective -0.0000000
Presolve removed 1 rows and 5 columns

Presolve time: 0.00s

Presolved: 3 rows, 4 columns, 9 nonzeros

Variable types: O continuous, 4 integer (O binary)

Root relaxation: objective 1.134615e+02, 2 iterations, 0.00 seconds

Nodes | Current Node | Objective Bounds | Work

26

http://www.gurobi.com/documentation/9.0/refman/index.html
http://www.gurobi.com/documentation/9.0/refman/index.html

Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 113.46154 0 1 -0.00000 113.46154 - - Os
H 0 0 113.4500000 113.46154 0.01% - Os
0 0 113.46154 0 1 113.45000 113.46154 0.01% - Os

Explored 1 nodes (2 simplex iterations) in 0.00 seconds
Thread count was 8 (of 8 available processors)

Solution count 2: 113.45 -0

Optimal solution found (tolerance 1.00e-04)
Best objective 1.134500000000e+02, best bound 1.134500000000e+02, gap 0.0000%

Details on the format of the Gurobi log file can be found in the Gurobi Reference Manual. For
now, you can simply note that the optimal objective value is 113.45. Recall that the objective is
denoted in dollars. We can therefore conclude that by a proper choice of production plan, the Mint
can produce $113.45 worth of coins using the available minerals. Moreover, because this value is
optimal, we know that it is not possible to produce coins with value greater than $113.45!

It would clearly be useful to know the exact number of each coin produced by this optimal plan.
The gurobi_cl command allows you to set Gurobi parameters through command-line arguments.
One particularly useful parameter for the purposes of this example is ResultFile, which instructs

the Gurobi Optimizer to write a file once optimization is complete. The type of the file is encoded
in the suffix. To request a .sol file:

> gurobi_cl ResultFile=coins.sol coins.lp
The command will produce a file that contains solution values for the variables in the model:

Objective value = 113.45
Pennies 0

Nickels O

Dimes 2

Quarters 53

Dollars 100

Cu 999.8

Ni 46.9

Zi 50

Mn 30

In the optimal solution, we’ll produce 100 dollar coins, 53 quarters, and 2 dimes.

If we wanted to explore the parameters of the model (for example, to consider how the optimal
solution changes with different quantities of available minerals), we could use a text editor to modify
the input file. However, it is typically better to do such tests within a more powerful system. We’ll
now describe the Gurobi Interactive Shell, which provides an environment for creating, modifying,
and experimenting with optimization models.

27

http://www.gurobi.com/documentation/9.0/refman/index.html

Interactive Shell

The Gurobi interactive shell allows you to perform hands-on interaction and experimentation with
optimization models. You can read models from files, perform complete or partial optimization
runs on them, change parameters, modify the models, reoptimize, and so on. The Gurobi shell
is actually a set of extensions to the Python shell. Python is a rich and flexible programming
language, and any capabilities that are available from Python are also available from the Gurobi
shell. We’ll touch on these capabilities here, but we encourage you to explore the help system and
experiment with the interface in order to gain a better understanding of what is possible.

One big advantage of working within Python is that the Python language is popular and well
supported. One aspect of this support is the breadth of powerful Python Integrated Development
Environments (IDEs) that are available, most of which can be downloaded for free from the internet.
This document includes instructions for setting up Gurobi for use within the Anaconda distribution.
Anaconda includes a powerful IDE (Spyder), as well as a notebook-style interface (Jupyter).

Before diving into the details of the Gurobi interactive shell, we should remind you that Gurobi
also provides a lightweight command line interface. If you just need to do a quick test on a model
stored in a file, you will probably find that that interface is better suited to simple tasks than the
interactive shell.

Important note for AIX users: due to limited Python support on AIX, our AIX port does not
include the Interactive Shell or the Python interface. You can use the command line, or the C,
C++, or Java interfaces.

We will now work through a few simple examples of how the Gurobi shell might be used, in order to
give you a quick introduction to its capabilities. More thorough documentation on this and other
interfaces is available in the Gurobi Reference Manual.

Reading and optimizing a model

There are several ways to access the Gurobi Interactive Shell.

From Windows, you can:
e Double-click on the Gurobi desktop shortcut.
e Select the Gurobi Interactive Shell from the Start Menu.
e Open a DOS command shell and type gurobi.bat.

If you’ve installed a Python IDE, the shell will also be available from that environment.

Once the optimizer has started, you are ready to load and optimize a model. We’ll consider model
coins.1lp from <installdir>/examples/data...

28

http://python.org
http://www.gurobi.com/documentation/9.0/refman/index.html

> gurobi.bat

Using license file c:\gurobi\gurobi.lic
Set parameter LogFile to value gurobi.log

Gurobi Interactive Shell, Version 9.0.3
Copyright (c) 2020, Gurobi Optimization, LLC
Type "help()" for help

gurobi> m = read(’c:/gurobi903/win64/examples/data/coins.1lp’)

Read LP format model from file c:/gurobi903/win64/examples/data/coins.lp
Reading time = 0.01 seconds

: 4 rows, 9 columns, 16 nonzeros

gurobi> m.optimize()

Gurobi Optimizer version 9.0.3 build v9.0.3rcO (win64)

Optimize a model with 4 rows, 9 columns and 16 nonzeros

Model fingerprint: Oxa0c5449c

Variable types: 4 continuous, 5 integer (0O binary)

Coefficient statistics:

Matrix range [6e-02, 7e+00]
Objective range [1e-02, 1e+00]
Bounds range [5e+01, 1e+03]
RHS range [0e+00, 0e+00]

Found heuristic solution: objective -0.0000000
Presolve removed 1 rows and 5 columns

Presolve time: 0.00s

Presolved: 3 rows, 4 columns, 9 nonzeros

Variable types: O continuous, 4 integer (O binary)

Root relaxation: objective 1.134615e+02, 2 iterations, 0.00 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 113.46154 0 1 -0.00000 113.46154 - - Os
H 0 0 113.4500000 113.46154 0.01% - Os
0 0 113.46154 0 1 113.45000 113.46154 0.01% - Os

Explored 1 nodes (2 simplex iterations) in 0.01 seconds
Thread count was 8 (of 8 available processors)

Solution count 2: 113.45 -0

Optimal solution found (tolerance 1.00e-04)
Best objective 1.134500000000e+02, best bound 1.134500000000e+02, gap 0.0000%

The read() command reads a model from a file and returns a Model object. In the example, that
object is placed into variable m. There is no need to declare variables in the Python language; you
simply assign a value to a variable.

Note that read() accepts wildcard characters, so you could also have said:
gurobi> m = read(’c:/gurobi903/win64/*/*/coin*’)

Note also that Gurobi commands that read or write files will also function correctly with compressed
files. If gzip, bzip2, or 7zip are installed on your machine and available in your default path, then

29

you simply need to add the appropriate suffix (.gz, .bz2, .zip, or .7z) to the file name to read
or write compressed versions.

The next statement in the example, m.optimize(), invokes the optimize method on the Model
object (you can obtain a list of all methods on Model objects by typing help(Model) or help(m)).
The Gurobi optimization engine finds an optimal solution with objective 113.45.

Inspecting the solution

Once a model has been solved, you can inspect the values of the model variables in the optimal
solution with the printAttr() method on the Model object:

gurobi> m.printAttr(’X’)

Variable X
Dimes 2
Quarters 53
Dollars 100
Cu 999.8

Ni 46.9

Zi 50

Mn 30

This routine prints all non-zero values of the specified attribute X. Attributes play a major role in
the Gurobi optimizer. We’ll discuss them in more detail shortly.

You can also inspect the results of the optimization at a finer grain by retrieving a list of all
the variables in the model using the getVars() method on the Model object (m.getVars() in our
example):

gurobi> v = m.getVars()
gurobi> print(len(v))
9

The first command assigns the list of all Var objects in model m to variable v. The Python len()
command gives the length of the array (our example model coins has 9 variables). You can then
query various attributes of the individual variables in the list. For example, to obtain the variable
name and solution value for the first variable in list v, you would issue the following command:

gurobi> print(v[0].varName, v[0].x)
Pennies 0.0

You can type help(Var) or help(v[0]) to get a list of all methods on a Var object. You can type
help(GRB.Attr) to get a list of all attributes.

Simple model modification

We will now demonstrate a simple model modification. Imagine that you only want to consider
solutions where you make at least 10 pennies (i.e., where the Pennies variable has a lower bound
of 10.0). This is done by setting the 1b attribute on the appropriate variable (the first variable in
the list v in our example)...

30

gurobi> v = m.getVars()
gurobi> v[0].1b = 10

The Gurobi optimizer keeps track of the state of the model, so it knows that the currently loaded
solution is not necessarily optimal for the modified model. When you invoke the optimize() method
again, it performs a new optimization on the modified model...

gurobi> m.optimize()

Gurobi Optimizer version 9.0.3 build v9.0.3rcO (win64)

Optimize a model with 4 rows, 9 columns and 16 nonzeros
Variable types: 4 continuous, 5 integer (0 binary)
Coefficient statistics:

Matrix range [6e-02, T7e+00]
Objective range [1e-02, 1e+00]
Bounds range [1e+01, 1e+03]
RHS range [0e+00, 0e+00]

Presolve removed 2 rows and 5 columns
Presolve time: 0.00s
Presolved: 2 rows, 4 columns, 5 nonzeros

MIP start from previous solve did not produce a new incumbent solution

Variable types: O continuous, 4 integer (0O binary)
Found heuristic solution: objective 25.9500000

Root relaxation: objective 7.190000e+01, 2 iterations, 0.00 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 71.90000 0 1 25.95000 71.90000 177% - Os
H 0 0 71.8500000 71.90000 0.07% - Os
H 0 0 71.9000000 71.90000 0.00% - Os

Explored O nodes (2 simplex iterations) in 0.01 seconds
Thread count was 8 (of 8 available processors)

Solution count 3: 71.9 71.85 25.95

Optimal solution found (tolerance 1.00e-04)
Best objective 7.190000000000e+01, best bound 7.190000000000e+01, gap 0.0000%

The result shows that, if you force the solution to include at least 10 pennies, the maximum possible
objective value for the model decreases from 113.45 to 71.9. A simple check confirms that the new
lower bound is respected:

gurobi> print(v[0].x)
10.0

Simple experimentation with a more difficult model

Let us now consider a more difficult model, glass4.mps. Again, we read the model and begin the
optimization:

31

gurobi> m = read(’c:/gurobi903/win64/examples/data/glass4’)

Read MPS format model from file c:/gurobi903/win64/examples/data/glass4.mps
Reading time = 0.00 seconds

glass4: 396 Rows, 322 Columns, 1815 NonZeros

gurobi> m.optimize()

Gurobi Optimizer version 9.0.3 build v9.0.3rcO (win64)

Optimize a model with 396 rows, 322 columns and 1815 nonzeros
Model fingerprint: 0x541d0ad3

Variable types: 20 continuous, 302 integer (0O binary)
Coefficient statistics:

Matrix range [1e+00, 8e+06]
Objective range [1e+00, 1le+06]
Bounds range [1e+00, 8e+02]
RHS range [1e+00, 8e+06]

Presolve removed 4 rows and 5 columns

Presolve time: 0.00s

Presolved: 392 rows, 317 columns, 1815 nonzeros
Variable types: 19 continuous, 298 integer (298 binary)
Found heuristic solution: objective 3.133356e+09

Root relaxation: objective 8.000024e+08, 72 iterations, 0.00 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | O0bj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 8.0000e+08 0 72 3.1334e+09 8.0000e+08 74.5% - Os

H 0 0 2.400019e+09 8.0000e+08 66.7% - Os
H 0 0 2.220019e+09 8.0000e+08 64.0% - Os
0 0 8.0000e+08 0 72 2.2200e+09 8.0000e+08 64.0% - Os

H 0 0 2.200019e+09 8.0000e+08 63.6% - Os
0 0 8.0000e+08 0 81 2.2000e+09 8.0000e+08 63.6% - Os

0 0 8.0000e+08 0 77 2.2000e+09 8.0000e+08 63.6% - Os

0 2 8.0000e+08 0 77 2.2000e+09 8.0000e+08 63.6% - Os

H 307 609 2.066686e+09 8.0000e+08 61.3%, 5.8 Os
H 1126 885 1.950016e+09 8.0000e+08 59.0% 6.0 Os
H 1317 983 1.900015e+09 8.0000e+08 57.9% 5.6 Os
H 1817 1173 1.900015e+09 8.0000e+08 57.9% 5.0 Os
H 2656 1796 1.900015e+09 8.0000e+08 57.9% 4.8 Os
H 8305 6287 1.900015e+09 8.0000e+08 57.9% 3.4 Os
*10878 6870 99 1.808351e+09 8.0000e+08 55.8% 3.3 Os
*12677 7866 62 1.800016e+09 8.0000e+08 55.6) 3.3 1s
*17157 10811 118 1.800015e+09 8.0000e+08 55.6% 3.2 1s
H19145 11166 1.750016e+09 8.0000e+08 54.3% 3.2 1s
H24736 14317 1.700015e+09 8.0000e+08 52.9% 3.2 1s
H24874 14315 1.700015e+09 8.0000e+08 52.9% 3.2 1s
H32097 17197 1.633347e+09 8.0665e+08 50.6% 3.2 2s
H32123 16354 1.600013e+09 8.1873e+08 48.8), 3.2 3s
32158 16378 1.6000e+09 118 110 1.6000e+09 8.4564e+08 47.1% 3.2 5s

H32215 15596 1.533346e+09 8.6063e+08 43.9% 3.3 6s
H32284 14860 1.500013e+09 8.8136e+08 41.2) 3.4 9s
32294 14867 1.2500e+09 46 93 1.5000e+09 8.8136e+08 41.2), 3.4 10s

32446 14975 1.2500e+09 52 95 1.5000e+09 9.0001e+08 40.0% 3.5 15s

Interrupt request received

Cutting planes:

32

Gomory: 8

Implied bound: 13
Projected implied bound: 1
MIR: 19

Flow cover: 17

Zero half: 1

RLT: 4

Relax-and-1ift: 17

Explored 57196 nodes (301282 simplex iterations) in 19.00 seconds
Thread count was 8 (of 8 available processors)

Solution count 10: 1.50001e+09 1.53335e+09 1.60001e+09 ... 1.80835e+09

Solve interrupted
Best objective 1.500012666667e+09, best bound 1.000006945369e+09, gap 33.3334}

It quickly becomes apparent that this model is quite a bit more difficult than the earlier coins
model. The optimal solution is actually 1,200,000,000, but finding that solution takes a while.
After letting the model run for 10 seconds, we interrupt the run (by hitting CTRL-C, which
produces the Interrupt request received message) and consider our options. Typing m.optimize ()
would resume the run from the point at which it was interrupted.

Changing parameters

Rather than continuing optimization on a difficult model like glass4, it is sometimes useful to try
different parameter settings. When the lower bound moves slowly, as it does on this model, one
potentially useful parameter is MIPFocus, which adjusts the high-level MIP solution strategy. Let
us now set this parameter to value 1, which changes the focus of the MIP search to finding good
feasible solutions. There are two ways to change the parameter value. You can either use method
m.setParam():

gurobi> m.setParam(’MIPFocus’, 1)
Changed value of parameter MIPFocus to 1
Prev: 0 Min: 0 Max: 3 Default: 0

...or you can use the m.Params class...

gurobi> m.Params.MIPFocus = 1
Changed value of parameter MIPFocus to 1
Prev: 0 Min: 0 Max: 3 Default: O

Once the parameter has been changed, we call m.reset() to reset the optimization on our model
and then m.optimize() to start a new optimization run:

gurobi> m.reset()

Discarded solution information

gurobi> m.optimize()

Gurobi Optimizer version 9.0.3 build v9.0.3rcO (win64)

Optimize a model with 396 rows, 322 columns and 1815 nonzeros
Model fingerprint: 0x541d0ad3
Variable types: 20 continuous, 302 integer (0 binary)

33

Coefficient statistics:

Matrix range [1e+00, 8e+06]
Objective range [1e+00, 1le+06]
Bounds range [1e+00, 8e+02]
RHS range [1e+00, 8e+06]

Presolve removed 4 rows and 5 columns

Presolve time: 0.00s

Presolved: 392 rows, 317 columns, 1815 nonzeros
Variable types: 19 continuous, 298 integer (298 binary)
Found heuristic solution: objective 3.133356e+09

Root relaxation: objective 8.000024e+08, 72 iterations, 0.00 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 8.0000e+08 0 72 3.1334e+09 8.0000e+08 74.5% - Os

H 0 0 2.400019e+09 8.0000e+08 66.7% - Os
H 0 0 2.220019e+09 8.0000e+08 64.0% - Os
0 0 8.0000e+08 0 72 2.2200e+09 8.0000e+08 64.0% - Os

H 0 0 2.166685e+09 8.0000e+08 63.1% - Os
0 0 8.0000e+08 0 72 2.1667e+09 8.0000e+08 63.1% - Os

0 0 8.0000e+08 0 77 2.1667e+09 8.0000e+08 63.1% - Os

H 0 0 2.133351e+09 8.0000e+08 62.5% - Os
0 0 8.0000e+08 0 80 2.1334e+09 8.0000e+08 62.5% - Os

0 0 8.0000e+08 0 80 2.1334e+09 8.0000e+08 62.5% - Os

0 0 8.0000e+08 0 83 2.1334e+09 8.0000e+08 62.5% - Os

0 0 8.0000e+08 0 78 2.1334e+09 8.0000e+08 62.5% - Os

0 0 8.0000e+08 0 83 2.1334e+09 8.0000e+08 62.5% - Os

0 0 8.0000e+08 0 83 2.1334e+09 8.0000e+08 62.5% - Os

0 0 8.0000e+08 0 88 2.1334e+09 8.0000e+08 62.5% - Os

0 0 8.0000e+08 0 66 2.1334e+09 8.0000e+08 62.5% - Os

H 0 0 2.050017e+09 8.0000e+08 61.0% - Os
0 2 8.0000e+08 0 65 2.0500e+09 8.0000e+08 61.0% - Os

H 1 4 2.050017e+09 8.0000e+08 61.0% 74.0 Os
H 6 8 2.000016e+09 8.0000e+08 60.0% 41.8 Os
H 130 128 1.700015e+09 8.0000e+08 52.9% 12.7 Os
H 199 203 1.644459e+09 8.0000e+08 51.4% 10.8 Os
H 213 213 1.644459e+09 8.0000e+08 51.4% 10.8 1s
H 244 269 1.633347e+09 8.0001e+08 51.0% 11.0 1s
1428 1027 1.5333e+09 40 44 1.6333e+09 8.0001e+08 51.0% 15.5 5s
3138 1602 1.3750e+09 58 22 1.6333e+09 8.0001e+08 51.0% 20.5 10s

* 4233 2185 66 1.600017e+09 8.0001e+08 50.0% 21.5 12s
* 4238 2082 67 1.550017e+09 8.0001e+08 48.4% 21.5 12s
H 4308 2026 1.500016e+09 8.0001e+08 46.7% 21.6 14s
4457 2226 1.1000e+09 36 65 1.5000e+09 8.0001e+08 46.7) 22.6 15s

H 4809 2136 1.450016e+09 8.0001e+08 44.8%, 23.4 16s
H 4908 2043 1.400013e+09 8.0001e+08 42.9% 23.9 17s
H 5098 2027 1.350013e+09 8.0001e+08 40.7)% 24.8 18s
H 5282 1752 1.200013e+09 8.0001e+08 33.3% 25.7 18s

Interrupt request received

Cutting planes:
Gomory: 37
Cover: 9

34

Implied bound: 41
MIR: 51

Flow cover: 266
RLT: 107
Relax-and-1lift: 99

Explored 5332 nodes (140122 simplex iterations) in 19.00 seconds
Thread count was 8 (of 8 available processors)

Solution count 10: 1.20001e+09 1.35001e+09 1.40001e+09 ... 1.64446e+09

Solve interrupted
Best objective 1.200012600000e+09, best bound 8.000066838804e+08, gap 33.3335}

Results are consistent with our expectations. We find a better solution sooner by shifting the focus
towards finding feasible solutions (objective value 1.2e9 versus 1.5e9).

The setParam() method is designed to be quite flexible and forgiving. It accepts wildcards as
arguments, and it ignores character case. Thus, the following commands are all equivalent:

gurobi> m.setParam(’NODELIMIT’, 100)
gurobi> m.setParam(’NodeLimit’, 100)
gurobi> m.setParam(’Nodex’, 100)

gurobi> m.setParam(’N?7?7Limit, 100)

You can use wildcards to get a list of matching parameters:

gurobi> m.setParam(’*Cuts’, 2)

Matching parameters: [’Cuts’, ’CliqueCuts’, ’CoverCuts’, ’FlowCoverCuts’,
’FlowPathCuts’, ’GUBCoverCuts’, ’ImpliedCuts’, ’MIPSepCuts’, ’MIRCuts’, ’ModKCuts’,
’NetworkCuts’, ’SubMIPCuts’, ’ZeroHalfCuts’]

Note that Model.Params is a bit less forgiving than setParam(). In particular, wildcards are not
allowed with this approach. You don’t have to worry about capitalization of parameter names in
either approach, though, so m.Params.Heuristics and m.Params.heuristics are equivalent.

The full set of available parameters can be browsed using the paramHelp() command. You can
obtain further information on a specific parameter (e.g., MIPGap) by typing paramHelp(’MIPGap’).

Parameter tuning tool

When confronted with the task of choosing parameter values that might lead to better performance
on a model, the long list of Gurobi parameters may seem intimidating. To simplify the process,
we include a simple automated parameter tuning tool. From the interactive shell, the command is
tune:

gurobi> m = read(’misc07’)
gurobi> m.tune ()

The tool tries a number of different parameter settings, and eventually outputs the best ones that
it finds. For example:

35

Tested 29 parameter sets in 99.33s
Baseline parameter set: mean runtime 1.48s
Improved parameter set 1 (mean runtime 1.13s):

FlowCoverCuts 1
Aggregate 0O

Improved parameter set 2 (mean runtime 1.22s):

MIPFocus 1

In this case, it found that setting the MIPFocus parameter to 1 for model misc07 reduced the
runtime from 1.48 to 1.22.

Note that tuning is meant to give general suggestions for parameters that might help performance.
You should make sure that the results it gives on one model are helpful on the full range of
models you plan to solve. You may sometimes find that performance problems can’t be fixed with
parameter changes alone, particularly if your model has severe numerical issues.

Tuning is also available as a standalone program. From a command prompt, you can type:
> grbtune c:\gurobi903\win64\examples\data\p0033

Please consult the Automated Tuning Tool section of the Gurobi Reference Manual for more infor-
mation.

Using a gurobi.env file

When you want to change the values of Gurobi parameters, you actually have several options
available for doing so. We’ve already discussed parameter changes through the command-line tool
(e.g., gurobi_cl Threads=1 coins.lp), and through interactive shell commands

(e.g., m.setParam(’Threads’, 1)). Each of our language APIs also provides methods for setting
parameters. The other option we’d like to mention now is the gurobi.env file.

Whenever the Gurobi library starts, it will look for file gurobi.env in the current working directory,
and will apply any parameter changes contained therein. This is true whether the Gurobi library
is invoked from the command-line, from the interactive shell, or from any of the Gurobi APIs.
Parameter settings are stored one per line in this file, with the parameter name first, followed by
at least one space, followed by the desired value. Lines beginning with the # sign are comments
and are ignored. To give an example, the following (Linux) commands:

> echo "Threads 1" > gurobi.env

> gurobi_cl coins.lp

Using license file c:\gurobilgurobi.lic

Using gurobi.env file

Set parameter LogFile to value gurobi.log
Set parameter Threads to value 1

Gurobi Optimizer version 9.0.3 build v9.0.3rcO (win64)

36

http://www.gurobi.com/documentation/9.0/refman/index.html

Copyright (c) 2019, Gurobi Optimization, LLC

Read LP format model from file coins.lp

Reading time = 0.00 seconds

: 4 rows, 9 columns, 16 nonzeros

Optimize a model with 4 rows, 9 columns and 16 nonzeros
Model fingerprint: Oxa0c5449c

Variable types: 4 continuous, 5 integer (0O binary)
Coefficient statistics:

Matrix range [6e-02, Te+00]
Objective range [1e-02, 1e+00]
Bounds range [5e+01, 1e+03]
RHS range [0e+00, 0e+00]

Found heuristic solution: objective -0.0000000
Presolve removed 1 rows and 5 columns

Presolve time: 0.00s

Presolved: 3 rows, 4 columns, 9 nonzeros

Variable types: O continuous, 4 integer (0 binary)

Root relaxation: objective 1.134615e+02, 2 iterations, 0.00 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 113.46154 0 1 -0.00000 113.46154 - - Os
H 0 0 113.4500000 113.46154 0.01% - Os
0 0 113.46154 0 1 113.45000 113.46154 0.01% - Os

Explored 1 nodes (2 simplex iterations) in 0.00 seconds
Thread count was 1 (of 8 available processors)

Solution count 2: 113.45 -0

Optimal solution found (tolerance 1.00e-04)
Best objective 1.134500000000e+02, best bound 1.134500000000e+02, gap 0.0000%

would read the new value of the Threads parameter from file gurobi.env and then optimize
model coins.1lp using one thread. Note that if the same parameter is changed in both gurobi.env
and in your program (or through the Gurobi command-line), the value from gurobi.env will be
overridden.

The distribution includes a sample gurobi.env file (in the bin directory). The sample includes
every parameter, with the default value for each, but with all settings commented out.

Working with multiple models

The Gurobi shell allows you to work with multiple models simultaneously. For example...

gurobi> a = read(’c:/gurobi903/win64/examples/data/p0033’)
Read MPS format model from file c:/gurobi903/win64/examples/data/p0033.mps

Reading time = 0.00 seconds

37

P0033: 16 Rows, 33 Columns, 98 NonZeros.

gurobi> b = read(’c:/gurobi903/win64/examples/data/stein9’)

Read MPS format model from file c:/gurobi903/win64/examples/data/stein9.mps
Reading time = 0.00 seconds

STEIN9: 13 Rows, 9 Columns, 45 NonZeros.

The models() command gives a list of all active models.

gurobi> models()

Currently loaded models:

a : <gurobi.Model MIP instance P0033: 16 constrs, 33 vars, Parameter changes: LogFile=gurobi.log>
b : <gurobi.Model MIP instance STEIN9: 13 constrs, 9 vars, Parameter changes: LogFile=gurobi.log>

Note that parameters can be set for a particular model with the Model.setParam() method or the
Model .Params class, or they can be changed for all models in the Gurobi shell by using the global
setParam() method.

Help

The interactive shell includes an extensive help facility. To access it, simply type help() at the
prompt. As previously mentioned, help is available for all of the important objects in the inter-
face. For example, as explained in the help facility, you can type help(Model), help(Var), or
help(Constr). You can also obtain detailed help on any of the available methods on these ob-
jects. For example, help(Model.setParam) gives help on setting model parameters. You can also
use a variable, or a method on a variable, to ask for help. For example, if variable m contains a
Model object, then help(m) is equivalent to help(Model), and help(m.setParam) is equivalent to
help(Model.setParam).

Interface customization

The Gurobi interactive shell lives within a full-featured scripting language. This allows you to
perform a wide range of customizations to suit your particular needs. Creating custom functions
requires some knowledge of the Python language, but you can achieve a lot by using a very limited
set of language features.

Let us consider a simple example. Imagine that you store your models in a certain directory on

your disk. Rather than having to type the full path whenever you read a model, you can create
your own custom read method:

gurobi> def myread(filename):
....... return read(’/home/john/models/’+filename)

Note that the indentation of the second line is required.

Defining this function allows you to do the following:

gurobi> m = myread(’stein9’)
Read MPS format model from file /home/john/models/stein9.mps

38

If you don’t want to type this function in each time you start the Gurobi shell, you can store it in
a file. The file would look like the following;:

from gurobipy import *

def myread(filename):
return read(’/home/john/models/’+filename)

The from gurobipy import * line is required in order to allow you to use the read method from
the Gurobi shell in your custom function. The name of your customization file must end with a .py
suffix. If the file is named custom.py, you would then type the following to import this function:

gurobi> from custom import x*

One file can contain as many custom functions as you'd like (see custom.py in
<installdir>/examples/python for an example). If you wish to make site-wide customizations,
you can also customize the gurobi.py file that is included in <installdir>/1ib.

Customization through callbacks

Another type of customization we’d like to touch on briefly can be achieved through Gurobi call-
backs. Callbacks allow you to track the progress of the optimization process. For the sake of
our example, let’s say you want the MIP optimizer to run for 10 seconds before quitting, but you
don’t want it to terminate before it finds a feasible solution. The following callback method would
implement this condition:

from gurobipy import *

def mycallback(model, where):
if where == GRB.Callback.MIP:
time = model.cbGet (GRB.Callback.RUNTIME)
best = model.cbGet(GRB.Callback.MIP_0BJBST)
if time > 10 and best < GRB.INFINITY:
model.terminate()

Once you import this function (from custom import *), you can then say m.optimize (mycallback)
to obtain the desired termination behavior. Alternatively, you could define your own custom opti-
mize method that always invokes the callback:

def myopt (model) :
model.optimize (mycallback)

This would allow you to say myopt (m).

You can pass arbitrary data into your callback through the model object. For example, if you set
m._mydata = 1 before calling optimize(), you can query m._mydata inside your callback function.
Note that the names of user data fields must begin with an underscore.

This callback example is included in <installdir>/examples/python/custom.py.
Type from custom import * to import the callback and the myopt() function.

You can type help(GRB.Callback) for more information on callbacks. You can also refer to the
Callback class documentation in the Gurobi Reference Manual.

39

http://www.gurobi.com/documentation/9.0/refman/index.html

The Gurobi Python Interface for Python Users

While the Gurobi installation includes everything you need to use Gurobi from within Python, we
understand that some users would prefer to use Gurobi from within their own Python environment.
Doing so requires you to install the gurobipy module. The steps for doing this depend on your plat-
form. On Windows, you can double-click on the pysetup program in the Gurobi <installdir>/bin
directory. This program will prompt you for the location of your Python installation; it handles all
of the details of the installation.

Note that Gurobi distributes an Anaconda package, so you don’t need to perform these steps if you
are using Anaconda Python. Please refer to the instructions for setting up Gurobi for use within
the Anaconda distribution for details.

Note that for this installation to succeed, your Python environment must be compatible with the
Gurobi Python module. You should only install Gurobi libraries into a 64-bit Python shell. In
addition, your Python version must be compatible. With this release, gurobipy can be used with
Python 2.7, 3.6, or 3.7 on Windows.

40

Attributes

As mentioned in the previous section, most of the information associated with a Gurobi model is
stored in a set of attributes. Some attributes are associated with the variables of the model, some
with the constraints of the model, and some with the model itself. After you optimize a model, for
example, the solution is stored in the X variable attribute. Attributes that are computed by the
Gurobi optimizer (such as the solution attribute) cannot be modified directly by the user, while
those that represent input data (such as the LB attribute which stores variable lower bounds) can.
Each of the Gurobi language interfaces contains routines for querying or modifying attribute values.
To retrieve or modify the value of a particular attribute, you simply pass the name of the attribute

to the appropriate query or modification routine. In the C interface, for example, you’d make the
following call to query the current solution value on variable 1:

double x1;
error = GRBgetdblattrelement(model, GRB_DBL_ATTR_X, 1, &x1);

This routine returns a single element from an array-valued attribute containing double-precision
data. Routines are provided to query and modify scalar-valued and array-valued attributes of type
int, double, char, or char *.

In the object oriented interfaces, you query or modify attribute values through the appropriate

objects. For example, if variable v is a Gurobi variable object (a GRBVar), then the following calls
would be used to modify the lower bound on v:

C++: v.set (GRB_DoubleAttr_LB, 0.0)

Java: v.set (GRB.DoubleAttr.LB, 0.0)

C#: v.Set (GRB.DoubleAttr.LB, 0.0) or v.LB = 0.0
Python: v.1b = 0.0

The exact syntax for querying or modifying an attribute varies slightly from one language to
another, but the basic approach remains consistent: you call the appropriate query or modification
method using the name of the desired attribute as an argument.

The full list of Gurobi attributes can be found in the Attributes section of the Gurobi Reference
Manual.

41

http://www.gurobi.com/documentation/9.0/refman/index.html
http://www.gurobi.com/documentation/9.0/refman/index.html

C Interface

This section will work through a simple C example in order to illustrate the use of the Gurobi
C interface. The example builds a simple Mixed Integer Programming model, optimizes it, and
outputs the optimal objective value. This section assumes that you are already familiar with the
C programming language. If not, a variety of books are available for learning the language (for
example, The C' Programming Language, by Kernighan and Ritchie).

Our example optimizes the following model:

maximize x + y + 2z
subject to x + 2y + 3z < 4
X + y > 1

X, y, z binary

Example mipl_c.c

This is the complete source code for our example (also available as
<installdir>/examples/c/mipl_c.c)...

/* Copyright 2020, Gurobi Optimization, LLC */

/* This example formulates and solves the following simple MIP model:
maximize X + y
subject to x + 2 y

x + y
X, ¥, Z
*/
#include <stdlib.h>

#include <stdio.h>
#include "gurobi_c.h"

int
main(int argc,
char *argv[])

{
GRBenv *env = NULL;
GRBmodel *model = NULL;
int error = 0;
double sol[3];
int ind [3];
double val [3];
double obj [3]1;
char vtype [3];
int optimstatus;

42

double objval;

/* Create environment x*/
error = GRBemptyenv (&env);
if (error) goto QUIT;

error = GRBsetstrparam(env, "LogFile", "mipl.log");
if (error) goto QUIT;

error = GRBstartenv (env);
if (error) goto QUIT;

/* Create an empty model x/
error = GRBnewmodel (env, &model, "mipl", 0, NULL, NULL, NULL
if (error) goto QUIT;

/* Add variables */

obj[0] = 1; obj[1] = 1; obj[2] = 2;

vtype [0] = GRB_BINARY; vtypel[1] = GRB_BINARY; vtypel[2] = GRB

error = GRBaddvars(model, 3, 0, NULL, NULL, NULL, obj, NULL,
NULL) ;

if (error) goto QUIT;

/* Change objective sense to maximization */

, NULL, NULL);

_BINARY;
NULL, vtype,

error = GRBsetintattr (model, GRB_INT_ATTR_MODELSENSE, GRB_MAXIMIZE);

if (error) goto QUIT;

/* First constraint: x + 2 y + 3 z
ind [0] = 0; ind[1] = 1; ind[2] = 2;
val[0] = 1; vall[1] = 2; val[2] = 3

error = GRBaddconstr (model, 3, ind, val, GRB_LESS_EQUAL, 4.0,

if (error) goto QUIT;

/* Second constraint: x + y >= 1 %/
ind[0] = 0; ind[1] =
val[0] = 1;

>

1
val[1] = 1;

error = GRBaddconstr (model, 2, ind, val, GRB_GREATER_EQUAL,
if (error) goto QUIT;

/* Optimize model */
error = GRBoptimize (model);
if (error) goto QUIT;

/* Write model to ’mipl.1lp’ */
error = GRBwrite (model, "mipl.1lp");
if (error) goto QUIT;

/* Capture solution information */

"CO");

1.0, "ci1");

error = GRBgetintattr (model, GRB_INT_ATTR_STATUS, &optimstatus);

if (error) goto QUIT;

error = GRBgetdblattr (model, GRB_DBL_ATTR_OBJVAL, &objval);
if (error) goto QUIT;

43

error = GRBgetdblattrarray (model,
if (error) goto QUIT;

GRB_DBL_ATTR_X, 0, 3, sol);

printf ("\nOptimization complete\n");

if (optimstatus == GRB_OPTIMAL) {

printf ("Optimal objective: %.4e\n", objval);

printf (" x=%.0f, y=%.0f, z=%.0f\n", sol[0], soll[1], sol[2]);

} else if (optimstatus == GRB_INF_

OR_UNBD) {

printf ("Model is infeasible or unbounded\n");

} else {

printf ("Optimization was stopped early\n");

}
QUIT:

/* Error reporting x/
if (error) {

printf ("ERROR: %s\n", GRBgeterrormsg(env));

exit (1);
}

/* Free model */
GRBfreemodel (model) ;

/* Free environment */
GRBfreeenv (env);

return O;

Example details

Let us now walk through the example, line by line, to understand how it achieves the desired result

of optimizing the indicated model.

The example begins by including a few include files. Gurobi C applications should always start by
including gurobi_c.h, along with the standard C include files (stdlib.h and stdio.h).

Creating the environment

After declaring the necessary program variables, the example continues by creating an environment,
by first requesting an empty environment, then setting some options -- as log file name -- and then

starting the environment.

/* Create environment x*/
error = GRBemptyenv (&env);
if (error) goto QUIT;

error = GRBsetstrparam(env, "LogFile", "mipl.log");

if (error) goto QUIT;

44

error = GRBstartenv(env);
if (error) goto QUIT;

Later requests to create optimization models will always require an active environment, so envi-
ronment creation should always be the first step when using the Gurobi optimizer.

Note that environment creation may fail, so you should check the return value of the call.

Creating the model

Once an environment has been created, the next step is to create a model. A Gurobi model
holds a single optimization problem. It consists of a set of variables, a set of constraints, and the
associated attributes (variable bounds, objective coefficients, variable integrality types, constraint
senses, constraint right-hand side values, etc.). The first step towards building a model that contains
all of this information is to create an empty model object:

/* Create an empty model */
error = GRBnewmodel (env, &model, "mipil", O, NULL, NULL, NULL, NULL, NULL);
if (error) goto QUIT;

The first argument to GRBnewmodel() is the previously created environment. The second is a
pointer to the location where the pointer to the new model should be stored. The third is the name
of the model. The fourth is the number of variables to initially add to the model. Since we’re
creating an empty model, the number of initial variables is 0. The remaining arguments would
describe the initial variables (lower bounds, upper bounds, variable types, etc.), had they been
present.

Adding variables to the model

Once we create a Gurobi model, we can start adding variables and constraints to it. In our example,
we’ll begin by adding variables:

/* Add variables */

obj[0] = 1; obj[1] = 1; objl[2] = 2;

vtype [0] = GRB_BINARY; vtype[1] = GRB_BINARY; vtype[2] = GRB_BINARY;

error = GRBaddvars(model, 3, 0, NULL, NULL, NULL, obj, NULL, NULL, vtype,
NULL);

if (error) goto QUIT;

The first argument to GRBaddvars() is the model to which the variables are being added. The
second is the number of added variables (3 in our example).

Arguments three through six describe the constraint matrix coefficients associated with the new
variables. The third argument gives the number of non-zero constraint matrix entries associated
with the new variables, and the next three arguments give details on these non-zeros. In our
example, we’ll be adding these non-zeros when we add the constraints. Thus, the non-zero count
here is zero, and the following three arguments are all NULL.

45

The seventh argument to GRBaddvars() is the linear objective coefficient for each new variable.
Since our example aims to maximize the objective, and by default Gurobi will minimize the ob-
jective, we’ll need to change the objective sense. This is done in the next statement. Note we
could have multiplied the objective coefficients by -1 instead (since maximizing ¢z is equivalent to
minimizing —c'z).

The next two arguments specify the lower and upper bounds of the variables, respectively. The
NULL values indicate that these variables should take their default values (0.0 and 1.0 for binary
variables).

The tenth argument specifies the types of the variables. In this example, the variables are all binary
(GRB_BINARY).

The final argument gives the names of the variables. In this case, we allow the variable names to
take their default values (x0, x1, and x2).

Changing the objective sense

As we just noted, the default sense for the objective function is minimization. Since our example
aims to maximize the objective, we need to modify the ModelSense attribute:

/* Change objective sense to maximization */
error = GRBsetintattr (model, GRB_INT_ATTR_MODELSENSE, GRB_MAXIMIZE);
if (error) goto QUIT;

Adding constraints to the model

Once the new variables are integrated into the model, the next step is to add our two linear
constraints. These constraints are added through the GRBaddconstr() routine. To add a constraint,
you must specify several pieces of information, including the non-zero values associated with the
constraint, the constraint sense, the right-hand side value, and the constraint name. These are all
specified as arguments to GRBaddconstr():

/* First constraint: x + 2 y + 3 z <= 4 %/
ind[0] = 0; ind[1] = 1; ind[2] = 2;
val[0] = 1; vall[1] = 2; val[2] = 3;

error = GRBaddconstr (model, 3, ind, wval, GRB_LESS_EQUAL, 4.0, "c0");
if (error) goto QUIT;

The first argument of GRBaddconstr() is the model to which the constraint is being added. The
second is the total number of non-zero coefficients associated with the new constraint. The next
two arguments describe the non-zeros in the new constraint. Constraint coefficients are specified
using a list of index-value pairs, one for each non-zero value. In our example, the first constraint to
be added is x4+ 2y + 3z < 4. We have chosen to make x the first variable in our constraint matrix, y
the second, and z the third (note that this choice is arbitrary). Given our variable ordering choice,

46

the index-value pairs that are required for our first constraint are (0, 1.0), (1, 2.0), and (2, 3.0).
These pairs are placed in the ind and val arrays.

The fifth argument to GRBaddconstr() provides the sense of the new constraint. Possible values
are GRB_LESS_EQUAL, GRB_GREATER_EQUAL, or GRB_EQUAL. The sixth argument gives the right-hand
side value. The final argument gives the name of the constraint (we allow the constraint to take
its default name here by specifying NULL for the argument). The second constraint is added in a
similar fashion.

Note that routine GRBaddconstrs() would allow you to add both constraints in a single call. The
arguments for this routine are much more complex, though, without providing any significant
advantages, so we recommend that you add one constraint at a time.

Optimizing the model
Now that the model has been built, the next step is to optimize it:

/* Optimize model */
error = GRBoptimize (model);
if (error) goto QUIT;

This routine performs the optimization and populates several internal model attributes, including
the status of the optimization, the solution, etc. Once the function returns, we can query the values
of these attributes. In particular, we can query the status of the optimization process by retrieving
the value of the Status attribute...

/* Capture solution information */
error = GRBgetintattr (model, GRB_INT_ATTR_STATUS, &optimstatus);
if (error) goto QUIT;

The optimization status has many possible values. An optimal solution to the model may have been
found, or the model may have been determined to be infeasible or unbounded, or the solution process
may have been interrupted. A list of possible statuses can be found in the Gurobi Reference Manual.
For our example, we know