
GUROBI OPTIMIZER
REMOTE SERVICES

MANUAL

Version 9.0, Copyright c© 2020, Gurobi Optimization, LLC

Contents

1 Introduction 1

2 Overview 2
2.1 Client-Server Optimization . 3

Client API . 4
Queuing and Load Balancing . 5
Cluster Manager . 5
Interactive and Non-Interactive Optimization 6
Distributed Algorithms . 6

2.2 Architecture . 7
Architecture Topologies . 8

2.3 Security . 11
User Roles . 11
Authentication . 12
Encryption . 12
Security in a Self-Managed Cluster . 13

2.4 Simple Example . 14
Log In to the Cluster . 14
Submitting an Interactive Job . 14
Submitting a Non-Interactive Job . 15

3 Cluster Setup and Administration 16
3.1 Quick Cluster Manager Installation . 17
3.2 Installing the Remote Services Package . 19

Linux Installation . 19
Mac OS Installation . 20
Windows Installation . 20

3.3 Installing a Cluster Manager . 21
Installing the Database . 21
Cluster Manager Server (grb_rsm) . 21
Configuring the Cluster Manager . 22
Starting the Cluster Manager as a Process . 23
Starting the Cluster Manager as a Service . 23
Verification . 25

3.4 Installing a Cluster Node . 26
Licensing . 26
Remote Services Agent (grb_rs) . 26
Configuring a Cluster Node . 27
Starting a Cluster Node as a Process . 29

i

Starting a Cluster Node as a Service . 30
Verification . 32

3.5 Forming a Cluster . 34
Connecting Nodes . 34
Compute Servers and Distributed Workers . 36
Grouping . 38
Processing State and Scaling . 38

3.6 Communication Options . 40
Enabling HTTPS . 40
Using HTTPS with Self-Signed Certificates 41
Firewalls . 41
Using a Router without a Cluster Manager 42

4 Using Remote Services 44
4.1 Client Configuration . 45

Client License File . 45
Generating a Client License with grbcluster 47
Queueing, Load Balancing, and Job Priorities 47

4.2 Job Commands . 49
Submitting Interactive Jobs . 49
Listing Jobs . 49
Accessing Job Logs . 51
Accessing Job Parameters . 52
Aborting Jobs . 52
Accessing the Job History . 53

4.3 Batch Commands . 54
Creating Batches . 54
Listing Batches . 55
Aborting Batches . 55
Retrying Batches . 56
Discarding Batches . 56

4.4 Repository Commands . 58
Uploading a File to the Repository . 58
Using a File from the Repository . 58
Deleting a File from the Repository . 58

4.5 Node Commands . 60
Listing Cluster Nodes . 60
Troubleshooting Connectivity Issues . 60
Listing Cluster Licenses . 61
Changing the Job Limit . 61

4.6 Distributed Algorithms . 63
Distributed Workers and the Distributed Manager 63
Configuration . 64
Running a Distributed Algorithm as an Interactive Job 64
Submitting a Distributed Algorithm as a Batch 65
Using a Separate Distributed Manager . 65

ii

5 Programming with Remote Services 66
5.1 Using an API to Create a Compute Server Job . 67
5.2 Using an API to Create a Batch . 68
5.3 Performance Considerations on a Wide-Area Network (WAN) 70
5.4 Callbacks . 71
5.5 Developing for Compute Server . 72
5.6 Distributed Algorithm Considerations . 73
5.7 Cluster REST API . 74

6 Using Remote Services with Gurobi Instant Cloud 75
6.1 Client Setup . 76
6.2 Client Commands . 77
6.3 Administrative Commands . 78
6.4 Region Router . 79

A Appendix A: grb_rs 80

B Appendix B: grb_rs - Configuration Properties 82

C Appendix C: grb_rsm 85

D Appendix D: grb_rsm - Configuration Properties 86

E Appendix E: grbcluster 88

F Appendix F: gurobi_cl 90

G Appendix G: Acknowledgement of 3rd Party Icons 92

H Appendix H: Open Source Component Licenses 93

iii

Introduction

Gurobi Remote Services is a set of Gurobi features that enables a cluster of one or more machines
to perform Gurobi computations on behalf of other machines. The key components of Remote
Services are:

• Compute Server, which allows you to offload all Gurobi computations from a client machine
onto a remote cluster.

• Distributed Workers, which can be used to perform parallel computation on multiple ma-
chines.

• The Cluster Manager, a new (optional) application server that provides secured access to
your Remote Services cluster, as well as providing a Web User Interface and a command-line
tool that make it easier to manage and monitor your cluster.

This document is organized into a number of sections. The first section provides an overview of
Gurobi Compute Server and Remote Services. The next section, meant for system administrators,
provides details on setting up Remote Services. The next sections provide details on using Remote
Services and programming with Remote Services. Finally, we discuss using Remote Services with
Gurobi Instant Cloud.

1

Overview

This section gives a quick introduction to the capabilities of Gurobi Remote Services. We first
discuss common use cases related to client-server optimization. Then we describe the different
components of the architecture and how they can be deployed together. Following this, we review
the various security features related to user management, authentication, and encryption. Finally,
we give a simple example of how to submit an optimization task from a client to a Compute Server
cluster using the provided command-line tools.

2

2.1 Client-Server Optimization
Gurobi Remote Services allow you to offload optimization computations from one or more client
programs onto a cluster of servers. We provide a number of different configuration options. In the
most basic configuration, a single Compute Server can accept jobs from multiple clients:

Compute Server

Compute Server
Client

Compute Server
Client

More sophisticated configurations are also possible. For example, you can have a Cluster Man-
ager that manages access to multiple Compute Server nodes:

Database

Cluster Manager Compute Server

Compute ServerCompute Server
Client

Compute Server
Client

The different configuration options are discussed in a later section.

3

Client programs offload computation using the standard Gurobi language APIs. In most cases,
users can write their programs without considering where they will run, and can decide at runtime
whether to run them locally or on a Compute Server cluster.

Jobs submitted to a Compute Server cluster are queued and load-balanced. Jobs can be sub-
mitted to run either interactively or non-interactively. You can run your optimization jobs on a
single Compute Server node, or you can choose a distributed algorithm to use multiple nodes in
your cluster to work on the same problem.

Client API

When considering a program that uses Gurobi Remote Services, you can think of the optimization
as being split into two parts: the client(s) and the Compute Server. A client program builds an
optimization model using any of the standard Gurobi interfaces (C, C++, Java, .NET, Python,
MATLAB, R). This happens in the left box of this figure:

Compute ServerClient Machine

Gurobi

Interactive

Shell

Python API

C API

.NET API

Java API

C++ API

MATLAB API

R API

Gurobi

Command

Line

Gurobi Algorithms

Model Data

Solution Data

All of our APIs sit on top of our C API. The C API is in charge of building the internal
model data structures, invoking the Gurobi algorithms, retrieving solution information, etc. When
running Gurobi on a single machine, the C API would build the necessary data structures in local
memory. In a Compute Server environment, the C layer transparently ships the data off to the
Compute Server. The Gurobi algorithms take the data stored in these data structures as input and
produce solution data as output.

While the Gurobi Compute Server is meant to be transparent to both developers and users,
there are a few aspects of Compute Server usage that you do need to be aware of. These include
performance considerations, APIs for configuring client programs, and a few features that are not
supported for Compute Server applications. These topics will be discussed later in this document.

4

Queuing and Load Balancing

Gurobi Remote Services support queuing and load balancing. You can set a limit on the number
of simultaneous jobs each Compute Server will run. When this limit has been reached, subsequent
jobs will be queued. If you have multiple Compute Server nodes configured in a cluster, the current
job load is automatically balanced among the available servers.

Clients Compute servers

Job queue

By default, the Gurobi job queue is serviced in a First-In, First-Out (FIFO) fashion. However,
jobs can be given different priorities. Jobs with higher priorities are then selected from the queue
before jobs with lower priorities.

Cluster Manager

The optional Gurobi Cluster Manager adds a number of additional features. It improves security
by managing user accounts, thus requiring each user or application to be authenticated. It also
keeps a record of past optimization jobs, which allows you to retrieve logs and metadata. It also
provides a complete Web User Interface:

5

This interface allows you to monitor cluster nodes and active optimization jobs, and also to retrieve
logs and other information for both active and previously-completed jobs.

Finally, the Cluster Manager enables batch optimization. It receives and stages input data, and
stores solutions for later retrieval.

Further information about the Cluster Manager will be presented in a later section.

Interactive and Non-Interactive Optimization
The standard approach to using a Compute Server is in an interactive fashion, where the client
stays connected to the server until the job completes. The alternative is for the client to submit a
batch to the server and then immediately disconnect. The client can come back later to query the
status of the job and retrieve the solution when the batch is complete.

As we just noted, batch optimization requires a Cluster Manager. The Cluster Manager takes
responsibility for storing the optimization model to be solved, submitting a job to the Compute
Server cluster, and retrieving and storing the results of that job when it finishes (including the
optimization status, the optimization log, the solution, any errors encountered, etc.).

Additional information on batch optimization can be found in a later section.

Distributed Algorithms
Gurobi Optimizer implements a number of distributed algorithms that allow you to use multiple
machines to solve a problem faster. Available distributed algorithms are:

• A distributed MIP solver, which allows you to divide the work of solving a single MIP
model among multiple machines. A manager machine passes problem data to a set of worker
machines to coordinate the overall solution process.

• A distributed concurrent solver, which allows you to use multiple machines to solve an
LP or MIP model. Unlike the distributed MIP solver, the concurrent solver doesn’t divide
the work among machines. Instead, each machine uses a different strategy to solve the whole
problem, with the hope that one strategy will be particularly effective and will finish much
earlier than the others. For some problems, this concurrent approach can be more effective
than attempting to divide up the work.

• Distributed parameter tuning, which automatically searches for parameter settings that
improve performance on your optimization model (or set of models). Tuning solves your
model(s) with a variety of parameter settings, measuring the performance obtained by each
set, and then uses the results to identify the settings that produce the best overall perfor-
mance. The distributed version of tuning performs these trials on multiple machines, which
makes the overall tuning process run much faster.

These distributed algorithms are designed to be nearly transparent to the user. The user simply
modifies a few parameters, and the work of distributing the computation among multiple machines
is handled behind the scenes by the Gurobi library.

Additional information about distributed algorithms can be found in a later section.

6

2.2 Architecture
Let us now consider the roles of the different Remote Services components. Consider a Remote
Services deployment:

Database

Cluster Manager

Compute Server
Client

Compute Server
Client

Compute Servers

Distributed Workers

The deployment may consist of five distinct components: the Clients, the Cluster Manager, the
Database, the Compute Server nodes, and the Distributed Worker nodes. Several of these are
optional, and a few can be replicated for high availability. This gives a variety of topology options,
which we’ll discuss shortly. First, let us consider the components individually.
Cluster Manager

The Cluster Manager is the central component of the architecture. It provides the following func-
tions:

• Security. The Cluster Manager is in charge of authenticating and authorizing all access to
the cluster. It does this by managing user accounts and API keys, and by controlling access
to all Remote Services nodes (Compute Servers or Distributed Workers).

• Cluster Monitoring. The Cluster Manager gives visibility to all operations on the cluster:
available nodes, licenses, and jobs. It also records and retains job history, including detailed
metadata and engine logs.

• Batch Management. The Cluster Manager controls the batch creation process and the
storage of input models and output solutions. It also keeps a history of batches. Internally,
it communicates with the nodes to submit and monitor batch jobs.

• REST API. All of the functions provided by the Cluster Manager are exposed in a REST
API. This REST API is used by all built-in clients: gurobi_cl, grbtune, grbcluster, and
the Web User Interface. The REST API can also be used by user programs.

7

• Web User Interface. The Cluster Manager includes a Web Application Server that provides
a complete and secured Web User Interface to your Compute Server cluster.

The Cluster Manager is optional. You can build a self-managed Remote Services cluster, but
it will be missing many features.

Cluster Manager installation is covered in this section.

Database

The database supports the Cluster Manager. It stores a variety of important information, including
data with long lifespans, like user accounts, API keys, history information for jobs and batches,
and data with shorter lifespans, like input models and their solutions for batch optimization.

How much space does this database require? This will depend primarily on the expected sizes
of input and output data for batches. The Cluster Manager will capture and store the complete
model at the time a batch is created, and it will store the solution once the model has been solved.
These will be retained until they are discarded by the user, or until they expire (the retention
policy can be configured by the Cluster Manager administrator). The data is compressed, but it
can still be quite large. To limit the total size of the database, we suggest that you discard batches
when you are done with them. Note that discarding a batch doesn’t discard the associated (small)
metadata; that is kept in the cluster history.

The Cluster Manager uses MongoDB as its database - version 4.0 or later. Cluster Manager
users must install and configure their own database as part of the Compute Server installation
process. The database can be run on-premise or remotely managed by a SaaS provider. It can be
deployed as a single node or as a cluster for high availability.

Compute Server Node

A Compute Server node is where optimization jobs are executed. Each such node has a job limit that
indicates how many jobs can be executed on that node simultaneously. The limit should reflect the
capacity of the machine and typical job characteristics. Compute Server nodes support advanced
capabilities such as job queueing and load-balancing. Deploying a Compute Server requires a
Gurobi license.

Compute Server node installation is covered in this section.

Distributed Worker Node

A Distributed Worker node can only be used as a worker in a distributed algorithm. Only one job
can run on such a node at a time and it does not support queueing or load balancing. This type of
node does not require a Gurobi License.

Distributed Worker installation is covered in this section.

Architecture Topologies

Let us now review a few common deployment configurations.

Cluster Manager with a single node

In this deployment, we only need to deploy one instance of a Cluster Manager with the Database
and a single Compute Server node. This is appropriate for small environments so that you can
offload simple optimization tasks to one Compute Server.

8

Cluster Manager with multiple nodes

If you need to handle more jobs concurrently, you will need to add more Compute Server nodes.
Also, if you want to run distributed algorithms, several Distributed Worker nodes will be needed.
To this end, you can deploy one instance of the Cluster Manager (with a Database), and connect
those nodes to the Cluster Manager.

Scalable Cluster Manager

If you have even more concurrent users, or if you need a scalable and high available architecture,
several instances of the Cluster Manager can be started. In this case, you may need to install and
set up a regular HTTP load balancer (such as Nginx) in front of the Cluster Manager instances.
Cluster Manager server instances are stateless and can be scaled up or down.

The database itself, as supported by MongoDB, can be deployed in a cluster. In a MongoDB
cluster, one of the nodes is chosen dynamically as the primary, while the others are deemed sec-
ondary. Secondary nodes replicate the data from the primary node. In the event of a failure of the
primary node, the Cluster Manager will choose a new primary node and continue to operate.

In this deployment, several Compute Server nodes are also recommended. In the event of a
node failure, any jobs currently running on the failed node will fail, but new jobs will continue to
be processed on the remaining nodes.

Cluster Managers

Database

Load Balancer

Compute Server
Client

Compute Server
Client

Compute Servers

Distributed Workers

Self-Managed Cluster

Finally, Compute Server nodes and Distributed Worker nodes can be deployed by themselves,
without a Cluster Manager or a Database. This was actually the only option in Gurobi version
8 and earlier. In this configuration, you will not benefit from the latest features: secured access
using user accounts and API keys, persistent job history, batch management, and the Web User
Interface.

9

Compute Servers

Distributed Workers

Compute Server
Client

Compute Server
Client

10

2.3 Security
Gurobi Remote Services define a set of user roles to control privileged access. Access to the
Cluster Manager is authenticated, and communication can be encrypted. If a Cluster Manager
is not deployed, communication can still be encrypted, but access is controlled through a set of
predefined passwords instead.

User Roles

Users of Gurobi Remote Services will fall into one of three possible roles: system administrator,
administrator, or standard user. The system administrator is in charge of setting up the cluster,
adding and removing nodes, etc. Administrators monitor usage of the cluster. They can monitor
the length of the server queue, kill jobs, etc. Standard users are the programs running on client
machines that ultimately submit jobs or batches to the cluster.

The Gurobi distribution includes a number of tools that are relevant to the people in these
roles. These are all covered in much more detail later on, but we will briefly describe how they fit
with the various roles here.
System Administrator

The system administrator installs and manages a Remote Services cluster and the different com-
ponents. Gurobi Remote Services provides the following tools to help with this:

• grb_rs is the program that runs on the Compute Server and Distributed Worker nodes. The
system administrator will need to configure and start it on all of the nodes of a Remote
Services cluster.

• grb_rsm is the program that runs the Cluster Manager. The system administrator will need
to configure and start it on one or more machines, as needed. The system administrator will
also need to set up the Database and configure its connection.

• grbcluster is used to issue commands to an already-running cluster. Examples of system
administrator commands include adding or removing nodes, and enabling or disabling job
processing on a cluster. This tool provides a number of commands; type grbcluster --help
for a full list.

• Finally, most of the important responsibilities of the system administrator, including user
management and cluster health monitoring, can also be performed through the Web User
Interface of the Cluster Manager.

For more details, please refer to the section on setting up and administering a cluster.
Administrator

An administrator monitors and manages the flow of jobs through a Remote Services cluster. Exam-
ples of administrator commands include aborting jobs, changing cluster parameters and checking
licenses. The primary tool for doing so is grbcluster. You can get a full list of available commands
by typing grbcluster --help. All of these functions are also exposed in the Web User Interface
of the Cluster Manager.

11

Standard Client

A Remote Services client submits jobs or batches to the cluster. This is done through a user
application or through the Gurobi command-line tool gurobi_cl (which is documented in the Gurobi
Command-Line Tool section of the Gurobi Reference Manual). Submitting a job to a Remote
Services cluster is typically just a matter of running the appropriate program. We will provide a
simple example in the next section.

Clients can also use the grbcluster command to monitor the state of their jobs and of the
Remote Services queue. Example commands include listing active jobs, listing recently executed
jobs, displaying the log of a recent job, etc. You can get a full list of available commands by typing
grbcluster --help. grbcluster can also be used to submit batches.

Finally, clients can access the Web User Interface of the Cluster Manager. All of the functions
provided by grbcluster are available in the web application, including submitting batches using
a drag-and-drop interface.

Authentication

The Cluster Manager authenticates all communication using one of two approaches: a username
and password, or an API key.

When a client provides a username and password, a JWT token is returned that is valid for
a relatively short period of time (default is 8 hours and can be changed in the Cluster Manager
configuration). This is handy when using the Web User Interface or command-line tools such as
gurobi_cl or grbcluster.

To simplify installation, the Cluster Manager initially has three default users with predefined
passwords:

• standard user: gurobi / pass

• administrator: admin / admin

• system administrator: sysadmin / cluster

You should of course change the passwords or delete these accounts before actually using the cluster.
Applications should use API keys instead. The Cluster Manager lets each user creates an API

key, composed of an access ID and a secret key. The user owning the API key or the system
administrator can revoke the key at any time. It is also possible to create multiple keys to perform
key rotation in your applications.

Encryption

All of the components deployed in a Remote Services cluster can support TLS-encrypted commu-
nication. The Cluster Manager and the Compute Server nodes can be configured to use HTTPS
with TLS v1.2. MongoDB also supports encrypted communications and data encryption at rest, if
necessary.

In addition, you have the option to use the Cluster Manager or the load balancer in front of
the Cluster Manager to terminate the TLS encryption. In this case, HTTPS is used by clients,
but internal communication between the Cluster Manager and the nodes can be unencrypted using
HTTP. This is convenient when the cluster nodes reside in an isolated, secure network.

12

http://www.gurobi.com/documentation/9.0/refman/index.html

Security in a Self-Managed Cluster
When a Remote Services cluster is deployed without a Cluster Manager, authentication is more
limited. Each node authenticates access according to predefined passwords, which are stored and
optionally hashed in the configuration file. There is a password for each role (standard user,
administrator and system administrator). All nodes of the cluster must use the same passwords,
and they cannot be changed dynamically. Note that communication can also be encrypted using
HTTPS.

13

2.4 Simple Example
After your cluster has been set up (setup is covered in this section), you can submit a job or a batch
using either a programming language API, the command-line tools, or the Web User Interface for
your Cluster Manager. This section provides a few short examples that use the command-line tools.
More complete descriptions of the various interfaces and options will come in a later section.

Log In to the Cluster
The first step in submitting a job to the cluster is to log in to the Cluster Manager with the
grbcluster login command.
> grbcluster login --manager=http://localhost:61080 -u=gurobi
info : Using client license file ’/Users/john/gurobi.lic’
Password for gurobi:
info : User gurobi connected to http://localhost:61080, session will expire on 2019-09...

This command indicates that you want to connect to the Cluster Manager running on port
61080 of machine localhost as the gurobi user. The output from the command first shows that
the client license file gurobi.lic located in the home directory of the user will be used to store
the connection parameters. It then prompts you for the password for the specified user (in a secure
manner). After contacting the Cluster Manager, the client retrieves a session token that will expire
at the indicated date and time.

Using this approach to logging in removes the need to display the user password or save it in
clear text, which improves security. The session token and all of the connection parameters are
saved in the client license file, so they can be used by all of the command-line tools (gurobi_cl,
grbtune, and grbcluster). When the token session expires, the commands will fail and you will
need to log in again.

Submitting an Interactive Job
Once you are logged in, you can use gurobi_cl to submit a job:
> gurobi_cl ResultFile=solution.sol stein9.mps
Using license file /opt/gurobi900/manager.lic
Set parameter CSManager to value http://server1:61080
Set parameter LogFile to value gurobi.log
Compute Server job ID: 1e9c304c-a5f2-4573-affa-ab924d992f7e
Capacity available on ’server1:61000’ - connecting...
Established HTTP unencrypted connection

Gurobi Optimizer version 9.0.2 build v9.0.2rc0 (linux64)
Copyright (c) 2020, Gurobi Optimization, LLC

...

Optimal solution found (tolerance 1.00e-04)
Best objective 5.000000000000e+00, best bound 5.000000000000e+00, gap 0.0000%

Compute Server communication statistics:
Sent: 0.002 MBytes in 9 msgs and 0.01s (0.26 MB/s)
Received: 0.007 MBytes in 26 msgs and 0.09s (0.08 MB/s)

14

The initial log output indicates that a Compute Server job was created, that the Compute
Server cluster had capacity available to run that job, and that an unencrypted HTTP connection
was established with a server in that cluster. The log concludes with statistics about the commu-
nication performed between the client machine and the Compute Server. Note that the result file
solution.sol is also retrieved.

This is an interactive optimization task because the connection with the job must be kept
alive and the progress messages are displayed in real time. Also, stopping or killing the command
terminates the job.

Submitting a Non-Interactive Job
You can use grbcluster to create a batch (i.e., a non-interactive job):

> grbcluster batch solve ResultFile=solution.sol misc07.mps --download
info : Batch 5d0ea600-5068-4a0b-bee0-efa26c18f35b created
info : Uploading misc07.mps...
info : Batch 5d0ea600-5068-4a0b-bee0-efa26c18f35b submitted with job a9700b72...
info : Batch 5d0ea600-5068-4a0b-bee0-efa26c18f35b status is COMPLETED
info : Results will be stored in directory 5d0ea600-5068-4a0b-bee0-efa26c18f35b
info : Downloading solution.sol...
info : Downloading gurobi.log...
info : Discarding batch data

This command performs a number of steps. First, a batch specification is created and the batch
ID is displayed. Then, the model file is uploaded and a batch job is submitted. Once the job
reaches the front of the Compute Server queue, it is processed. At that point, the batch is marked
as completed and the result file with the log file is automatically downloaded to the client. By
default, the directory name where the result file is stored is the batch ID. Finally, the batch data
is discarded, which allows the Cluster Manager to delete the associated data from its database.

This is a non-interactive optimization task because it happens in two distinct phases. The first
phase uploads the model to the server and creates a batch. The second waits for the batch to
complete and retrieves the result. In general, stopping the client has no effect on a batch once it
has been submitted to the Cluster Manager. Our example waits for the completion of the batch,
but that’s only because we used the --download flag. You could check on the status of the batch
and download the results whenever (and wherever) they are needed, since they are stored in the
Cluster Manager until they are discarded.

15

Cluster Setup and Administration

This section covers the setup and administration of a Gurobi Remote Services cluster. The intended
audience is the system administrator. If you are interested in using a cluster that has already been
set up, you should proceed to the next section.

This section begins by providing a step-by-step guide for a simple Cluster Manager installation
on your local machine. The goal is to help you to quickly gain a basic understanding of the role of
each Remote Services component.

Then, we describe in more detail the steps and options for a full deployment. We start by
describing how to download the Remote Services package and install it on all of the nodes in your
cluster. Once this is done, the next step is to install and start the Cluster Manager. Note that this
step is optional; you can run a self-managed Remote Services cluster (without a Cluster Manager).
Next, we explain the steps required to set up a cluster with one node, and then the steps to expand
the cluster to multiple nodes. Finally, we present a discussion of the available communication
options.

16

3.1 Quick Cluster Manager Installation
The rest of this section lays out the steps required to install and configure Gurobi Remote Services
and the Cluster Manager. Before diving into those details, though, we first want to provide a quick,
high-level overview. The intent is give you a basic understanding of the relevant concepts and tools.
We suggest that you try these steps on your local machine before performing them on your server.

1. Download and install the Gurobi client and Remote Services packages from our download
page.
Detailed instructions depend on you platform and are provided in this section.

2. Install and start a MongoDB database server 4.0 or later (as explained in their on-line guide).

3. Start the Cluster Manager.
In a new terminal window, start the Cluster Manager executable:

> grb_rsm
info : Gurobi Cluster Manager starting...
info : Version is 9.0.0
info : Connecting to database grb_rsm on 127.0.0.1:27017...
info : Connected to database grb_rsm (version 4.0.4)
info : Starting cluster manager server (HTTP) on port 61080...

The default configuration will start the Cluster Manager on port 61080 and will connect to
the database on the local machine. If you have installed the database with other options
or want to use an existing database, you can provide a database connection string with the
--database flag:

> grb_rsm --database=....

The Cluster Manager has several important options that are detailed in this section.

4. Get your Gurobi license.
Follow the instructions in the Gurobi license portal to retreive your license. To avoid conflicts
with client license files, you should place your license file in a non-default location:

grbgetkey 8f15037e-eae7-4831-9a88-ffe079eabdeb
info : grbgetkey version 9.0.0
info : Contacting Gurobi key server...
info : Key for license ID XXXXX was successfully retrieved
info : Saving license key...

In which directory would you like to store the Gurobi license key file?
[hit Enter to store it in /Users/john]: /Users/john/tutorial

info : License XXXXX written to file /Users/john/tutorial/gurobi.lic
info : You may have saved the license key to a non-default location
info : You need to set the environment variable GRB_LICENSE_FILE before you can use this license key
info : GRB_LICENSE_FILE=/Users/john/tutorial/gurobi.lic

5. Connect a Compute Server node.
In a new terminal, set the license file variable. For Linux and Mac OS, use this command:

17

http://www.gurobi.com/downloads/gurobi-optimizer
http://www.gurobi.com/downloads/gurobi-optimizer
https://docs.mongodb.com/manual/administration/install-community/
https://www.gurobi.com/downloads/licenses/

export GRB_LICENSE_FILE=/Users/john/tutorial/gurobi.lic

For Windows, use this command instead:

SET GRB_LICENSE_FILE=/Users/john/tutorial/gurobi.lic

Then, start a Remote Services agent, using a few parameters to connect to the manager and
to run on port 61000:

> grb_rs --manager=http://localhost:61080 --port=61000
info : Gurobi Remote Services starting...
info : Version is 9.0.0
info : Accepting worker registration on port 64121...
info : Starting API server (HTTP) on port 61000...
info : Joining cluster from manager

The Remote Services Agent has several important options that are detailed in this section.

6. Open the Cluster Manager Web UI in a browser at http://localhost:61080.
You will be asked to log in. You can use one of the three predefined users and passwords
(gurobi/pass, admin/admin, sysadmin/cluster). If you navigate to the cluster section,
you should see the Compute Server node status display.

7. Log in to the Cluster Manager using the command-line tools.
In a new terminal, log in to the Cluster Manager using the appropriate connection parameters.
Connection information is stored into your gurobi.lic client license file once you connect, so
you won’t need to include these parameters with each future command.

grbcluster login --manager=http://localhost:61080 --username=gurobi

Enter the default password ’pass’ when prompted.
More options and detailed client configuration is explained in a following section.

8. Submit jobs and batches from the command-line tools or the programming language APIs.
Once you have logged in, you are ready to submit optimizations requests. In the following
examples, we will refer to the installation directory of the main Gurobi tools and libraries as
<gurobi_installation>.
You can submit an interactive job:

gurobi_cl ResultFile=solution.sol <gurobi_installation>/examples/data/misc07.mps

You can also submit a batch job and will wait for the completion to download the results:

grbcluster batch solve ResultFile=solution.sol gurobi_installation>/examples/data/misc07.mps --download

Finally, you can submit a batch with the Python API. The Gurobi distribution includes a
complete example:

python <gurobi_installation>/examples/python/workforce_batchmode.py

The followup sections give more details on the command line tools and the programming
language APIs.

Let’s now dive into more detailed discussions of these steps.

18

http://localhost:61080

3.2 Installing the Remote Services Package
The Gurobi Remote Services package must be installed on all of the machines that will be part
of your cluster. This includes the Compute Server nodes, the Distributed Worker nodes, and the
Cluster Manager.

The first step is to download the installer from our download page. You will need to find your
platform and choose the corresponding file to download.

Make a note of the name and location of the downloaded file.
Your next step will depend on your platform:

Linux Installation
On Linux, your next step is to choose a destination directory. We recommend /opt for a shared
installation (you may need administrator privileges), but other directories will work as well. Copy
the Remote Services distribution to the destination directory and extract the contents. Extraction
is done with the following command:

tar xvfz gurobi_server9.0.2_linux64.tar.gz

This command will create a sub-directory gurobi_server902/linux64 that contains the com-
plete Linux Remote Services distribution. Assuming that you extracted the Gurobi server archive
in the /opt directory, your <installdir> (which we’ll refer to throughout this document) will be
/opt/gurobi_server902/linux64.

19

http://www.gurobi.com/downloads/gurobi-optimizer

The Gurobi Optimizer makes use of several executable files. In order to allow these files to be
found when needed, you will have to modify your search path. Specifically, your PATH environment
variable should be extended to include <installdir>/bin. Users of the bash shell should add the
following line to their .bashrc file:

export PATH="${PATH}:/opt/gurobi_server902/linux64/bin"

Users of the csh shell should add the following line to their .cshrc file:
setenv PATH "${PATH}:/opt/gurobi_server902/linux64/bin"

You’ll need to close your current terminal window and open a new one after you have made
these changes in order to pick up the new settings.

In some Linux distributions, applications launched from the Linux desktop won’t read .bashrc
(or .cshrc). You may need to set the Gurobi environment variables in .bash_profile or .profile
instead. Unfortunately, the details of where to set these variables vary widely among different Linux
distributions. We suggest that you consult the documentation for your distribution if you run into
trouble.

Mac OS Installation
On Mac OS, your next step once you’ve downloaded the Gurobi Remote Services package from our
website (e.g., gurobi_server9.0.2_mac64.pkg for Gurobi 9.0.2) is to double-click on the installer
and follow the prompts. By default, the installer will place the Gurobi Remote Services 9.0.2
files in /Library/gurobi_server902/mac64 (note that this is the system /Library directory, not
your personal /Library directory). Your <installdir> (which we’ll refer to throughout this
document) will be /Library/gurobi_server902/mac64.

Windows Installation
On Windows, your next step is to double-click on the Gurobi Remote Services installer that you
downloaded from our website (e.g., GurobiServer-9.0.2-win64.msi for Gurobi 9.0.2).

Note: if you selected Run when downloading you’ve already run the installer and don’t need to
do it again.

By default, the installer will place the Gurobi 9.0.2 files in directory c:/gurobi_server902/win64.
The installer gives you the option to change the installation target. We’ll refer to the installation
directory as <installdir>.

20

3.3 Installing a Cluster Manager
Setting up the optional Cluster Manager involves a few steps. You first need to install the MongoDB
database, which the Cluster Manager uses to store its data. Then, the Cluster Manager server must
be configured and started (as a standard process or as a service). Finally, you will need to verify
your installation.

Installing the Database

The Cluster Manager uses a MongoDB database to store the data associated with several important
features: user profiles, API keys, job history, batch definitions, and batch data. You will need to
install version 4.0 or later. MongoDB offers various configuration options, including clustering and
encryption over the wire and at rest. Please follow the steps as explained in the official MongoDB
documentation. The installation steps are well explained for each platform. When the installation
is complete, the MongoDB daemon mongod should be running and ready for connections on port
27017 (the default).

One other option, if you want to avoid installing the database yourself, would be to sign up for
a hosted solution in the Cloud.

Once MongDB is installed or provisioned in the Cloud, please make a note of the connection
string (which is a URL that will be provided to you during installation). We will need this URL
to connect the Cluster Manager to the database. The URL has the following form. You should
of course substitute the MongoDB username and password that you chose when installing the
database:

mongodb://[username:password@]host1[:port1][,...hostN[:portN]][/[database][?options]]

If you have installed MongoDB on your personal machine for testing purposes, the connection
string URL should be the following:

mongodb://localhost:27017

You can check that your connection string is correct by using the mongo shell and providing
the connection string as the first argument:

> mongo mongodb://localhost:27017
MongoDB shell version v4.0.4
connecting to: mongodb://localhost:27017
MongoDB server version: 4.0.4

As noted earlier, you need to install version 4.0 or later. If you try an earlier version, you may
see connection error messages like the following when you try to start the Cluster Manager:

fatal : Failed to connect to database: server selection error: server selection timeout
current topology: Type: Unknown

Cluster Manager Server (grb_rsm)

You will need to choose one or more machines to act as your Cluster Manager(s). The primary
tasks of the Cluster Manager are to provide an API gateway to the cluster and to manage cluster
nodes. The Cluster Manager also acts as a web server for the Web User Interface. The cluster
manager must be reachable on your network from all client machines and from all cluster nodes.

21

https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/reference/connection-string/

You will need to run the Cluster Manager executable (grb_rsm) on your Cluster Manager(s).
If you wish to set up a scalable and high-available deployment, you can install and start several
instances of the server and place a load balancer such as Nginx in front of these servers.

The grb_rsm executable provides several commands and flags to help with configuration and
execution. We will review these commands step by step in the following sections. You can see the
full list of commands in the reference section or by using the command-line help:

> grb_rsm --help

Configuring the Cluster Manager

The Cluster Manager server has a number of configuration properties that affect its behavior.
These can be controlled using a grb_rsm.cnf configuration file. The installation package includes
a predefined configuration file that can be used as a starting point (<installdir>/bin/grb_-
rsm.cnf).

The simplest way to modify the parameters is to edit the default configuration file. Other
options are available, though. The grb_rsm process uses the following precedence rules:

• First priority: properties set with a command-line flag (using --config)

• Second priority: a configuration file in the current directory

• Third priority: a configuration file in a shared directory (C:\gurobi, /opt/gurobi, /Library/gurobi
for Windows, Linux, and Mac OS platforms, respectively)

• Fourth priority: a configuration file in the directory where grb_rsm is located

Most of the properties that are configured through this file are related to communication options or
the database connection. The configuration file is read once, when grb_rsm first starts. Subsequent
changes to the file won’t affect parameter values on a running server.
Configuration file format
The configuration file contains a list of properties of the form PROPERTY=value. Lines that begin
with the # symbol are treated as comments and are ignored. Here is an example:

grb_rsm.cnf configuration file
PORT=61080
CLUSTER_TOKEN=GRBTK-BzlUTKg9M/+HUvOpy/EPebc1CsttzOfdrfQshL4QkLm1FA==
DB_URI=mongodb://127.0.0.1:27017

While you could create this file from scratch, we recommend you start with the version that is
included with the product and modify it instead.

The grb_rsm properties command lists all of the available properties, their default values,
and provides documentation for each. Some can be overridden on the grb_rsm command line; the
grb_rsm properties command shows the name of the command-line flag you would use. Here are
some of the more important ones:

CLUSTER_TOKEN: The token is a private key that enables different nodes to join the same cluster.
All nodes of a cluster and the Cluster Manager must have the same token. We recommended
that you generate a brand new token when you set up your cluster. The grb_rs token
command will generate a random token, which you can copy into the configuration file.

22

DB_URI: This is the connection string to your database.

PORT: This property indicates what port to use for HTTP or HTTPS communication between the
clients and the Cluster Manager. By default, it will use the port 61080.

HISTORY_MAX_AGE: This property indicates how long to keep the jobs and batches in the history.
The default is 7 days.

Starting the Cluster Manager as a Process

Once you have installed the Remote Services package, you can start grb_rsm as a standard process
from a terminal window by simply typing grb_rsm. This will start the Cluster Manager server on
the default port (port 61080):
> grb_rsm

info : Gurobi Cluster Manager starting...

info : Platform is linux

info : Version is 9.0.2 (build v9.0.2rc0)

info : Connecting to database grb_rsm on 127.0.0.1:27017...

info : Connected to database grb_rsm (version 4.0.4, host Server1)

info : Checking 0 cluster nodes

info : Creating proxy with MaxIdleConns=200 MaxIdleConnsPerHost=32 IdleConnTimeout=130

info : Starting cluster manager server (HTTP) on port 61080...

If you’d like to run grb_rsm on a non-default port, use the --port flag or set the PORT property
in the configuration file. For example:

> grb_rsm --port=8080

Starting the Cluster Manager as a Service

While you always have the option of running grb_rsm from a terminal and leaving the process
running in the background, we recommended that you start it as a service instead, especially in a
production deployment. The advantage of a service is that it will automatically restart itself if the
computer is restarted or if the process terminates unexpectedly.

grb_rsm provides several commands that help you to set it up as a service. These must be
executed with administrator privileges:

grb_rsm install: Install the service. The details of exactly what this involves depend on the host
operating system type and version: this uses systemd or upstart on Linux, launchd on Mac
OS, and Windows services on Windows.

grb_rsm start: Start the service (and install it if it hasn’t already been installed).

grb_rsm stop: Stop the service.

grb_rsm restart: Stop and then start the service.

grb_rsm uninstall: Uninstall the service.

23

Note that the install command installs the service using default settings. If you don’t need
to modify any of these, you can use the start command to both install and start the service.
Otherwise, run install to register the service, then modify the configuration (the details are
platform-dependent and are touched on below), and then run start the service.

Note that you only need to start the service once; grb_rsm will keep running until you execute
the grb_rsm stop command. In particular, it will start again automatically if you restart the
machine.

Note also that the start command does not accept any flags or additional parameters. All of
the configuration properties must be set in the grb_rsm.cnf configuration file. If you need to make
a change, edit the configuration file, then use the stop command followed by the start command
to restart grb_rsm with the updated configuration.

The exact behavior of these commands varies depending on the host operating system and
version:
Linux

On Linux, grb_rsm supports two major service managers: systemd and upstart. The install
command will detect the service manager available on your system and will generate a service con-
figuration file located in /etc/systemd/system/grb_rsm.service or /etc/init/grb_rsm.conf
for systemd and upstart, respectively. Once the file is generated, you can edit it to set advanced
properties. Please refer to the documentation of systemd or upstart to learn more about service
configuration.

Use the start and stop commands to start and stop the service. When the service is running,
log messages are sent to the Linux syslog and to a rotating log file, grbrsm-service.log, located
in the same directory as grb_rsm.

The uninstall command will delete the generated file.
Mac OS

On Mac OS, the system manager is called launchd, and the install command will generate a
service file in /Library/LaunchDaemons/grb_rsm.plist. Once the file is generated, you can edit
it to set advanced properties. Please refer to the launchd documentation to learn more about
service configuration.

Use the start and stop commands to start and stop the service. When the service is running,
log messages are sent to the Mac OS syslog and to a rotating log file, grbrsm-service.log,
located in the same directory as grb_rsm.

The uninstall command will delete the generated file.
Windows

On Windows, the install command will declare the service to the operating system. If you
wish to set advanced properties for the service configuration, you will need to start the Services
configuration application. Please refer to the Windows Operating System documentation for more
details.

Use the start and stop commands to start and stop the service. When the service is running,
log messages are sent to the Windows event log and to a rotating log file, grbrsm-service.log,
located in the same directory as grb_rsm. Note that the service must run as a user that has write
permissions to this directory; otherwise, no log file will be generated.

The uninstall command will delete the service from the registry.

24

Verification
Once you have grb_rsm installed and running, your final step is to make sure that it is config-
ured and running correctly. The Cluster Manager initially has three default users with predefined
passwords:

• standard user: gurobi / pass

• administrator: admin / admin

• system administrator: sysadmin / cluster

These default accounts are provided to simplify installation; you should change the passwords or
delete the accounts before actually using the cluster.

You can check that you can log in using the sysadmin account with the grbcluster command-
line tool:

> grbcluster login --manager=http://mymanager:61080 --username=sysadmin
info : Using client license file ’/home/jones/gurobi.lic’
Password for sysadmin:
info : User gurobi connected to http://mymanager:61080, session will expire on...

Note that you can specify the password by using the --password flag, but it is more secure to
type the password when prompted. grbcluster will get an authentication token from the server,
and will save it along with other connection parameters into a client license file. Once saved, you
can use the other commands of grbcluster securely without having to type the password or other
information again. The authentication token is valid for a certain period of time, as defined in
the JWT_EXPIRATION configuration property (the default is 8 hours). You can display the complete
help of the login command using the --help flag.

> grbcluster login --help

Another important validation step is to make sure you can access the Web User Interface of the
Cluster Manager. To do so, just open a Web browser using the server URL:

http://mymanager:61080

This should display the login page, where you can provide the credentials for the default accounts
listed above.

25

3.4 Installing a Cluster Node
Once the Remote Services package is installed, you will need to set up a license, if necessary. Then,
the Remote Services agent must be configured and started as a standard process or as a service.
Finally, you should verify your installation.

Licensing

You will need to download and install a license file on all Compute Server nodes (no license file
is required for a Distributed Worker node). You will find detailed instructions for downloading a
license in the Retrieving and Setting Up a Gurobi License section of the Gurobi Optimizer Quick
Start Guide.

We will just provide a quick summary of the process here. Your first step is to locate and
download your license file from the Gurobi License Center. When you download the license file, we
strongly recommend that you place it in the default location:

• C:\gurobi\ on Windows

• /opt/gurobi/ on Linux

• /Library/gurobi/ on Mac OS

• The user’s home directory

You can also set the environment variable GRB_LICENSE_FILE to point to this file.
In order to use the Cluster Manager, you will need to connect at least one Compute Server

node to the cluster. When certain operations are requested such as submitting a job or a batch,
the Cluster Manager will check the licenses available on the nodes. If none of the nodes have a
valid Compute Server license, the operation will not be authorized.

Remote Services Agent (grb_rs)

To form a Remote Services cluster, you need to run the Remote Services agent (grb_rs) on all of
the nodes that make up the cluster. These agents communicate amongst themselves, and also with
the Cluster Manager or the clients.

The primary task of the Remote Services agents is to collectively manage the queueing and the
execution of jobs. The agents work together to balance the load by assigning a new job to the node
with the fewest running jobs whenever possible. If all nodes are at capacity, newly submitted jobs
will be queued, and the first node with available capacity will later execute the job. If a new node
is added to the cluster, it will immediately start processing queued jobs.

The grb_rs executable provides several commands and flags to help in the configuration and
execution of the agent. We will review these commands step by step in the following sections. You
can see the full list of commands in the reference section or by using the command-line help:

> grb_rs --help

26

http://www.gurobi.com/download/licenses/current

Configuring a Cluster Node

The Remote Services agent has a number of configuration properties that affect its behavior. These
can be controlled using a grb_rs.cnf configuration file. The installation package includes a pre-
defined configuration file that can be used as a starting point (<installdir>/bin/grb_rs.cnf).

The simplest way to modify the parameters is to edit the default configuration file. Other
options are available, though. The grb_rs process uses the following precedence rules:

• First priority: command-line flag --config

• Second priority: a configuration file in the current directory

• Third priority: a configuration file in a shared directory (C:\gurobi, /opt/gurobi, /Library/gurobi
for Windows, Linux and Mac OS platforms, respectively)

• Fourth priority: a configuration file in the directory where grb_rs is located

Most of the properties that are configured through this file are related to communication options
and job processing options. The configuration file is only read once, when grb_rs first starts.
Subsequent changes to the file won’t affect parameter values on a running server.
Configuration file format
The configuration file contains a list of properties of the form PROPERTY=value. Lines that begin
with the # symbol are treated as comments and are ignored. Here is an example:

grb_rs.cnf configuration file
PORT=61000
MANAGER=http://mymanager:61080

While you could create this file from scratch, we recommend you start with the version of this
file that is included with the product and modify it instead.

The command grb_rs properties lists all of the available properties, their default values, and
provides documentation for each. Some can be overridden on the command-line of grb_rs; the
name of the command-line flag you would use to do so is provided as well. Some properties are
important and must be changed for a production deployment. However, we need to distinguish
between deployment with a Cluster Manager and without.
Important Properties with a Cluster Manager

When deploying a node with a Cluster Manager, the configuration is easier and you need to review
the following properties:

MANAGER: This is the URL of the manager.

HOSTNAME: This must be the DNS name of the node that can be resolved from the other nodes or
from the Cluster Manager. grb_rs tries to get a reasonable default value, but this value may
still not be resolved by other nodes and could generate connection errors. It this case, you
need to override this name in the configuration file with a fully qualified name of your node,
for example:

HOSTNAME=server1

27

Note that you do not need to give addresses that can be resolved by clients because all
communication is routed through the Cluster Manager. The nodes are never accessed directly
by the clients.

CLUSTER_TOKEN: The token is a private key that enables different nodes to join the same cluster.
All nodes of a cluster and the Cluster Manager must have the same token. We recommended
that you generate a brand new token when you set up your cluster. The grb_rs token
command will generate a random token, which you can copy into the configuration file.

JOBLIMIT: This property sets the maximum number of jobs that can run concurrently when using
Compute Server on a specific node. The limit can be changed on a running cluster using the
grbcluster node config command, in which case the new value will persist and the value
in the configuration file will be ignored from that point on (even if you stop and restart the
cluster).

HARDJOBLIMIT: Certain jobs (those with priority 100) are allowed to ignore the JOBLIMIT, but
they aren’t allowed to ignore this limit. Client requests beyond this limit are queued. This
limit is set to 0 by default which means that it is disabled.

Important Properties without a Cluster Manager

When installing a node that will not be connected to a Cluster Manager, authentication of clients
uses predefined passwords that must be stored in the configuration file. The default configuration
files must be reviewed and the following properties must be changed for a production deployment:

HOSTNAME: This must be the DNS name of the node that can be resolved from the other nodes or
the clients in your network. grb_rs tries to get a reasonable default value, but this value
may still not be resolved by clients and could generate connection errors. It this case, you
need to override this name in the configuration file with a fully qualified name of your node,
for example:

HOSTNAME=server1

If the names cannot be resolved by clients, another option is to use IP addresses directly, in
this case set this property to the IP address of the node.

CLUSTER_TOKEN: The token is a private key that enables different nodes to join the same cluster.
All nodes of a cluster must have the same token. We recommended that you generate a
brand new token when you set up your cluster. The grb_rs token command will generate a
random token, which you can copy into the configuration file.

PASSWORD: This is the password that clients must supply in order to access the cluster. It can be
stored in clear text or hashed. We recommended that you create your own password, and
that you store it in hashed form. You can use the grb_rs hash command to compute the
hashed value for your chosen password.

grb_rs hash newpass
$$ppEieKZExlBR-pCSUMlmc4oWlG8nZsUOE2IM0hJbzsmV_Yjj

Then copy and paste the value in the configuration file:

PASSWORD=$$ppEieKZExlBR-pCSUMlmc4oWlG8nZsUOE2IM0hJbzsmV_Yjj

28

The default password is pass.

ADMINPASSWORD: This is the password that clients must supply in order to run restricted adminis-
trative job commands. It can be stored in clear text or hashed. We recommended that you
create your own password, and that you store it in hashed form. You can use the grb_rs
hash command to compute the hashed value for your chosen password. The default password
is admin.

CLUSTER_ADMINPASSWORD: This is the password that clients must supply in order to run restricted
administrative cluster commands. It can be stored in clear text or hashed. We recommended
that you create your own password, and that you store it in hashed form. You can use the
grb_rs hash command to compute the hashed value for your chosen password. The default
password is cluster.

JOBLIMIT: This property sets the maximum number of jobs that can run concurrently when using
Compute Server on a specific node. The limit can be changed on a running cluster using the
grbcluster node config command, in which case the new value will persist and the value
in the configuration file will be ignored from that point on (even if you stop and restart the
cluster).

HARDJOBLIMIT: Certain jobs (those with priority 100) are allowed to ignore the JOBLIMIT, but
they aren’t allowed to ignore this limit. Client requests beyond this limit are queued. This
limit is set to 0 by default which means that it is disabled.

Starting a Cluster Node as a Process
Once you have installed the Remote Services package (including retrieving and installing your
license file and, for Linux users, setting your PATH variable), starting grb_rs as a standard process
is quite straightforward. From a terminal window with administrator privileges, simply issue the
following command:

> grb_rs

If you are using a Cluster Manager and you did not set the MANAGER configuration property you
can specify it on the command-line:

> grb_rs --manager=http://mymanager:61080

Both commands will start the Remote Services agent on the default port (port 80), and you
should see output like the following:
info : Reading configuration file: /home/jones/gurobi_server902/linux64/bin/grb_rs.cnf

info : Gurobi Remote Services starting...

info : Platform is linux

info : Version is 9.0.2 (build v9.0.2rc0)

info : Variable GRB_LICENSE_FILE is not set

info : License file found at /home/jones/gurobi.lic

info : Node address is server1

info : Node FQN is server1

info : Node has 8 cores

info : Using data directory /home/jones/gurobi_server902/linux64/bin/data

29

info : Data store created

info : Available runtimes: [9.0.0 9.0.0 9.0.2]

info : Public root is /home/jones/gurobi_server902/linux64/resources/grb_rs/public

info : Starting API server (HTTP) on port 80...

If you do not have administrator privileges or if the default port is already in use, you will see
an error about opening the port. For example, on Linux you might see an error like this:

fatal : Gurobi Remote Services terminated, listen tcp :80: bind: permission denied

or

fatal : Gurobi Remote Services terminated, listen tcp :80: bind: address already in use

Note that grb_rs does not have to be run with elevated privileges, but it does need elevated
privileges to use the default port 80.

If you would like to run grb_rs on a non-default port, use the --port flag or set the PORT
property in the configuration file. For example:

> grb_rs --manager=http://mymanager:61080 --port=61000

The Remote Services agent (grb_rs) needs a directory to store various files, including the
runtimes, job metadata, job log files, etc. The default location is a directory named data, located
in the same directory as the grb_rs executable (<installdir>/bin/data). If you have a directory
named data in your current directory, it will use that location instead.

If starting grb_rs produces an error message that indicates that there was a problem creating
the storage service (as shown below), a likely cause is that another grb_rs process is already
running.

fatal : Error creating storage service: Error opening data store: timeout

Starting a Cluster Node as a Service

While you always have the option of running grb_rs from a terminal and leaving the process
running in the background, we recommended that you start it as a service instead, especially in a
production deployment. The advantage of a service is that it will automatically restart itself if the
computer is restarted or if the process terminates unexpectedly.

grb_rs provides several commands that help you to set it up as a service. These must be
executed with administrator privileges:

grb_rs install: Install the service. The details of exactly what this involves depend on the host
operating system type and version: this uses systemd or upstart on Linux, launchd on Mac
OS, and Windows services on Windows.

grb_rs start: Start the service (and install it if it hasn’t already been installed).

grb_rs stop: Stop the service.

grb_rs restart: Stop and then start the service.

grb_rs uninstall: Uninstall the service.

30

Note that the install command installs the service using default settings. If you don’t need
to modify any of these, you can use the start command to both install and start the service.
Otherwise, run install to register the service, then modify the configuration (the details are
platform-dependent and are touched on below), and then run start the service.

Note that you only need to start the service once; grb_rs will keep running until you execute the
grb_rs stop command. In particular, it will start again automatically if you restart the machine.

Note also that the start command does not take any flags or additional parameters. All of the
configuration properties must be set in the grb_rs.cnf configuration file. If you need to make a
change, edit the configuration file, then use the stop command followed by the start command to
restart grb_rs with the updated configuration.

The one exception is the JOBLIMIT property, which can be changed on a live server using
grbcluster. If you change this property and later restart the server, the new value will persist
and the value in the configuration file will be ignored.

The exact behavior of these commands varies depending on the host operating system and
version:
Linux

On Linux, grb_rs supports two major service managers: systemd and upstart. The install
command will detect the service manager available on your system and will generate a service
configuration file located in /etc/systemd/system/grb_rs.service or /etc/init/grb_rs.conf
for systemd and upstart, respectively. Once the file is generated, you can edit it to set advanced
properties. Please refer to the documentation of systemd or upstart to learn more about service
configuration.

Use the start and stop commands to start and stop the service. When the service is running,
log messages are sent to the Linux syslog and to a rotating log file, service.log, located in the
same directory as grb_rs.

The uninstall command will delete the generated file.
Mac OS

On Mac OS, the system manager is called launchd, and the install command will generate a
service file in /Library/LaunchDaemons/grb_rs.plist. Once the file is generated, you can edit it
to set advanced properties. Please refer to the launchd documentation to learn more about service
configuration.

Use the start and stop commands to start and stop the service. When the service is running,
log messages are sent to the Mac OS syslog and to a rotating log file, service.log, located in
the same directory as grb_rs.

The uninstall command will delete the generated file.
Windows

On Windows, the install command will declare the service to the operating system. If you
wish to set advanced properties for the service configuration, you will need to start the Services
configuration application. Please refer to the Windows Operating System documentation for more
details.

Use the start and stop commands to start and stop the service. When the service is running,
log messages are sent to the Windows event log and to a rotating log file, service.log, located in
the same directory as grb_rs. Note that the service must run as a user that has write permissions
to this directory; otherwise, no log file will be generated.

31

The uninstall command will delete the service from the registry.

Verification

Once you have grb_rs running, you can check to make sure that you will be able to submit jobs
to it.

Log In with a Cluster Manager

As we have explained earlier, the Cluster Manager initially creates three default users with prede-
fined passwords:

• standard user: gurobi / pass

• administrator: admin / admin

• system administrator: sysadmin / cluster

These default accounts are provided to simplify installation; you should change the passwords or
delete the accounts before actually using the cluster.

You can check that you can log in using the sysadmin account with the grbcluster command-
line tool:

> grbcluster login --manager=http://mymanager:61080 --username=sysadmin
info : Using client license file ’/home/jones/gurobi.lic’
Password for sysadmin:
info : User gurobi connected to http://mymanager:61080, session will expire on...

Log In without a Cluster Manager

With a self-managed cluster, there are no user accounts, and the access level is determined by the
password used. Here are the default passwords (which can be changed in the configuration file):

• standard user: pass

• administrator: admin

• system administrator: cluster

In this case, you need to log in to one of the nodes and provide the system administrator
password:

> grbcluster login --server=http://server1:61000
info : Using client license file ’/home/jones/gurobi.lic’
Enter password (return to use default):
info : Connected to https://server1:61000

Note that the password you provide is stored in clear in the license file (for future use by other
commands). With this in mind, make sure that access to the license file is restricted.

32

Accessing the Cluster
Once you have verified that you can log in, you should also check the list of nodes with the command:

> grbcluster nodes
ID ADDRESS STATUS TYPE LICENSE PROCESSING #Q #R JL IDLE %MEM %CPU
b7d037db server1:61000 ALIVE COMPUTE VALID ACCEPTING 0 0 10 <1s 10.89 4.99

You are ready to submit jobs if both of the following are true:

• the STATUS column indicates that one or more servers are ALIVE

• the LICENSE column indicates that the license is VALID.

If grbcluster is unable to connect or if it does not show any live nodes, then check your
network and the log of the grb_rs nodes (the console output or <installdir>/bin/service.log
if started as a service).

If a node has an INVALID license, the ERROR field will provide more information about the error.
For example:

> grbcluster node licenses
ID ADDRESS STATUS TYPE KEY EXP ORG USER APP VER CS DL ERROR
b7d037db server1:61000 INVALID NODE false 0 No Gurobi license found...

You may also want to verify that it is possible to submit a job to your cluster. To this end,
you may want to identify a machine from which the users will typically submit jobs and install the
gurobi client package. Then, you can submit a job with a command like the following:

> gurobi_cl misc07.mps

For more information on how to install the client and run gurobi_cl, please refer to the section
about using Remote Services.

33

3.5 Forming a Cluster
As noted earlier, a cluster consists of a set of one or more nodes, all running grb_rs. This section
explains how to form a cluster. Multi-node clusters provide additional capabilities relative to single-
node clusters. For Compute Server, a multi-node cluster will automatically balance computational
load among the various member nodes. For distributed algorithms, a multi-node cluster enables
various algorithms to distribute work among multiple machines. This section begins by discussing
the different types of nodes that are needed to support both Compute Server and distributed
algorithms. Next, we will explain the grouping feature that can be used to create subsets of
nodes to process some jobs. Finally, we will discuss the dynamic nature of a cluster. The system
administrator can ask individual nodes to start or stop processing jobs, which makes it possible
to smoothly add or remove nodes from a cluster to simplify maintenance or to scale processing
capacity up or down.

Connecting Nodes
Every Remote Services cluster starts with a single node. The steps for starting Remote Services
on a single node, either as a standard process or as a service, were covered in earlier sections.

Before adding nodes into your cluster, you first need to make sure that the cluster token (prop-
erty CLUSTER_TOKEN in the configuration file) has the same value in each node and in the Cluster
Manager. For better security, we recommend that you change the predefined value of the token
by generating a new one and pasting the same value into each node configuration file. You can
generate a new token with the following command:

> grb_rs token
GRBTK-6o4xujs59WJO5508nmaNwc1TtjZJAL1UcwN4vTD4qK4nata8oLr9GnubyXrLTkggc/aw2A==

Adding nodes with a Cluster Manager

If you have started a Cluster Manager, you add additional nodes using the exact same command
you used to add the first node. You do this by providing the Cluster Manager address. The Cluster
Manager acts as a registry of nodes of your cluster, and the nodes will then connect between
themselves.

> grb_rs --manager=http://mymanager:61080 --port=61000

The MANAGER property can also be set through the configuration file:

MANAGER=http://mymanager:61080
PORT=61000

You won’t have the opportunity to provide command-line options when starting grb_rs as a
service, so your only option in this case is to provide this information through the configuration
file.

If you wish to start multiple grb_rs processes on the same machine for testing purposes (this
is not recommended for production use), you will need to make sure each instance of grb_rs is
started on a different port and using a different data directory. The command grb_rs init will
help you by copying the default configuration and the data directory into a current directory.

For example, to start two nodes on the same machine with a hostname of myserver:

1. In a first terminal window, create a new directory node1,

34

2. Change your current directory to node1 and run grb_rs init

3. Start the first node:

grb_rs --manager=http://mymanager:61080 --port=61000

4. In a second terminal window, create a new directory node2,

5. Change your current directory to node2 and run grb_rs init

6. Start the second node on a different port and connect to the Cluster Manager:

grb_rs --manager=http://mymanager:61080 --port=61001

Adding nodes to a Self-Managed Cluster
If you have not started a Cluster Manager, nodes must be connected to each other. Once you’ve
started a single-node cluster, you can add nodes using the --join flag to grb_rs or the JOIN
configuration property. For example, if you’ve already started a cluster on the default port of
server1, you would run the following command on the new node (call it server2) to create a
two-node cluster:
> grb_rs --join=server1

In the log output for server2, you should see the result of the handshake between the servers:
info : Node server1, transition from JOINING to ALIVE

Similarly, the log output of server1 will include the line:
info : Node server2, added to the cluster

If you are using a non-default port, you can specify the target node port as part of the node
URL in the --join flag. You can specify the port of the current node using the --port flag. You
can use different ports on different machines, but it is a good practice to use the same one (port
61000 is typically a good choice). The command would look like this:
> grb_rs --join=server1:61000 --port=61000

The JOIN property can also be set through the configuration file:
JOIN=server1:61000
PORT=61000

Again, you won’t have the opportunity to provide command-line options when starting grb_rs
as a service, so your only option in this case is to provide this information through the configuration
file.

Once you’ve created a multi-node cluster, you can add additional nodes by doing a JOIN with
any member node. Furthermore, the --join flag or the JOIN property can take a comma-separated
list of node names, so a node can still join a cluster even if one of the member nodes is unavailable.
Note that when a list of nodes is specified, the joining node will try to join with all of the specified
nodes at the same time. Joining is an asynchronous process, so if some target nodes are not
reachable, the joining node will retry before giving up on joining. If all of the nodes are reachable,
they will all join and form a single cluster.

If you wish to start multiple grb_rs processes on the same machine for testing purposes (this
is not recommended for production use), you will need to make sure each instance of grb_rs is
started on a different port and using a different data directory. The command grb_rs init will
help you by copying the default configuration and the data directory into a current directory.

For example, to start two nodes on the same machine with a hostname of myserver:

35

1. In a first terminal window, create a new directory node1,

2. Change your current directory to node1 and run grb_rs init

3. Start the first node:

grb_rs --port=61000

4. In a second terminal window, create a new directory node2,

5. Change your current directory to node2 and run grb_rs init

6. Start the second node on a different port and join the first node:

grb_rs --port=61001 --join=myserver:61000

Checking the status of your cluster
You can use grbcluster to check the status of the cluster:

> grbcluster nodes
ID ADDRESS STATUS TYPE LICENSE PROCESSING #Q #R JL IDLE %MEM %CPU
b7d037db server1:61000 ALIVE COMPUTE VALID ACCEPTING 0 0 10 <1s 61.42 9.72
eb07fe16 server2:61000 ALIVE COMPUTE VALID ACCEPTING 0 0 8 <1s 61.42 8.82

The nodes of the cluster constantly share information about their status. Each node can be in
one of the following states:

ALIVE: The node is up and running.

DEGRADED: The node failed to respond to recent communications. The node could return to the
ALIVE state if it becomes reachable again. The node will stay in this state until a timeout
(controlled by the configuration property DEGRADED_TIMEOUT), at which point it is considered
as FAILED

FAILED: The node has been in DEGRADED state for too long, and has been flagged as FAILED. A
node will remain in the FAILED state for a short time, and it will eventually be removed from
the cluster. If the node comes back online, it will not re-join the cluster automatically.

JOINING: The node is in the process of joining the cluster.

LEAVING: The node left the cluster. It will stay in that state for a short time period before being
removed from the cluster.

Compute Servers and Distributed Workers

A Remote Services cluster is a collection of nodes of two different types:

COMPUTE: A Compute Server node supports the offloading of optimization jobs. Features include
load balancing, queueing and concurrent execution of jobs. A Compute Server license is
required on the node. A Compute Server node can also act as a Distributed Worker.

36

WORKER: A Distributed Worker node can be used to execute part of a distributed algorithm. A
license is not necessary to run a Distributed Worker, because it is always used in conjunction
with a manager (another node or a client program) that requires a license. A Distributed
Worker node can only be used by one manager at a time (i.e., the job limit is always set to
1).

By default, grb_rs will try to start a node in Compute Server mode and the node license status
will be INVALID if no license is found. In order to start a Distributed Worker, you need to set the
WORKER property in the grb_rs.cnf configuration file (or the --worker command-line flag):

WORKER=true

Once you form your cluster, the node type will be displayed in the TYPE column of the output
of grbcluster nodes:

> grbcluster nodes
ID ADDRESS STATUS TYPE LICENSE PROCESSING #Q #R JL IDLE %MEM %CPU
b7d037db server1:61000 ALIVE COMPUTE VALID ACCEPTING 0 0 10 19m 15.30 5.64
735c595f server2:61000 ALIVE COMPUTE VALID ACCEPTING 0 0 10 19m 10.45 8.01
eb07fe16 server3:61000 ALIVE WORKER VALID ACCEPTING 0 0 1 <1s 11.44 2.33
4f14a532 server4:61000 ALIVE WORKER VALID ACCEPTING 0 0 1 <1s 12.20 5.60

The node type cannot be changed once grb_rs has started. If you wish to change the node
type, you need to stop the node, change the configuration, and restart the node. You may have to
update your license as well.
Distributed Optimization

When using distributed optimization, distributed workers are controlled by a manager. There are
two ways to set up the manager:

• The manager can be a job running on a Compute Server. In this case, a job is submitted to
the cluster and executes on one of the COMPUTE nodes as usual. When the job reaches the
point where distributed optimization is requested, it will also request some number of workers
(see parameters DistributedMIPJobs, ConcurrentJobs, or TuneJobs). The first choice will
be WORKER nodes. If not enough are available, it will use COMPUTE nodes. The workload
associated with managing the distributed algorithm is quite light, so the initial job will act
as both the manager and the first worker.

• The manager can be the client program itself. The manager does not participate in the
distributed optimization. It simply coordinates the efforts of the distributed workers. The
manager will request distributed workers (using the WorkerPool parameter), and the cluster
will first select the WORKER nodes. If not enough are available, it will use COMPUTE nodes as
well.

In both cases, the machine where the manager runs must be licensed to run distributed algorithms
(you should see a DISTRIBUTED= line in your license file).

It is typically better to use the Compute Server itself as the distributed manager, rather than
the client machine. This is particularly true if the Compute Server and the workers are physically
close to each other, but physically distant from the client machine. In a typical environment, the
client machine will offload the Gurobi computations onto the Compute Server, and the Compute
Server will then act as the manager for the distributed computation.

37

Grouping

With the Remote Services grouping feature, you can define a subset of the nodes in your cluster as
a group, and then submit jobs specifically to that group. This can be quite useful when some nodes
in the cluster are different from others. For example, some nodes may have more memory or faster
CPUs. Using this feature, you can force jobs to only run on the appropriate type of machines. If
all nodes of the requested group are at capacity, jobs will be queued until a member of that group
is available.

In order to define a group, you will need to add the GROUP property to the grb_rs.cnf config-
uration file and give a name to the group:

GROUP=group1

The groups are static and can only be changed in the node configuration file. If you wish to
change the group of a node, you will need to stop the node, edit the configuration file, and restart
the node. A node can only be a member of one group.

The grbcluster nodes command displays the assigned group for each node (in the GRP col-
umn):

> grbcluster nodes
ID ADDRESS STATUS TYPE GRP LICENSE PROCESSING #Q #R JL IDLE %MEM %CPU
b7d037db server1:61000 ALIVE COMPUTE group1 VALID ACCEPTING 0 0 10 19m 15.30 5.64
735c595f server2:61000 ALIVE COMPUTE group1 VALID ACCEPTING 0 0 10 19m 10.45 8.01
eb07fe16 server3:61000 ALIVE WORKER group2 VALID ACCEPTING 0 0 1 <1s 11.44 2.33
4f14a532 server4:61000 ALIVE WORKER group2 VALID ACCEPTING 0 0 1 <1s 12.20 5.60

You can submit an optimization job to a given group by using the GROUP property of the client
license file (see set up a client license). You can also set the CSGROUP parameter in the programming
interface.

The value of this parameter can be a single group to target a subset of nodes as explained. It
can also be a list of groups, and you can also specify a priority for each group. Here is an example
to submit a job to the group1 nodes with priority 10, and to group2 with priority 50.

group1:10,group2:50

Note that if a group is not specified for a submitted job, the job can run on any nodes of any
group.

Processing State and Scaling

Each node of the cluster can be in one of three processing states:

ACCEPTING: The node is accepting new jobs.

DRAINING: The node is not accepting new jobs, but it is still processing existing jobs.

STOPPED: The node is not accepting new jobs and no jobs are running.

A node always starts in the ACCEPTING state. If you need to perform maintenance on a node, or
if you want the node to leave the cluster in a clean state for other reasons, the system administrator
can issue the stop command:

> grbcluster --server=server1:61000 stop

38

If jobs are currently running, the state will change to DRAINING until the jobs finish, at which
point it will change to STOPPED. If no jobs are running, the state will change to STOPPED immediately.
In the DRAINING or STOPPED states, new jobs are rejected on that node. However, the node is still
a member of the cluster and all of the other features, commands, and APIs are still active.

Once a node is in the STOPPED state, you can safely remove it from the cluster (to perform
maintenance, shut it down, etc.). To return it to the cluster and resume job processing, run the
start command:

> grbcluster --server=server1:61000 start

The flag --server is used to target a specific node in the cluster. Adding the --all flag requests
that the command (e.g., start or stop) be applied to all nodes in the cluster.

By using the start and stop with a cluster of Compute Servers, you can effectively scale your
cluster up or down, depending on the current cluster workload:

• You can scale down the cluster by stopping the processing on some nodes.

• You can scale up the cluster by starting new nodes or resuming processing on some nodes.
As soon as a node starts or resumes processing, it will pick up jobs from the current queue
or wait for new jobs to be submitted.

39

3.6 Communication Options
The Cluster Manager and the nodes running Gurobi Remote Services communicate through a
REST API using HTTP by default. If you are using a Cluster Manager, you have a few options
for a more secure deployment with HTTPS:

• Use a load balancer listening on HTTPS in front of the Cluster Manager. The load balancer
can terminates TLS encryption, and forward the communication to the Cluster Manager as
HTTP.

• Enable HTTPS on the Cluster Manager and then let it forward the communication to the
nodes using HTTP. The nodes themselves will continue to communicate over HTTP only.

• End-to-end HTTPS by enabling HTTPS on the Cluster Manager and the nodes.
If you are not using a Cluster Manager, you still have a few options:
• Enable HTTPS for all of the nodes.

• Set up a Gurobi Router and enable HTTPS for the router only.

• End-to-end HTTPS by enabling HTTPS on the Router and the nodes.
Enabling HTTPS on the different components follows the same principles. Remote Services

also support self-signed certificates for testing your deployment. Finally, firewalls may have to be
configured to let clients connect to the Cluster Manager or the Cluster nodes. In some cases, a
Remote Services router can be used instead of a Cluster Manager.

Enabling HTTPS
Enabling HTTPS on the Cluster Manager or the nodes follows the same principles. Several prop-
erties can be used to configure the communication options. In order to enable HTTPS with TLS
data encryption over the wire, you need to set the TLS property.
TLS=true

You will also need to provide the paths to the private key and the certificate files:
TLS_CERT=cert.pem
TLS_KEY=key.pem

When HTTPS is enabled on the cluster nodes, the standard HTTPS port 443 is then used as
the default instead of port 80. As with the port 80, you will need to start grb_rs with elevated
privileges. Otherwise, you will get a permission error. On Linux, you’d see an error message like
the following:
fatal : Gurobi Remote Services terminated, listen tcp :443: bind: permission denied

As explained in the installation section, you can change the port using the PORT property. Note
that you cannot mix nodes using HTTP and nodes using HTTPS in the same cluster. If you wish
to use HTTPS, all of the nodes must be configured in the same way. HTTPS will be used for
communication between the nodes.

If you enable HTTPS, you will need to use the prefix https:// to access the nodes of your
cluster:
> grbcluster nodes
ADDRESS STATUS TYPE LICENSE PROCESSING #Q #R JL IDLE %MEM %CPU
https://server1:61000 ALIVE COMPUTE VALID ACCEPTING 0 0 2 46h59m 9.79 0.50
https://server2:61000 ALIVE COMPUTE VALID ACCEPTING 0 0 2 46h46m 8.75 0.00

40

Using HTTPS with Self-Signed Certificates

Using self-signed certificates is not recommended for production deployment as it is less secure,
but it can be useful when testing a deployment. When using this mode, the data will be encrypted
over the wire, but the certificate will not be validated.

If you do not specify a key and a certificate in the TLS_KEY and TLS_CERT properties, grb_rs
and grb_rsm will generate them for you at startup. You can also specify your own self-signed
certificate using TLS_KEY and TLS_CERT properties.

To use a self-signed certificate, you will need to activate insecure mode by setting the following
property for grb_rs:

TLS_INSECURE=true
MANAGER_INSECURE=true

At the same time, similar properties must be set for grb_rsm:

TLS_INSECURE=true

When using grbcluster, you will also need to activate this mode by using the --tls-insecure
flag with the login command.

> grbcluster login --manager=https://mymanager:61080 --username=sysadmin --tls-insecure
info : Using client license file ’/Users/jones/gurobi.lic’
Password for sysadmin:
info : User gurobi connected to https://mymanager:61080, session will expire on...

> grbcluster nodes
ID ADDRESS STATUS TYPE LICENSE PROCESSING #Q #R JL IDLE %MEM %CPU
b7d037db https://server1:61000 ALIVE COMPUTE VALID ACCEPTING 0 0 10 <1s 66.58 7.97
eb07fe16 https://server2:61000 ALIVE COMPUTE VALID ACCEPTING 0 0 1 <1s 66.58 9.62

When using other clients such as gurobi_cl, grbtune, you can set the the GRB_TLS_INSECURE
environment variable. In the programming language APIs, there is also a CSTLSINSECURE param-
eter.

Firewalls

When a Cluster Manager is used, clients communicate with the Cluster Manager only. The Cluster
Manager then communicates with the cluster nodes. If there is a firewall between the clients and
the Cluster Manager, the port used by the Cluster Manager will have to be open. The default port
is 61080 but you can choose an arbitrary port through the PORT configuration property.

In a self-managed cluster, clients communicate directly with the nodes. They use port 80 for
HTTP or 443 for HTTPS by default, but you can choose an arbitrary port through the PORT
configuration property. If there is a firewall between the clients and the nodes of the cluster, the
chosen port will have to be open. In this case, another option is to set up a Gurobi Router.

The command-line tools and the libraries are also compatible with standard proxy settings
using environment variables HTTP_PROXY and HTTPS_PROXY. HTTPS_PROXY takes precedence over
HTTP_PROXY for https requests. The values may be either a complete URL or a host[:port], in
which case the http scheme is assumed.

If you face connectivity issues with firewalls or proxy servers, we suggest you share this section
with your network administrator.

41

Using a Router without a Cluster Manager
If you are installing a self-managed cluster, the clients need to have direct access to each node in
the cluster, including the node DNS name and IP address. A Remote Services Router provides a
point of contact for all clients and will route the communication to the appropriate node in the
cluster, thus allowing you to isolate your cluster from its clients. A Remote Services Router acts
as a reverse proxy. Behind a router, the cluster nodes can use private DNS names or IP addresses
as long as all of the nodes and the router can communicate together. Only the router must be
accessible from the clients.

The router can use either HTTP or HTTPS to communicate with clients, and similarly it can
choose either to route traffic to cluster nodes. It is a common to enable HTTPS between the clients
and the router, while having the router and the nodes communicate over unencrypted HTTP in a
private network. Using this setup only requires you to manage certificates on the router.

You can get more information about the router (grb_rsr) by reading the command-line help:

grb_rsr --help

The router uses a configuration file grb_rsr.cnf that must be placed in the same directory
as the grb_rsr executable. A predefined configuration file with additional comments is provided.
The following command lists the available configuration properties:

grb_rsr properties

Similarly to grb_rs, the router can be started as a service and log messages will be stored in
the grbrsr-service.log rotating file by default. Log messages will also be sent to the syslog on
Mac and Linux, and to the service event log on Windows.

grb_rsr start

Here are some examples of how you might refer to a router using a URL (using HTTP or
HTTPS, with the standard port or a custom port):

http://router.mycompany.com
http://router.mycompany.com:61001
https://router.mycompany.com
https://router.mycompany.com:61001

When using the command-line tools grbcluster or gurobi_cl, you can first log in with a
router. The router address will be saved in your license file in the ROUTER property so that you can
run other commands without needing to specify it again:

> grbcluster login --server=http://server1:61000 --router=http://router.mycompany.com
info : Using client license file ’/home/jones/gurobi.lic’
Enter password (return to use default):
info : Connected to node http://server1:61000 via router http://router.mycompany.com

> grbcluster nodes
ID ADDRESS STATUS TYPE LICENSE PROCESSING #Q #R JL IDLE %MEM %CPU
b7d037db https://server1:61000 ALIVE COMPUTE VALID ACCEPTING 0 0 10 <1s 66.58 7.97
eb07fe16 https://server2:61000 ALIVE COMPUTE VALID ACCEPTING 0 0 1 <1s 66.58 9.62

For the clients using the Gurobi Optimizer API, you will need to either set the ROUTER property
in the license file or construct an empty environment and set the CSRouter parameter before starting
the environment.

42

For clients using the cluster REST API for monitoring purpose, you will need to use the
router URL instead of a node address, and you can pass the selected node address in the header
X-GUROBI-SERVER. In this way, the client communicates with the router and the router will use the
header value to forward the request to the selected node. In case the node address is incorrect or
does not exist, the router will return the HTTP error code 502.

43

Using Remote Services

You can access and use your cluster from the command-line tools, from the Web User Interface of
the Cluster Manager, or from any of our programming language APIs. With only a few exceptions,
the feature was designed to be transparent to both the develoeprs and the users of programs that
use it.

In this section, we will review the common client configuration properties, and then we will
explain the most important commands that you can run from the command line: job commands,
batch commands, repository commands, and node commands. Some commands may be restricted
to the administrator role, and others may be supported only if the Cluster Manager was installed.
Finally, we will describe how the commands can be applied to execute distributed algorithms.

We will discuss later how to program with Remote Services.

44

4.1 Client Configuration
In this section, we assume that you already have installed the Gurobi Optimizer package on your
client machine. After this, you will need to understand the role of the client license file and how
grbcluster can help in generating it. Finally, we will review the load balancing and priority
management that can be controlled with some of the configuration properties.

Client License File
A client program needs to be told how to reach a Remote Services cluster. There are generally two
ways to do this. The first is through the programming language APIs. We’ll discuss this option in a
later section on programming with Remote Services. The second is through a license file. You can
create a client license file yourself or edit an existing one, using your favorite text editor (Notepad
is a good choice on Windows). The license file should be named gurobi.lic.

The license file contains a list of properties of the form PROPERTY=value. Lines that begin with
the # symbol are treated as comments and are ignored. The license file must be placed in your
home directory or in one of the following locations:

• C:\gurobi\ on Windows

• /opt/gurobi/ on Linux

• /Library/gurobi/ on Mac OS

• The user’s home directory

You can also set the environment variable GRB_LICENSE_FILE to point to this file.
Connecting to a Cluster Manager

Here are the properties you can set to connect to a Cluster Manager:

CSMANAGER: The URL of the Cluster Manager, including the protocol scheme and port. For exam-
ple, use http://mymanager:61080 to access a Cluster Manager using HTTP on port 61080,
or https://mymanager:61443 to access a cluster over HTTPS on port 61443.

CSAPIACCESSID: A unique identifier used to authenticate an application on a cluster.

CSAPISECRET: The secret password associated with an API access ID.

USERNAME: The username to access the cluster.

PASSWORD: The client password to access the cluster.

CSAUTHTOKEN: Used internally to store the JWT authentication token.

These don’t all need to be set - you just set the properties that are relevant for the authentication
method you are using. If the license file specifies several authentication methods to a Cluster
Manager, the following precedence order applies:

• API key defined with CSAPIACCESSID and CSAPISECRET

• JWT authentication token with CSAUTHTOKEN

• Username and password with USERNAME and PASSWORD

45

Connecting to a Cluster Node

Here are the properties you can set to connect to a cluster node in a self-managed cluster:

COMPUTESERVER: The fully qualified name of the main node used to access the cluster, plus the
protocol scheme and port (if needed). For example, you can just use server1 to access a
cluster using HTTP on the default port, or https://server1:61000 to access a cluster over
HTTPS using port 61000. You can also specify a comma-separated list of names so that other
nodes can be used in case the first node can’t be reached.

ROUTER: The router URL (if you are using a router).

PASSWORD: The client password to access the cluster.

Other Properties

You can also specify additional properties that affect job processing (whether you use a Cluster
Manager or not):

CSAPPNAME: Application name. Once defined, the application name will be assigned to all jobs and
batches created so that you can better track the activity of the cluster by application.

PRIORITY: Job Priority. Higher priority jobs take precedence over lower priority jobs.

GROUP: Job group. If your cluster has been set up with groups, you can specify the group to submit
the job to. The job will only be executed on nodes that are members of this group if specified.
The value of this property can also be a list of groups, and you can also specify a priority for
each group. For example: group1:10,group2:50

QUEUETIMEOUT: Queuing timeout (in seconds). A job that has been sitting in the queue for longer
than the specified QUEUETIMEOUT value will return with a JOB_REJECTED error.

IDLETIMEOUT: Idle job timeout (in seconds). This property allows you to set a limit on how long
a Compute Server job can sit idle before the server kills the job.

Examples
Here is an example of a client license file that would allow a client to connect to a Cluster Manager
with an API key, and submit all the jobs under a specific application name:

CSMANAGER=http://mymanager:61080
CSAPIACCESSID=0e8c35d5-ff20-4e5d-a639-10105e56b264
CSAPISECRET=d588f010-ad47-4310-933e-1902057661c9
CSAPPNAME=app1

Here is another example that would allow you to connect a self-managed Compute Server with
a specific password, and submit all the jobs with priority 10:

COMPUTESERVER=http://server1:61000
PASSWORD=abcd
PRIORITY=10

The gurobi_cl or grbcluster tools provide command-line flags that allow you to set most of
these properties. These tools will read the license file, but values specified via these command-line
flags will override any values provided in the license file.

46

Generating a Client License with grbcluster
Your primary tool for issuing cluster commands is a command-line program called grbcluster.
The format of the command-line tool is as follows (see the reference section for more information):

grbcluster --help Display usage
grbcluster command [flags] Execute a top-level command
grbcluster command --help Display help about a top-level command
grbcluster group command [flags] Execute a command from a group
grbcluster group command --help Display help about a command

from a group

The first important command is the login command, which accepts various flags to allow you
to configure your connection. Once your connection is validated, it will save these parameters into
the license file. If the license file does not exist, it will create one. If you want to store the license
file in a custom location, you can use the environment variable GRB_LICENSE_FILE. The command
tools grbcluster, gurobi_cl, and grbtune will first read the client license file so that you do not
need to specify connection parameters each time.

Here are some examples of the login command :

• Log in to a Cluster Manager with a username and password:

grbcluster login --manager=http://mymanager:61080 --username=gurobi

Note that if a password is necessary, you will be prompted for it. This is more secure than
providing one on the command line, but that is an option too (using the --password flag).

• Refresh login to a Cluster Manager to extend an expired session:

grbcluster login

• Log in to a Cluster Manager with an API key:

grbcluster login --manager=http://mymanager:61080 --access=... --secret=...

• Log in to a Compute Server in a self-managed cluster:

grbcluster login --server=http://server1:61000

• Log in to a Compute Server that uses a router:

grbcluster login --server=http://server1:61001 --router=http://myrouter:61000

Queueing, Load Balancing, and Job Priorities
As noted earlier, Gurobi Compute Servers support job priorities. You can assign an integer priority
between -100 and 100 to each job (the default is 0). When choosing among queued jobs, the
Compute Server will run the highest priority job first. Note that servers will never preempt running
jobs. You can set the priority in the client license file, or using the PRIORITY parameter in the
programming language APIs.

We have chosen to give priority 100 a special meaning. A priority 100 job will start immediately,
even if this means that a server will exceed its job limit. You should be cautious with priority 100

47

jobs, since submitting too many at once could lead to very high server loads, which could lead to
poor performance and even crashes in extreme cases. Note that this feature must be enabled by
the system administrator using the HARDJOBLIMIT configuration property.

With the Remote Services grouping feature, the system administrator may have assigned groups
to the cluster nodes. This can be quite useful when some nodes in the cluster are different from
others. For example, some nodes may have more memory or faster CPUs. Using this feature, you
can force jobs to only run on the appropriate type of machines. If all nodes of the requested group
are at capacity, jobs will be queued until a member of that group is available.

You can submit an optimization job to a given group by using the GROUP property of the client
license file. You can also set the CSGROUP parameter in the programming interface.

You can use this parameter to target a single group or a list of groups, and you can specify
a priority for each group. Here is an example that shows how you would use this parameter to
submit a job to group1 with priority 10 and to group2 with priority 50.

group1:10,group2:50

Note that if no group specified for the submitted job, the job can run on any node.

48

4.2 Job Commands
In this section, we will review the most important commands to manage your jobs. We assume
that the system administrator has installed the cluster and that you have successfully executed the
grbcluster login command with the appropriate flags to access your cluster.

Submitting Interactive Jobs
The Gurobi command-line tool gurobi_cl can be used to submit optimization jobs. Once you
have successfully executed the grbcluster login command, you can then submit a job using
gurobi_cl. This is the example we used earlier in this document:
> gurobi_cl ResultFile=solution.sol stein9.mps
Using license file /opt/gurobi900/manager.lic
Set parameter CSManager to value http://server1:61080
Set parameter LogFile to value gurobi.log
Compute Server job ID: 1e9c304c-a5f2-4573-affa-ab924d992f7e
Capacity available on ’server1:61000’ - connecting...
Established HTTP unencrypted connection

Gurobi Optimizer version 9.0.2 build v9.0.2rc0 (linux64)
Copyright (c) 2020, Gurobi Optimization, LLC

...

Optimal solution found (tolerance 1.00e-04)
Best objective 5.000000000000e+00, best bound 5.000000000000e+00, gap 0.0000%

Compute Server communication statistics:
Sent: 0.002 MBytes in 9 msgs and 0.01s (0.26 MB/s)
Received: 0.007 MBytes in 26 msgs and 0.09s (0.08 MB/s)

The initial log output indicates that a Compute Server job was created, that the Compute
Server cluster had capacity available to run that job, and that an unencrypted HTTP connection
was established with a server in that cluster. The log concludes with statistics about the commu-
nication performed between the client machine and the Compute Server. Note that the result file
solution.sol is also retrieved.

This is an interactive optimization task because the connection with the job must be kept
alive and the progress messages are displayed in real-time. Also, stopping or killing the command
terminate the job.

Listing Jobs
The optimization jobs running on a Compute Server cluster can be listed using the jobs command:

> grbcluster jobs
JOBID ADDRESS STATUS #Q STIME USER PRIO API
58780a22 server1 RUNNING 2019-04-07 14:36:49 jones 0 gurobi_cl

The jobs command is actually a shortcut for the job list command.
> grbcluster job list
JOBID ADDRESS STATUS #Q STIME USER PRIO API
58780a22 server1 RUNNING 2019-04-07 14:36:49 jones 0 gurobi_cl

49

Note that you can get more information by using the --long flag. With this flag, you will also
display the complete job ID, which is unique, instead of the short ID:

> grbcluster jobs --long
JOBID ADDRESS STATUS #Q STIME USER PRIO API RUNTIME PID HOST IP
58780a22-... server1 RUNNING 2019-04-07 14:36:49 jones 0 gurobi_cl 8.1.1 20656 machine1 [::1]

The jobs command only shows jobs that are currently running. To obtain information on jobs
that were processed recently, run the job recent command:

> grbcluster job recent
JOBID ADDRESS STATUS STIME USER OPT API
58780a22 server1 COMPLETED 2019-04-07 14:36:54 jones OPTIMAL gurobi_cl

The information displayed by the jobs and job recent commands can be changed using the
--view flag. The default view for the two commands is the status view. Alternatives are:

status - List all jobs and their statuses
model - List all jobs, and include information about the models solved
simplex - List jobs that used the SIMPLEX algorithm
barrier - List jobs that used the BARRIER algorithm
mip - list jobs that used the MIP algorithm

For example, the model view gives details about the model, including the number of rows,
columns and nonzeros in the constraint matrix:

> grbcluster job recent --view=model
JOBID STATUS STIME ROWS COLS NONZ ALG OBJ DURATION
58780a22 COMPLETED 2019-04-07 14:36:54 331 45 1034 MIP 30 4.901s

To get an explanation of the meanings of the different fields within a view, add the --describe
flag. For example:

> grbcluster job recent --view=model --describe
JOBID - Unique job ID, use --long to display full ID
STATUS - Job status
STIME - Job status updated time
ROWS - Number of rows
COLS - Number of columns
NONZ - Number of non zero
ALG - Algorithm MIP, SIMPLEX or BARRIER
OBJ - Best objective
DURATION - Solve duration

For a Mixed-Integer Program (MIP), the mip view provides progress information for the branch-
and-cut tree. For example:

> grbcluster job recent --view=mip
JOBID STATUS STIME OBJBST OBJBND NODCNT SOLCNT CUTCNT NODLFT
58780a22 COMPLETED 2019-04-07 14:36:54 30 30 54868 4 19 0

Again, --describe explains the meanings of the different fields:

> grbcluster job recent --view mip --describe
JOBID - Unique job ID, use --long to display full ID
STATUS - Job status
STIME - Job status updated time

50

OBJBST - Current best objective
OBJBND - Current best objective bound
NODCNT - Current explored node count
SOLCNT - Current count of feasible solutions found
CUTCNT - Current count of cutting planes applied
NODLFT - Current unexplored node count

Note that the jobs command provides live status information, so you will for example see
current MIP progress information while the solve is in progress.

The other views (simplex and barrier) are similar, although of course they provide slightly
different information.

Accessing Job Logs
Gurobi Optimizer log output from a previous or currently running job can be retrieved by using
the job log command. For example:

> grbcluster job log 58780a22
info : Found matching job is 58780a22-8acc-499e-b73c-da6f2df59669

Flow cover: 20
Zero half: 4

Explored 54868 nodes (381866 simplex iterations) in 4.27 seconds
Thread count was 4 (of 4 available processors)

Solution count 4: 30 31 32 33

Optimal solution found (tolerance 1.00e-04)
Best objective 3.000000000000e+01, best bound 3.000000000000e+01, gap 0.0000%

The argument to this command is the JOBID for the job of interest (which can be retrieved
using the jobs command). You can use the full ID or the short ID. If you don’t specify a JOBID,
the command will display the log for the last job submitted.

The job log command accepts the following arguments:

Usage:
grbcluster job log <JOBID> [flags]

Flags can be set using --flag=value or the short form -f=value if defined.
A boolean flag can be enabled using --flag or the short form -f if defined.

Flags:
-b, --begin Display log from the beginning
-f, --continuous Display log continuously until job completion
-h, --help help for log
-n, --lines int Display only the last n lines (default 10)

For example, to get the entire log, from the beginning of the job, use the -b (or --begin) flag.

> grbcluster job log 58780a22 -b

You can get a continuous feed of the log for a running optimization job with the -f (or --follow)
flag.

51

Accessing Job Parameters
The Gurobi Optimizer provides a number of parameters that can be modified by the user. The job
params command allows you to inspect the values of these parameters in a Compute Server job:

> grbcluster job params 58780a22
info : Found matching job is 58780a22-8acc-499e-b73c-da6f2df59669
ComputeServer=server1
TimeLimit=60

The argument to this command is the JOBID for the job of interest (which can be retrieved
using the jobs command). You can use the full ID or the short ID. If you don’t specify a JOBID,
the command will display the changed parameters of the last job submitted.

The following example illustrates how the grbcluster job params command can be used in
practice. The first step is to start an optimization job on a Compute Server cluster with one
modified parameter:

> gurobi_cl TimeLimit=120 glass4.mps

Once the job starts, you can use the grbcluster jobs command to retrieve the associated
JOBID (or you can read it off from the output of gurobi_cl). For jobs that have been already
processed, you would run the job recent command instead.

> grbcluster jobs
JOBID ADDRESS STATUS #Q STIME USER PRIO API
7c51bf74 server1 RUNNING 2019-04-07 14:50:56 jones 0 gurobi_cl

Once you obtain the JOBID, the job params command shows the modified parameter settings
for the job:

> grbcluster job params 7c51bf74
info : Found matching job is 7c51bf74-ba02-4239-875e-c8ea388f9427
ComputeServer=server1
TimeLimit=120

The full list of Gurobi parameters can be found in the Parameters section of the Gurobi Refer-
ence Manual.

Aborting Jobs
Jobs that are running on a Compute Server can be aborted by using the job abort command. For
example:

> grbcluster job abort e7022667

The following steps illustrate how you would start and subsequently abort a job. First, use the
Gurobi command-line tool (gurobi_cl) to start a long-running optimization job on your Compute
Server:

> gurobi_cl glass4.mps

Once the job starts, you can use the grbcluster jobs command to retrieve the associated
JOBID (or you can read it off from the output of gurobi_cl):

52

http://www.gurobi.com/documentation/9.0/refman/index.html
http://www.gurobi.com/documentation/9.0/refman/index.html

> grbcluster jobs
JOBID ADDRESS STATUS #Q STIME PRIO
8f9b15d9 server1 RUNNING 2017-10-10 17:30:33 0

The full or short JOBID can be used to abort the job as follows:

> grbcluster job abort 8f9b15d9

If no JOBID is specified, the most recently started job will be aborted.
After the abort command is issued, the status of the job can be retrieved using the job recent

command:

> grbcluster job recent
JOBID ADDRESS STATUS STIME USER OPT
8f9b15d9 server1 ABORTED 2017-10-10 17:41:33 user1 OPTIMAL

As you can see, the status of the job has changed to ABORTED.

Accessing the Job History
The job history is only supported by the Cluster Manager. While the nodes have a limited recent
history of jobs, the Cluster Manager is able to record the jobs and the logs over a longer period of
time. The exact lifespan is a configuration parameter that can be set by the system administrator.
History information is persistent and can be accessed even if the cluster nodes are not available.

By default, the job history command will display the last jobs in your cluster.

> grbcluster job history
JOBID BATCHID ADDRESS STATUS STIME USER OPT API
910878b9 4aba4ad3 server1:61000 COMPLETED 2019-09-22 15:55:24 jones OPTIMAL grbcluster
594d82fc 9bc34333 server1:61000 ABORTED 2019-09-22 15:52:36 admin grbcluster
ce7ab3a4 2e05810c server1:61000 COMPLETED 2019-09-22 14:20:14 jones OPTIMAL grbcluster
66d4783b ada0a345 server1:61000 COMPLETED 2019-09-22 14:17:58 admin OPTIMAL grbcluster

In addition, flags are available to query the history by status, username, time period, application
name, and more. For example, the following command lists the last two jobs that were ABORTED
by the user gurobi:

> grbcluster job history --status=ABORTED --length=2 --username=gurobi
JOBID BATCHID ADDRESS STATUS STIME USER OPT API
80334e25 5a4764cc server1:61000 ABORTED 2019-09-20 16:53:23 gurobi Python
0d6d140b f94228b6 server1:61000 ABORTED 2019-09-16 22:04:09 gurobi Python

This history command gives you access to the same views as the job recent command, but
with more filters. For example, the following command shows the model characteristics of the last
two jobs that were COMPLETED by the application app1:

> grbcluster job history --status=COMPLETED --length=2 --view=model --app=app1
JOBID STATUS STIME ROWS COLS NONZ ALG OBJ DURATION
b9063f12 COMPLETED 2019-09-19 11:22:18 13 9 45 MIP 5 319ms
964a9405 COMPLETED 2019-09-19 11:22:17 13 9 45 MIP 5 126ms

53

4.3 Batch Commands
In this section, we will review the most important commands available to manage batches. We
assume that the system administrator has installed the cluster and that you have successfully
executed the grbcluster login command with the appropriate flags to access your cluster. Batch
management is only available with a Cluster Manager.

Creating Batches
Once you are logged in to a Cluster Manager, you can use grbcluster to create a batch. This will
submit a non-interactive job. The typical process involves the following three steps:

• Create the batch and submit the non-interactive job. In this step, we indicate what model
file we want to solve, and what result file we need. With this information, grbcluster will
declare the batch, upload the input model file, and submit the solve request as a batch job. At
this point, you can disconnect your client machine from the network (i.e., close your laptop).
The request will be processed automatically.

> grbcluster batch solve glass4.mps ResultFile=solution.sol
info : Batch ada0a345-aa9e-4d6b-a7f0-05caf345d4e2 created
info : Uploading glass4.mps...
info : Batch ada0a345-aa9e-4d6b-a7f0-05caf345d4e2 submitted with job 66d4783b...

• Monitoring. While the batch job is being executed, you can monitor the status if you wish.
You can reference the batch you submitted using its batch ID.

> grbcluster batch status 2e05810c-911f-47ee-b695-27e1244fefd0 --wait
info : Batch 2e05810c-911f-47ee-b695-27e1244fefd0 status is SUBMITTED
info : Batch 2e05810c-911f-47ee-b695-27e1244fefd0 status is SUBMITTED
info : Batch 2e05810c-911f-47ee-b695-27e1244fefd0 status is SUBMITTED
info : Batch 2e05810c-911f-47ee-b695-27e1244fefd0 status is SUBMITTED
info : Batch 2e05810c-911f-47ee-b695-27e1244fefd0 status is COMPLETED

• Download the results. Once a batch is complete, you can download the log file and any
optimization result. By default, results are stores in a directory having the same name as
the batch ID. You should also delete the batch so that the Cluster Manager can delete the
associated data from the database.

grbcluster batch download 2e05810c-911f-47ee-b695-27e1244fefd0
info : Results will be stored in directory 2e05810c-911f-47ee-b695-27e1244fefd0
info : Downloading solution.sol...
info : Downloading gurobi.log...
info : Discarding batch data

You can actually use grbcluster to perform all three steps in a single command:
> grbcluster batch solve ResultFile=solution.sol misc07.mps --download
info : Batch 5d0ea600-5068-4a0b-bee0-efa26c18f35b created
info : Uploading misc07.mps...
info : Batch 5d0ea600-5068-4a0b-bee0-efa26c18f35b submitted with job a9700b72...
info : Batch 5d0ea600-5068-4a0b-bee0-efa26c18f35b status is COMPLETED
info : Results will be stored in directory 5d0ea600-5068-4a0b-bee0-efa26c18f35b
info : Downloading solution.sol...
info : Downloading gurobi.log...
info : Discarding batch data

54

Listing Batches
Optimization jobs running on a Compute Server cluster can be listed by using the batches com-
mand. The batches command is actually a shortcut for the batch list command. For example:

> grbcluster batches
ID JOB CREATED STATUS STIME USER PRIO API D SIZE INPUT OUTPUT
2e05810c ce7ab3a4 2019... COMPLETED 2019... jones 0 grbcluster X 0 glass4.mps solution.sol
ada0a345 66d4783b 2019... COMPLETED 2019... jones 0 grbcluster 288960 misc07.mps solution.sol

Note that you can get more information by using the --long flag. With this flag, the command
will also display the batch ID and the complete job ID, which is unique, instead of the short ID. To
get an explanation of the meanings of the different fields, add the --describe flag. For example:

> grbcluster batches --describe
ID - Unique batch ID, use --long to display full ID
JOB - Unique job ID, use --long to display full ID
CREATED - Batch created time
Status - Batch Status
STIME - Batch status updated time
USER - Client username (not displayed if empty or restricted)
APP - Application name (not displayed if empty or restricted)
PRIO - Batch priority
API - API type - Python, C++, Java, .NET, Matlab, R... (not displayed if empty or restricted)
D - Indicate if batch data was discarded
SIZE - Size of batch
INPUT - List filenames of input files (not displayed if empty or restricted)
OUTPUT - List filenames of output files (not displayed if empty or restricted)
RUNTIME - Batch runtime version, use --long
PID - Client process ID, use --long (not displayed if empty or restricted)
HOST - Client hostname, use --long (not displayed if empty or restricted)
IP - Client IP address, use --long (not displayed if empty or restricted)
APP - Client application name, use --long (not displayed if empty or restricted)

Aborting Batches
Batches submitted to a Cluster Manager can be aborted by using the batch abort command. For
example:

> grbcluster batch abort 9bc34333

The following steps illustrate how you would start and subsequently abort a job. First, use the
Gurobi command-line tool (gurobi_cl) to start a long-running optimization job on your Compute
Server:

> grbcluster batch solve glass4.mps ResultFile=solution.sol

Once the batch is submitted, you can use grbcluster batches to monitor you batches:

> grbcluster jobs
ID JOB CREATED Status STIME USER PRIO API D SIZE INPUT
4aba4ad3 910878b9 2019... SUBMITTED 2019... jones 0 grbcluster 86579 glass4.mps

The full or short ID can be used to abort the batch as follows:

> grbcluster batch abort 4aba4ad3

55

After the abort command is issued, the status of the batch can be retrieved using the batches
command:

> grbcluster batches
ID JOB CREATED Status STIME USER PRIO API D SIZE INPUT
4aba4ad3 910878b9 2019... ABORTED 2019... jones 0 grbcluster 86579 glass4.mps

As you can see, the status of the batch has changed to ABORTED. Note also that the underlying
job that was created to execute the batch is also ABORTED:

JOBID BATCHID ADDRESS STATUS STIME USER OPT API
910878b9 4aba4ad3 serevr1:61001 ABORTED 2019-09-22 15:55:24 jones grbcluster

Retrying Batches
If a batch fails to execute, you can resubmit that batch. This might for example happen if the
node node where the batch job was running was shut down or ran out of memory. All of the input
files and parameters of the batch specification are still stored by the Cluster Manager, so there is
no need to upload them again. You can simply issue the batch retry command:

grbcluster batch retry edfa28f6-7abc-4af1-80a3-0b7472dcdcf0
info : Batch edfa28f6-7abc-4af1-80a3-0b7472dcdcf0 submitted for retry with job 9c6f1b59...

Note that a new batch job is created to execute the batch, but the batch specification does not
change and you can still use the same batch ID to monitor progress. Note that it is not possible to
retry a batch if it is currently running or if the batch data was discarded.

Discarding Batches
A batch has a set of input files and a set of result files that are stored in the Cluster Manager
database. This enables the client to submit and disconnect while the batch is processed. Also, the
results can be downloaded later when the client is ready. One consequence of this is that batches
can consume significant space in the database. We may need to be careful to clean up data. It is
important to discard batch data when you are done with it, to free up space in the database. Note
that batch metadata is small and will still remain in the batch history for monitoring purposes even
after you discard the batch.

By default, when using the grbcluster command to download the results, the batch will be
discarded automatically. You can change the default behavior by using the --discard flag if you
may want to download the results again later:

> grbcluster batch solve misc07.mps ResultFile=solution.sol --download --discard=false
info : Batch 076225d7-a1c9-462f-bfef-8e23c81d9f16 created
info : Uploading misc07.mps...
info : Batch 076225d7-a1c9-462f-bfef-8e23c81d9f16 submitted with job ef0861e9...
info : Batch 076225d7-a1c9-462f-bfef-8e23c81d9f16 status is SUBMITTED
info : Batch 076225d7-a1c9-462f-bfef-8e23c81d9f16 status is COMPLETED
info : Results will be stored in directory 076225d7-a1c9-462f-bfef-8e23c81d9f16
info : Downloading solution.sol...
info : Downloading gurobi.log...

You can check the space used by this batch by looking in the SIZE column in the output of the
batches command:

56

> grbcluster batches --batchId=076225d7
ID JOB CREATED Status STIME USER PRIO API D SIZE INPUT OUTPUT
076225d7 ef0861e9 2019... COMPLETED 2019... jones 0 grbcluster 288960 misc07.mps solution.sol

In order to discard a batch manually, you can use the batch discard command. You can
verify that the size of the batch is 0 afterwards. You will also notice that the D column is flagged,
indicating that the batch was discarded.

> grbcluster batch discard 076225d7
info : Batch 076225d7-a1c9-462f-bfef-8e23c81d9f16 discarded

> ./grbcluster batches --batchId=076225d7
ID JOB CREATED Status STIME USER PRIO API D SIZE INPUT OUTPUT
076225d7 ef0861e9 2019... COMPLETED 2019... jones 0 grbcluster X 0 misc07.mps solution.sol

Note that the Cluster Manager will automatically discard and delete batches when they are
older than the maximum age, as specified in the cluster retention policy. Developers submitting a
batch with a programming language API should call the appropriate discard function once results
have been retrieved.

57

4.4 Repository Commands
The file repository is a feature of the Cluster Manager that allows you to store and share Gurobi
files (models, solution parameters etc.). The main use is to store models so they can be reused
later in different batch configurations.

In this section, we will review the most important file repository commands. We assume that
the system administrator has installed the cluster and that you have successfully executed the
grbcluster login command with the appropriate flags to access your cluster.

Uploading a File to the Repository
Any files supported by the Gurobi Optimizer can be uploaded and shared in the repository. For
example, let’s upload the glass4.mps model file with the following command:

grbcluster repo upload /Library/gurobi900/mac64/examples/data/glass4.mps --container=training
info : Object 3f104672-52c8-4a53-ad79-4a01065ffefd created, upload done in container ’training’

A container is like a directory and is used to group files together so that you can retrieve them
more easily later on. Once uploaded, you can check that the new file is available in the specified
container with the following command:

grbcluster repo list --container=training
ID CONTAINER NAME CREATED SIZE USER USERID
3f104672 training glass4.mps 2019-09-22 21:51:10 86579 admin admin

Using a File from the Repository
You can submit batches that use files from the repository as their inputs. A file can be referenced
using the full file object ID or the file object path. A file object path starts with ’@’ and concatenates
the container and the object name with a ’/’ separator. For example, if the object was uploaded
in the container examples/app1 with name model.mps, you can reference it using:

@examples/app1/model.mps

One possible use of the file repository is to submit several batches that solve the same model
using different parameters:

grbcluster batch solve @training/glass4.mps ResultFile=solution.sol Threads=2
info : Batch 7fe26af5-fbec-4e23-ad58-9ab4539f98f3 created
info : Batch 7fe26af5-fbec-4e23-ad58-9ab4539f98f3 submitted with job 4e359f99...

grbcluster batch solve @training/glass4.mps ResultFile=solution.sol Threads=5
info : Batch d2434fc9-b3df-4be0-bf2c-4d1eac2acb5e created
info : Batch d2434fc9-b3df-4be0-bf2c-4d1eac2acb5e submitted with job 8deeb020...

The model file was used in two batches, but only needed to be uploaded once.

Deleting a File from the Repository
You can delete a file from the repository once you are done with it, but only if no batch is referencing
it. If the file is still in use, you will be notified as in the following example:

grbcluster repo delete @training/glass4.mps
fatal : Object is in use by [7fe26af5-fbec-4e23-ad58-9ab4539f98f3]

58

The file may still be in use because a batch is running, or because the client did not yet download
the results and discard the batch. Once there are no more references, the file will be deleted and
you can check the container again:

> grbcluster repo delete @training/glass4.mps
> grbcluster repo list --container=training
ID CONTAINER NAME CREATED SIZE USER USERID

59

4.5 Node Commands
In this section, we will review the most important commands to monitor the cluster. We assume
that the system administrator has installed the cluster and that you successfully executed the
grbcluster login command with the appropriate flags to access your cluster.

Listing Cluster Nodes
The nodes command provides a list of nodes in the cluster, along with status information. This
command is a shortcut for the node list command. For example:
> grbcluster nodes
ID ADDRESS STATUS TYPE LICENSE PROCESSING #Q #R JL IDLE %MEM %CPU
b7d037db server1:61000 ALIVE COMPUTE VALID ACCEPTING 0 0 10 19m 15.30 5.64
735c595f server2:61000 ALIVE COMPUTE VALID ACCEPTING 0 0 10 19m 10.45 8.01

Add the --describe flag to see an explanation of each field:
> grbcluster nodes --describe

ID - Unique node ID, use --long to display full ID
ADDRESS - Node address
STATUS - Node status (ALIVE, FAILED, JOINING, LEAVING, DEGRADED)
TYPE - Node type (COMPUTE: compute server, WORKER: distributed worker)
GRP - Group name for job affinity (not displayed if empty or restricted)
LICENSE - License status (N/A, VALID, INVALID, EXPIRED)
PROCESSING- Processing state (ACCEPTING, DRAINING, STOPPED)
#Q - Number of jobs in queue
#R - Number of jobs running
JL - Job Limit (maximum number of running jobs)
IDLE - Idle time since the last job execution (in minutes)
%MEM - Percentage of memory currently used on the machine
%CPU - Percentage of CPU currently used on the machine
STARTED - Node start time, use --long
RUNTIMES - Deployed runtime versions, use --long
VERSION - Remote Services Agent version, use --long

Troubleshooting Connectivity Issues
You can test to see if a Remote Services node is reachable with the node ping command:
> grbcluster node ping --server=server1
Node is not reachable

The node latency command provides additional details:
> grbcluster node latency
ADDRESS LATENCY NBERR
server1 1.12813ms 0
server2 1.218103ms 0

This will display the latency from the client machine to each node in the cluster.
Add the --describe flag to see an explanation of each field:

> grbcluster node latency --describe
ADDRESS - Node address
LATENCY - latency between the local client and a node
NBERR - Number of errors

60

Listing Cluster Licenses
The node licenses command displays license status information for each node in a cluster:

> grbcluster node licenses
ID ADDRESS STATUS TYPE KEY EXP ORG USER APP VER CS DL ERROR
eb07fe16 server1 VALID NODE gurobi 8 true 0
b7d037db server2 VALID NODE gurobi 8 true 0

Add the --describe flag to see an explanation of each field:

> grbcluster node licenses --describe
ID - Unique node ID, use --long to display full ID
ADDRESS - Node address
STATUS - License status (N/A, VALID, INVALID, EXPIRED)
TYPE - License type
KEY - License Cloud Key (not displayed if empty or restricted)
EXP - License expiration
VER - Maximum runtime version supported
CS - Indicate if Compute Server features are enabled
DL - Maximum number of workers for a distributed job (Distributed Limit)
ORG - Assigned organization
USER - Assigned username
APP - Assigned application name
ERROR - License error message

If a node has an INVALID license, you can run the following command to learn more:

> grbcluster node licenses
ID ADDRESS STATUS TYPE KEY EXP ORG USER APP VER CS DL ERROR
eb07fe16 server1 INVALID NODE false 0 No Gurobi license found...

Note that the node licenses command can be used at any time to check the validity and
attributes of licenses on all the nodes of the cluster (expiration date, distributed limit, etc.).

Changing the Job Limit
Each node of a Remote Services has a job limit, which indicates the maximum number of jobs that
can be run simultaneously on that node. This job limit can be changed using the grbcluster node
config command, together with the --job-limit= flag. For example, to change the job limit to
5:

> grbcluster node config --job-limit=5

Changes to the job limit parameter only apply to the specified node; other nodes in the cluster
are unaffected. Once changed, the new value will persist, even if you stop and restart the node.

Recall that you can run the nodes command to view the current job limit for each node in a
cluster:

> grbcluster nodes
ID ADDRESS STATUS TYPE LICENSE PROCESSING #Q #R JL IDLE %MEM %CPU
b7d037db server1:61000 ALIVE COMPUTE VALID ACCEPTING 0 0 2 19m 15.30 5.64
735c595f server2:61000 ALIVE COMPUTE VALID ACCEPTING 0 0 2 19m 10.45 8.01

The JL column shows the job limit, which is 2 for both nodes in the cluster in this example.
We can change the limit for one node:

61

> grbcluster node config --server=server1:61000 --job-limit=5

By rerunning the nodes command, we can see that the limit for server1 has been changed to
5:

> grbcluster nodes
ID ADDRESS STATUS TYPE LICENSE PROCESSING #Q #R JL IDLE %MEM %CPU
b7d037db server1:61000 ALIVE COMPUTE VALID ACCEPTING 0 0 5 19m 15.30 5.64
735c595f server2:61000 ALIVE COMPUTE VALID ACCEPTING 0 0 2 19m 10.45 8.01

62

4.6 Distributed Algorithms
Gurobi Remote Services allow you to perform distributed optimization. All you need is a cluster
with more than one node. The nodes can be either Compute Server or Distributed Worker nodes.
Ideally these nodes should all give very similar performance. Identical performance is best, es-
pecially for distributed tuning, but small variations in performance won’t hurt overall results too
much.

Distributed Workers and the Distributed Manager
Running distributed algorithms requires several machines. One acts as the manager, coordinating
the activities of the set of machines, and the others act as workers, receiving tasks from the manager.
The manager typically acts as a worker itself, although not always. More machines generally
produce better performance, although the marginal benefit of an additional machine typically falls
off as you add more.

As we mentioned earlier, Distributed Workers do not require Gurobi licenses. You can add any
machine to a Remote Services cluster to act as a Distributed Worker. The manager does require
a distributed algorithm license (you’ll see a DISTRIBUTED= line in your license file if distributed
algorithms are enabled).

A typical distributed optimization will look like the following, with all machines belonging to
the same Remote Services cluster:

Manager/Distributed Worker Distributed Worker

Distributed Worker Distributed Worker

The workload associated with managing distributed algorithms is quite light, so a machine can
handle both the manager and worker roles without degrading performance.

Another option is to use a machine outside of your Remote Services cluster as the manager:

Distributed Worker Distributed Worker

Distributed Worker Distributed Worker

Manager

63

Note that we only allow a machine to act as manager for a single distributed job. If you want
to run multiple distributed jobs simultaneously, you’ll need multiple manager machines.

Configuration
Before launching a distributed optimization job, you should run the grbcluster nodes command
to make sure the cluster contains more than one live machine:
> grbcluster nodes

If you see multiple live nodes, then that cluster is good to go:
ID ADDRESS STATUS TYPE LICENSE PROCESSING #Q #R JL IDLE %MEM %CPU
b7d037db server1:61000 ALIVE COMPUTE VALID ACCEPTING 0 0 2 1m 3.00 2.23
eb07fe16 server2:61001 ALIVE WORKER N/A ACCEPTING 0 0 1 1m 2.95 5.33

We should reiterate a point that was raised earlier: you do not need a Gurobi license to run
Gurobi Remote Services on a machine. While some services are only available with a license, any
machine that is running Gurobi Remote Services will provide the Distributed Worker service.

Running a distributed algorithm is simply a matter of setting the appropriate Gurobi parame-
ter. Gurobi supports distributed MIP, concurrent LP and MIP, and distributed tuning. These are
controlled with three parameters: DistributedMIPJobs, ConcurrentJobs, and TuneJobs, respec-
tively. These parameters indicate how many distinct Distributed Worker jobs you would like to
start. Keep in mind that the initial Compute Server job will act as the first worker.

Note that jobs are allocated on a first-come, first-served basis, so if multiple users are sharing
a cluster, you should be prepared for the possibility that some or all of your nodes may be busy
when you request them. Your program will grab as many as it can, up to the requested count. If
none are available, it will return an error.

Running a Distributed Algorithm as an Interactive Job
To give an example, if you have a cluster consisting of two machines (server1 and server2), and
if you set TuneJobs to 2 in grbtune . . .
> grbtune TuneJobs=2 misc07.mps

. . . you should see output that looks like the following:
Capacity available on ’server1:61000’ - connecting...
...
Using Compute Server as first worker
Started distributed worker on server2:61000

Distributed tuning: launched 2 distributed worker jobs

This output indicates that two worker jobs have been launched, one on machine server1 and
the other on machine server2. These two jobs will continue to run until your tuning run completes.

Similarly, if you launch distributed MIP . . .
> gurobi_cl DistributedMIPJobs=2 misc07.mps

. . . you should see the following output in the log:
Using Compute Server as first worker
Started distributed worker on server2:61000

Distributed MIP job count: 2

64

Submitting a Distributed Algorithm as a Batch
With a Cluster Manager, you can also submit your distributed MIP and concurrent MIP as a batch
using the batch solve command. Distributed tuning is not yet supported. Here is an example:

./grbcluster batch solve DistributedMIPJobs=2 misc07.mps
info : Batch f1026bf5-d5cf-44c9-81f8-0f73764f674a created
info : Uploading misc07.mps...
info : Batch f1026bf5-d5cf-44c9-81f8-0f73764f674a submitted with job d71f3ceb...

As we can see, the model was uploaded and the batch was submitted. This creates a par-
ent job as a proxy for the client. This job will in turn start two worker jobs because we set
DistributedMIPJobs=2. This can be observed in the job history:

> grbcluster job history --length=3
JOBID BATCHID ADDRESS STATUS STIME USER OPT API PARENT
d71f3ceb f1026bf5 server1:61000 COMPLETED 2019-09-23 14:17:57 jones OPTIMAL grbcluster
6212ed73 server1:61000 COMPLETED 2019-09-23 14:17:57 jones OPTIMAL d71f3ceb
63cfa00d server2:61000 COMPLETED 2019-09-23 14:17:57 jones OPTIMAL d71f3ceb

Using a Separate Distributed Manager
While Distributed Workers always need to be part of a Remote Services cluster, note that the
distributed manager itself does not. Any machine that is licensed to run distributed algorithms
can act as the distributed manager. You simply need to set WorkerPool and WorkerPassword
parameters to point to the Remote Services cluster that contains your distributed workers. Note
that the Cluster Manager can not act as the distributed manager.

To give an example:

> gurobi_cl WorkerPool=server1:61000 WorkerPassword=passwd DistributedMIPJobs=2 misc07.mps

You should see the following output in the log:

Started distributed worker on server1:61000
Started distributed worker on server2:61000

Distributed MIP job count: 2

In this case, the distributed computation is managed by the machine where you launched this
command, and the two distributed workers come from your Remote Services cluster.

65

Programming with Remote Services

While applications that use Remote Services can generally be built without having to consider
where they will be run, there are a few aspects of Remote Services that programmers should be
aware of. These are covered in this section.

66

5.1 Using an API to Create a Compute Server Job
As was noted earlier, a Remote Services client program will always need to be told how to reach
the Remote Services cluster. This can be done in two ways. The first is through a license file. This
approach is described in an earlier discussion. It requires no changes to the application program
itself. The same program can perform optimization locally or remotely, depending on the settings
in the license file.

Your second option for specifying the desired Compute Servers is through API calls. You would
first construct an empty environment (using GRBemptyenv in C or the appropriate GRBEnv con-
structor in the object-oriented interfaces), then set the appropriate parameters on this environment
(typically ComputeServer and ServerPassword), and then start the empty environment (using
GRBstartenv in C or env.start() in the object-oriented interfaces).

To give a simple example, if you’d like your Python program to offload the optimization com-
putation to a Compute Server named server1, you could say:

env = Env(empty=True)
env.setParam(GRB.Param.ComputeServer, "server1:61000")
env.setParam(GRB.Param.ServerPassword, "passwd")
env.start()
model = read("misc07.mps", env)
model.optimize()

An equivalent Java program would look like this:

GRBEnv env = new GRBEnv(true);
env.set(GRB.StringParam.ComputeServer, "server1:61000");
env.set(GRB.StringParam.ServerPassword, "passwd");
env.start();
GRBModel model = new GRBModel(env, "misc07.mps");
model.optimize();

We refer you to the Gurobi Reference Manual for details on these routines.

67

http://www.gurobi.com/documentation/9.0/refman/index.html

5.2 Using an API to Create a Batch
Batch Optimization is a feature only available with the Gurobi Cluster Manager. It allows a client
to create a model, tag a set of relevant elements in that model, and then submit that model as a
batch. A unique batch ID is returned in response, allowing the client to query and monitor the
status of the batch (submitted, completed, etc.). Once the batch request has been processed, the
client can retrieve its solution and the relevant attributes of the tagged elements in the model as a
JSON document.

In this section, we just want to introduce the principles of the API by briefly illustrating these
steps. The code snippets that follow show the main concepts, but aren’t necessarily complete
programs. You can refer to the Gurobi Reference Manual for details on the full API and for a
complete and functional example.

The first step in this process is to create a batch environment by connecting to a Cluster
Manager and enabling batch mode with the CSBatchMode parameter. In order to authenticate the
application with the Cluster Manager, you have two options. The first is to use your user name
and password, by setting the UserName and ServerPassword parameters. The second, which we
recommend, is to use API keys and set the CSAPIAccessID and CSAPISecret parameters instead.
We set these parameters directly in the code snippet for simplicity, but we recommended that you
set them in the license file or read their values from environment variables to avoid the need to
hard-code them.

Then you can build a model, tag the variables and other elements that you will want to export
in the solution, and finally you can submit the batch, which gives a batch ID.

The following Python code illustrates these steps:

import gurobipy as gp

create a batch environment
with gp.Env(empty=True) as env:

env.setParam(’CSManager’, ’http://localhost:61080’)
env.setParam(’CSAPIAccessID’, ’0e8c35d5-ff20-4e5d-a639-10105e56b264’)
env.setParam(’CSAPISecret’, ’d588f010-ad47-4310-933e-1902057661c9’)
env.setParam(’CSBatchMode’, 1)
env.start()

build the model
with gp.read(’misc07.mps’, env) as model:

set tags to control the solution export
[...]

submit and get the batch ID
batchid = model.optimizeBatch()

Then your client or application can monitor the batch status. Here is an example that accesses
and prints the current status:

create a batch environment
with gp.Env(empty=True) as env:

env.setParam(’CSManager’, ’http://localhost:61080’)
env.setParam(’CSAPIAccessID’, ’0e8c35d5-ff20-4e5d-a639-10105e56b264’)

68

http://www.gurobi.com/documentation/9.0/refman/index.html

env.setParam(’CSAPISecret’, ’d588f010-ad47-4310-933e-1902057661c9’)
env.setParam(’CSBatchMode’, 1)
env.start()

get the batch information
with gp.Batch(batchid, env) as batch:

print("Batch ID {}: Error code {} ({})".format(
batch.BatchID, batch.BatchErrorCode, batch.BatchErrorMessage))

Once the batch is complete, you can retrieve the solution as a JSON object:

create a batch environment
with gp.Env(empty=True) as env:

env.setParam(’CSManager’, ’http://localhost:61080’)
env.setParam(’CSAPIAccessID’, ’0e8c35d5-ff20-4e5d-a639-10105e56b264’)
env.setParam(’CSAPISecret’, ’d588f010-ad47-4310-933e-1902057661c9’)
env.setParam(’CSBatchMode’, 1)
env.start()

get the batch information
with gp.Batch(batchid, env) as batch:

Get JSON solution as string, create dict from it
sol = json.loads(batch.getJSONSolution())

Pretty printing the general solution information
print(json.dumps(sol["SolutionInfo"], indent=4))

69

5.3 Performance Considerations on a Wide-Area Network (WAN)
While using Gurobi Compute Server doesn’t typically require you to make any modifications to
your code, performance considerations can sometimes force you to do some tuning when your client
and server are connected by a slow network (e.g., the internet). We’ll briefly talk about the source
of the issue, and the changes required to work around it.

In a Gurobi Compute Server, a call to a Gurobi routine can result in a network message between
the client and the server. An individual message is not that expensive, but sending hundreds or
thousands of messages could be quite time-consuming. Compute Server does a few things to reduce
the number of such messages. First, it makes heavy use of caching. If you request an attribute on a
single variable, for example, the client library will retrieve and store the value of that attribute for
all variables, so subsequent requests won’t require additional communication. In addition, our lazy
update approach to model building allows us to buffer additions and modifications to the model,
You can feel free to build your model one constraint at a time, for example. Your changes are
communicated to the server in one large message when you request a model update.

Having said that, we should add that not all methods are cached or buffered. As a result, we
suggest that you avoid doing the following things:

• Retrieving the non-zero values for individual rows and columns of the constraint matrix
(using, for example, GRBgetconstrs in C, GRBModel::getRow in C++, GBModel.getRow in
Java, GRBModel.GetRow in .NET, and Model.getRow in Python).

• Retrieving individual string-valued attributes.

Of course, network overhead depends on both the number of messages that are sent and the
sizes of these messages. We automatically perform data compression to reduce the time spent
transferring very large messages. However, as you may expect, you will notice some lag when
solving very large models over slow networks.

70

5.4 Callbacks
As you might imagine, since the actual optimization task runs on a remote system in a Compute
Server environment, Gurobi callbacks give different behavior than they do when the task runs
locally. In particular, callbacks are both less frequent and more restrictive. You will only receive
MESSAGE, BARRIER, SIMPLEX, MIP, MIPSOL and MULTIOBJ callbacks; you will not receive PRESOLVE
or MIPNODE callbacks. As a result, you will only have access to a subset of the callback information
that you would be able to obtain when running locally. You can still request that the optimization
be terminated from any of the callbacks you receive, though. Please refer to the Callback Code
section of the Gurobi Reference Manual for more information on the various callback codes.

71

http://www.gurobi.com/documentation/9.0/refman/index.html

5.5 Developing for Compute Server
Using Gurobi Compute Server typically requires no changes to your program. This section covers
the few exceptions.
Coding for Robustness

Client-server computing introduces a few robustness situations that you wouldn’t face when all of
your computation happens on a single machine. Specifically, by passing data between a client and
a server, your program is dependent on both machines being available, and on an uninterrupted
network connection between the two systems. The queuing and load balancing capabilities of
Gurobi Compute Server can handle the vast majority of issues that may come up, but you can take
a few additional steps in your program if you want to achieve the maximum possible robustness.

The one scenario you may need to guard against is the situation where you lose the connection
to the server while the portion of your program that builds and solves an optimization model is
running. Gurobi Compute Server will automatically route queued jobs to another server, but jobs
that are running when the server goes down are interrupted (the client will receive a NETWORK error).
If you want your program to be able to survive such failures, you will need to architect it in such
a way that it will rebuild and resolve the optimization model in response to a NETWORK error. The
exact steps for doing so are application dependent, but they generally involve encapsulating the
code between the initial Gurobi environment creation and the last Gurobi call into a function that
can be reinvoked in case of an error.
Features Not Supported in Compute Server

As noted earlier, there are a few Gurobi features that are not supported in Compute Server. We’ve
mentioned some of them already, but we’ll give the full list here for completeness. You will need to
avoid using these features if you want your application to work in a Compute Server environment.

The unsupported features are:

• User cuts: The MIPNODE callback isn’t supported, so you won’t have the opportunity to add
your own cuts. User cuts aren’t necessary for correctness, but applications that heavily rely
on them may experience performance issues.

• Multithreading within a single Gurobi environment: This isn’t actually supported in
Gurobi programs in general, but the results in a Compute Server environment are sufficiently
difficult to track down that we wanted to mention it again here. All models built from an
environment share a single connection to the Compute Server. This one connection can’t
handle multiple simultaneous messages. If you wish to call Gurobi from multiple threads
in the same program, you should make sure that each thread works within its own Gurobi
environment.

• Advanced simplex basis routines: The C routines that work with the simplex basis
(GRBFSolve, GRBBSolve, GRBBinvColj, GRBBinvRowi, and GRBgetBasisHead) are not sup-
ported.

72

5.6 Distributed Algorithm Considerations
The distributed algorithms have been designed to be nearly indistinguishable from the single ma-
chine versions. Our hope is that, if you know how to use the single machine version, you’ll find it
straightforward to use the distributed version. The distributed algorithms respect all of the usual
parameters. For distributed MIP, you can adjust strategies, adjust tolerances, set limits, etc. For
concurrent MIP, you can allow Gurobi to choose the settings for each machine automatically or you
can use concurrent environments to make your own choices. For distributed tuning, you can use
the usual tuning parameters, including TuneTimeLimit, TuneTrials, and TuneOutput.
Performance Across Distributed Workers

There are a few things to be aware of when using distributed algorithms, though. One relates
to relative machine performance. As we noted earlier, distributed algorithms work best if all of
the workers give very similar performance. For example, if one machine in your worker pool were
much slower than the others in a distributed tuning run, any parameter sets tested on the slower
machine would appear to be less effective than if they were run on a faster machine. Similar
considerations apply for distributed MIP and distributed concurrent. We strongly recommend
that you use machines with very similar performance. Note that if your machines have similarly
performing cores but different numbers of cores, we suggest that you use the Threads parameter
to make sure that all machines use the same number of cores.
Callbacks

Another difference between the distributed algorithms and our single-machine algorithms is in the
callbacks. The distributed MIP and distributed concurrent solvers do not provide the full range of
callbacks that are available with our standard solvers. They will only provide the MIP, MIPNODE,
and POLLING callbacks. See the Callback section of the Gurobi Reference Manual) for details on
the different callback types.
Logging

The distributed algorithms provide slightly different logging information from the standard al-
gorithms. Consult the Distributed MIP Logging section of the Gurobi Reference Manual) for
details.

73

http://www.gurobi.com/documentation/9.0/refman/index.html
http://www.gurobi.com/documentation/9.0/refman/index.html

5.7 Cluster REST API
Gurobi Remote Services also expose a REST API to support advanced integration and monitoring.
The API follows standard REST principles and can be used from a variety languages and tools
(Java, Python, Node, curl, . . .).

If you are using a self-managed cluster (without a Cluster Manager), the REST API is provided
by the nodes of the cluster and is fairly basic. It covers monitoring functions only, providing
information on the nodes and the jobs processed by the cluster.

To access an API endpoint, you will also need to provide the access password in the header
X-GUROBI-CSPASSWORD. Some endpoints are restricted and the administrator password will be re-
quired. Detailed, interactive documentation is available in Swagger format, and can be accessed
directly from a cluster node. For example:

http://server1/swagger.html

If you are using a Cluster Manager, a more extensive REST API is provided that covers not only
the monitoring of nodes and jobs, but also the management of users, batches and repository files.
In fact, all of the functions exposed by grbcluster are supported. Some endpoints are restricted,
and administrator or system administrator authentication will be required. You can generate API
keys and pass the access ID and the secret key in the X-GUROBI-ACCESS-ID X-GUROBI-SECRET-KEY
headers respectively. Complete Swagger documentation is available in the Cluster Manager Web
User Interface (in the Help section).

74

Using Remote Services with Gurobi Instant Cloud

Our Gurobi Instant Cloud product is built on top of either Amazon’s Elastic Compute Cloud (EC2)
platform or Microsoft’s Azure platform. When you launch an Instant Cloud machine, we launch
a machine instance on EC2 or Azure and then start Gurobi Remote Services on that machine.
You also have the option of launching multiple machines, in which case we’ll create a Remote
Services cluster on those machines. Once you have set up your client with a client license file, you
will be able to use grbcluster to monitor and administer the cluster. Note, however, that cluster
administrative commands are not accessible, since the Gurobi Instant Cloud Manager already plays
the cluster administrator role. Note also that communication with your Instant Cloud machine will
always use HTTPS, and it will go through a region router.

75

6.1 Client Setup
To access the cluster started by Instant Cloud, you first need to download the machine or pool
license file from the Instant Cloud manager. You can download the default license file from the
license panel, the pool license from the pool panel, or the machine license from the machine panel.
Then, you need to save this file in your home directory or in one of the following locations:

• C:\gurobi\ on Windows

• /opt/gurobi/ on Linux

• /Library/gurobi/ on Mac OS

• The user’s home directory

You can also set the environment variable GRB_LICENSE_FILE to point to this file.

76

6.2 Client Commands
Once you have set up your client license file and started an Instant Cloud instance, you can use
grbcluster to list the nodes in your cluster or issue other client commands. Instances can be started
by submitting a job through the gurobi_cl command-line tool, through the Gurobi programming
language APIs, or manually through the Instant Cloud Manager website.

If you try to run grbcluster without first starting an instance, you will get the following error:

fatal : Instant Cloud pool default has no machines

If your instance is in the process of starting, you will get the following error:

fatal : Instant Cloud pool default is not ready

If your instance is up and running, grbcluster will list the nodes in your cluster:

> grbcluster nodes
ADDRESS STATUS TYPE GRP LICENSE #Q #R JL IDLE %MEM %CPU
ip-172-31-31-180 ALIVE COMPUTE m-HkQmbubhWH1g7m VALID 0 0 2 12m0s 27.08 1.98
ip-172-31-62-109 ALIVE COMPUTE m-HJSXmb_-2WBkLX VALID 0 0 2 12m0s 27.49 0.00

To obtain additional details (about the license file, the cloud pool, or the name of the server),
you can use the verbose mode with the -v flag:

> grbcluster -v nodes
verb : Reading license file /licenses/gurobi.lic
verb : Accessing Instant Cloud pool 999999-pool5
verb : Using remote services on node ip-172-31-31-180
ADDRESS STATUS TYPE GRP LICENSE #Q #R JL IDLE %MEM %CPU
ip-172-31-31-180 ALIVE COMPUTE m-HkQmbubhWH1g7m VALID 0 0 2 12m0s 27.08 1.98
ip-172-31-62-109 ALIVE COMPUTE m-HJSXmb_-2WBkLX VALID 0 0 2 12m0s 27.49 0.00

You can use grbcluster to perform all of the same client commands on an Instant Cloud cluster
that you’d perform on a cluster running locally. You can monitor running and recently processed
jobs, access log files, view parameters, etc.

77

6.3 Administrative Commands
Gurobi Instant Cloud allows you to perform administrative commands (to abort a job, change the
job limit, etc.), but you’ll need to retrieve the administrator password to do so. The administrator
password can be retrieved from the Instant Cloud Manager. For a running machine, you will find
the administrator password in the Machines area, within machine details under the PASSWORDS tab.
If you have no running machine, you can find it in the Settings area, under passwords settings.
The password will be prompted if not specified in the license file.

For example, you can abort a specific job:

> grbcluster job abort 3545d9de-8de4-4666-9491-5d60e2e56186

Or, you can set the job limit of a specific Compute Server node:

> grbcluster node config --server=ip-172-31-62-109 --job-limit=10

78

http://cloud.gurobi.com/manager

6.4 Region Router
Starting with version 8.0, all communications between clients and the Gurobi Instant Cloud use
the HTTPS protocol. This means that your communications are secured and encrypted using
standard internet protocols. In addition, Gurobi servers enforce the latest encryption policies (TLS
v1.2 and above only). For better security, the dedicated machines started by Instant Cloud on
your behalf cannot be accessed directly. All communications must transit through a secured and
highly-available region router acting as a reverse proxy. This also facilitates the integration with
clients, as only the standard HTTPS protocol and standard port 443 need to be open if a firewall
is in place.

The region router is automatically detected and used based on the pool definition or the machine
license file.

79

Appendix A: grb_rs

Usage:
grb_rs [flags] Start the remote services as a standard process
grb_rs --help Display usage
grb_rs command [flags] Execute a specific command
grb_rs command --help Display more information about a command

Flags can be set using --flag=value or the short form -f=value if defined.
A boolean flag can be enabled using --flag or the short form -f if defined.

Configuration Helper Commands:
aws Display machine information when running on Amazon Web Services
azure Display machine information when running on Microsoft Azure
hash Hash a password
init Clone the default data directory and configuration to current

directory
token Generate a cluster token
properties Display help about configuration properties

Service Commands:
install Install the service
restart Start or restart the service (install the service if necessary)
start Start the service (install the service if necessary)
stop Stop the service
uninstall Uninstall the service

With no command, grb_rs will start the remote services as a standard process
and the following flags are available for quick configuration. The full list
of properties can be displayed with the ’grb_rs properties’ command and the
properties can be set in the grb_rs.cnf configuration file.

Logging Flags:
--console-ts Add timestamps to console log messages
--logfile string Log to a rotating log file
--logfile-max-age int Limit the rotating log file to a number of days
--logfile-max-size int Limit the size of each file to a size in Mb
--no-console Disable log to console
--syslog Log to syslog or Windows event log

-v, --verbose Enable verbose logging

Configuration Flags:
-c, --config string Location of the configuration file

(default: ’grb_rs.cnf’)
--data string Location of the data root directory

(default: ’data’)
--group Tags the node with a group name
--hostname Overrides the public name on this name
--idle-shutdown int Shutdown if the server is idle for more than the

specified time limit (minutes)
--join URL Join a cluster using the specified cluster

80

representative node address
--manager URL Register the node with a Cluster Manager
--port int Start the node on the given port
--service Indicates if it is started by a service manager
--worker Declare this node as a distributed worker

Security Flags:
--tls Use TLS encryption between nodes
--tlscert string Path to TLS certificate file
--tlskey string Path to TLS key file
--tls-insecure Use TLS encryption between nodes but disable

verification of certificates
--manager-insecure Disable certificate verification if TLS is used

to communicate with the Cluster Manager

General Flags:
--version Display version information
--help Display usage

81

Appendix B: grb_rs - Configuration Properties

The following list of properties can also be displayed using the grb_rs properties command.

ADMINPASSWORD: Type string. Client password to administrate the jobs. The password can be in
clear or can be hashed using ’grb_rs hash’ command for better security.

AWS: Type bool, use --aws to override on the command line. Enable AWS configuration using ec2
user-data.

AWS_HOSTNAME_MODE: Type string. Indicates how to get the node name, deprecated, see CLOUD_-
HOSTNAME_MODE

AZURE: Type bool, use --azure to override on the command line. Enable Azure configuration using
user-data.

CLIENT_DETAILS_ADMIN: Type bool. Indicates client details such as host, IP are only accessible as
an admin user When a job is submitted, the client hostname, IP, and process ID are recorded.
By default, this information is displayed to any user running the command line tool grbcluster
or the REST API. If this property is set to true, only the administrator will be able to access
this information.

CLOUDKEY: Type string. Cloud license key.

CLOUD_HOSTNAME_MODE: Type string. Indicates how to get the node name on the AWS or Azure:
’public’ or ’private’. The public mode will assign the public DNS name or IP, whereas the
private mode will assign the base name of the private DNS name. The private mode is used
with a Gurobi router.

CLUSTER_ADMINPASSWORD: Type string. Client password to administrate the cluster. The password
can be in clear or can be hashed using ’grb_rs hash’ command for better security.

CLUSTER_TOKEN: Type string. Unique cluster identifier. The token is en encrypted key to let nodes
communicates between each other. All nodes of a cluster must have the same token. Use
’grb_rs token’ command to generate a new token.

CONSOLE_TS: Type bool, use --console-ts to override on the command line. Add timestamps to
console log messages.

DATA_DIR: Type string (default data), use --data to override on the command line. Root directory
to store remote services data.

DEGRADED_TIMEOUT: Type int (default 60). Timeout to evict a node that is DEGRADED from the
cluster. 0 for no timeout.

FILE_DESCRIPTOR_LIMIT: Type int (default 2048). Maximum number of file descriptors.

82

FIXED_JOBLIMIT: Type bool. Indicates if the job limit can be changed once the node started.

GROUP: Type string. Node grouping for job affinity assignment.

HARDJOBLIMIT: Type int (default 0). A hard limit on the number of simultaneous client jobs.
Certain jobs (those with priority 100) are allowed to ignore the JOBLIMIT, but they aren’t
allowed to ignore this limit. Client requests beyond this limit are queued. Use 0 to disable.

HOSTNAME: Type string, use --hostname to override on the command line. Advertised hostname of
the cluster node.

IDLESHUTDOWN: Type int (default -1), use --idle-shutdown to override on the command line. Idle
time limit (minutes) to trigger a shutdown of the server, -1 to disable.

IDLESHUTDOWN_COMMAND: Type string. Command to execute when the idle shutdown is reached,
for example to shutdown the machine.

IDLESHUTDOWN_STOPPED: Type int (default -1). Idle time limit (minutes) to trigger a shutdown of
the machine once the processing state is STOPPED, -1 to disable.

IDLETIMEOUT: Type int (default 0). Default idle timeout in seconds. If a job does not send a
command for more than the timeout, it will be terminated. Use 0 to disable.

IGNOREPRIORITIES: Type bool. Disable job priority handling.

JOBLIMIT: Type int (default 2). A limit on the number of client jobs that are allowed to run on
the server at a time. Client requests beyond this limit are queued.

JOIN: Type string, use --join to override on the command line. List of other nodes to join.

JOIN_TIMEOUT: Type int (default 20). Timeout for a successful join, use 0 to disable.

KEEPALIVE_TIMEOUT: Type int (default 60). Default keep alive timeout in seconds. If a job does
not send a keep alive message for more than the timeout, it will be terminated.

KEEP_BATCH_DATA: Type bool. Indicates if temporary batch files must be kept. When a batch job
is executed, input data are first generated in an input directory. The output data is similarly
stored in an output data. By default, these directories are deleted once a batch is complete
to save space. However, using this property, the files can be kept until the jobs is evicted of
the recent history (see MAX_RECENT.)

LICENSEID: Type string. Cloud license ID.

LOGFILE: Type string, use --logfile to override on the command line. Enable logging to a rotating
log file.

LOGFILE_MAX_AGE: Type int (default 5), use --logfile-max-age to override on the command line.
Limit the rotating log file to a number of days.

LOGFILE_MAX_SIZE: Type int (default 500), use --logfile-max-size to override on the command
line. Limit the size of each file to a size in Mb.

83

MANAGER: Type string, use --manager to override on the command line. Cluster Manager URL

MANAGER_INSECURE: Type bool. Indicate if connection to manager is using TLS insecure

MAX_QUEUE: Type int (default 1000). Maximum number of jobs in the queue.

MAX_RECENT: Type int (default 50). Maximum number of executed jobs in the recent history.

NOQUEUE: Type bool. Disable job queueing.

NO_CONSOLE: Type bool, use --no-console to override on the command line. Disable the console
log.

NO_LOCAL_DISK: Type bool (default true). Indicates if local disk can be used to store node files,
solution files etc

PASSWORD: Type string. Client password to access the cluster. The password can be in clear or can
be hashed using ’grb_rs hash’ command for better security.

PORT: Type int, use --port to override on the command line. Port number for the REST API.

REGISTRATION_PORT: Type int. Port used to register worker, 0 means a dynamic port.

STRICT_RUNTIME_MATCHING: Type bool (default true). Indicates if matching of client and runtime
version is strict When the matching is strict, the runtime having the same technical release
will be selected. When it is not strict, the runtime having the latest technical release will be
selected

SYSLOG: Type bool, use --syslog to override on the command line. Log to syslog or Windows
event log.

THREADLIMIT: Type int (default -1). Maximum number of threads used by a worker.

TLS: Type bool, use --tls to override on the command line. Enable TLS encryption protocol.

TLS_CERT: Type string, use --tlscert to override on the command line. Path to TLS certificate
file. If not specified, a self-signed certificate will be generated.

TLS_INSECURE: Type bool, use --tls-insecure to override on the command line. Enable TLS
encryption protocol but skip certificate verification. This mode can be used with self-signed
certificate so that data is encrypted.

TLS_KEY: Type string, use --tlskey to override on the command line. Path to TLS key file. If
not specified, a key will be generated to self-sign a certificate.

USERNAME_ADMIN: Type bool. Indicates that job username is only accessible as an admin user When
a job is submitted, the client process username is recorded. By default, this information is
displayed to any user running the command line tool grbcluster or the REST API. If this
property is set to true, only the administrator will be able to access this information.

VERBOSE: Type bool, use --verbose to override on the command line. Enable verbose logging.

WORKER: Type bool, use --worker to override on the command line. Declare the node as a dis-
tributed worker.

84

Appendix C: grb_rsm

Usage:
grb_rsm [flags] Start the Cluster Manager as a standard process
grb_rsm --help Display usage
grb_rsm command [flags] Execute a specific command
grb_rsm command --help Display more information about a command

Flags can be set using --flag=value or the short form -f=value if defined.
A boolean flag can be enabled using --flag or the short form -f if defined.

Configuration Helper Commands:
properties Display help about configuration properties

Service Commands:
install Install the service
restart Start or restart the service (install the service if necessary)
start Start the service (install the service if necessary)
stop Stop the service
uninstall Uninstall the service

Logging Flags:
--console-ts Add timestamps to console log messages
--logfile string Log to a rotating log file
--logfile-max-age int Limit the rotating log file to a number of days
--logfile-max-size int Limit the size of each file to a size in Mb
--no-console Disable log to console
--syslog Log to syslog or Windows event log

-v, --verbose Enable verbose logging

Configuration Flags:
-c, --config string Location of the configuration file (default: ’grb_rsm.cnf’)

--database string MongoDB database URL
--port int Start the server on the given port
--service Indicates that it is started by a service manager

Security Flags:
--tls Use TLS for communication encryption
--tlscert string Path to TLS certificate file
--tlskey string Path to TLS key file
--tls-insecure Use TLS but disable verification of certificates,

works with self-signed certificates

General Flags:
--version Display version information
--help Display usage

85

Appendix D: grb_rsm - Configuration Properties

The following list of properties can also be displayed using the grb_rsm properties command.

AUTH_CACHE_AGE: Type int (default 30). Max age of authentication information (seconds)

CLUSTER_TOKEN: Type string. Unique cluster identifier. The token is en encrypted key to let the
manager communicates with cluster All nodes of a cluster and the manager must have the
same token. Use ’grb_rs token’ command to generate a new token.

CONSOLE_TS: Type bool, use --console-ts to override on the command line. Add timestamps to
console log messages.

DB_URI: Type string (default mongodb://127.0.0.1:27017). MongoDB connection string

HISTORY_MAX_AGE: Type int (default 7). Limit the job history to a number of days.

HTTP_HEALTH_SERVER: Type bool. Enable an additional HTTP server of /ping When using TLS,
it may be useful to keep a simple HTTP for health check

HTTP_HEALTH_SERVER_PORT: Type int (default 9091). Indicates the port for the additional HTTP
health server

IDLE_CONN_TIMEOUT: Type int (default 130). maximum amount of time an idle (keep-alive) con-
nection will remain idle before closing itself. Zero means no limit.

JWT_EXPIRATION: Type int (default 480). Expiration of session tokens (in minutes)

LOGFILE: Type string, use --logfile to override on the command line. Enable logging to a rotating
log file.

LOGFILE_MAX_AGE: Type int (default 5), use --logfile-max-age to override on the command line.
Limit the rotating log file to a number of days.

LOGFILE_MAX_SIZE: Type int (default 500), use --logfile-max-size to override on the command
line. Limit the size of each file to a size in Mb.

MAX_IDLE_CONNS: Type int (default 200). Maximum number of connections in the idle connection
pool.

MAX_IDLE_CONNS_PER_HOST: Type int (default 32). Maximum idle (keep-alive) connections to keep
per-host.

NO_CONSOLE: Type bool, use --no-console to override on the command line. Disable the console
log.

86

OBJECT_NOT_CLOSED_MAX_AGE: Type int (default 1). Limit the time an object must be closed before
being deleted (hours)

PORT: Type int, use --port to override on the command line. Port number for the REST API.

SYSLOG: Type bool, use --syslog to override on the command line. Log to syslog or Windows
event log.

TLS: Type bool, use --tls to override on the command line. Enable TLS encryption protocol.

TLS_CERT: Type string, use --tlscert to override on the command line. Path to TLS certificate
file. If not specified, a self-signed certificate will be generated.

TLS_INSECURE: Type bool, use --tls-insecure to override on the command line. Enable TLS
encryption protocol but skip certificate verification. This mode can be used with self-signed
certificate so that data is encrypted.

TLS_KEY: Type string, use --tlskey to override on the command line. Path to TLS key file. If
not specified, a key will be generated to self-sign a certificate.

VERBOSE: Type bool, use --verbose to override on the command line. Enable verbose logging.

87

Appendix E: grbcluster

Usage:
grbcluster --help Display usage
grbcluster command [flags] Execute a top-level command
grbcluster command --help Display help about a top-level command
grbcluster group command [flags] Execute a command from a group
grbcluster group command --help Display help about a command

from a group

Flags can be set using --flag=value or the short form -f=value if defined.
A boolean flag can be enabled using --flag or the short form -f if defined.

As a first step, the login command must be executed to set the connection
parameters and save them into your client license file. You can list all the
options by getting the help for this command:

grbcluster login --help

Some commands or group of commands may only be used with a Cluster Manager,
and will be denoted with an asterisk (*).

Command Groups:
apikey* Manage API keys
batch* Submit, list and manage batches
job Monitor and manage the optimization jobs
node Monitor and manage cluster nodes
profile* Display or manage your profile
repo* Manage the artifact repository
user* Manage users

For each group, type ’grbcluster group --help’ for more options.

Account Commands:
login Setup connection parameters
logout Clear out connection session
passwd* Change password of the current user

Shortcut Commands:
batches* List the active batches (same as ’batch list’)
jobs List the active jobs (same as ’job list’)
nodes List the cluster nodes (same as ’node list’)

Global Flags:
--console-ts Add timestamps to console log messages
--help Display usage

-v, --verbose Enable verbose logging
--version Display version information

If a valid Gurobi license file is accessible at the predefined locations or
using the variable GRB_LICENSE_FILE, the license file will provide default
values for connection parameters (server, password, router etc). If the

88

license file references a Gurobi Instant Cloud pool, it will resolve the
connection parameters of the pool. When using the login command, the
connection parameters will be saved to this client license file.

grbcluster is compatible with standard proxy settings using environment
variables HTTP_PROXY and HTTPS_PROXY. HTTPS_PROXY takes precedence over
HTTP_PROXY for https requests. The values may be either a complete URL or
a "host[:port]", in which case the "http" scheme is assumed.

89

Appendix F: gurobi_cl

Usage:
gurobi_cl --help Display usage
gurobi_cl [flags] [param=value]* filename Optimize a model file
gurobi_cl [flags] Execute a command

Gurobi parameters are documented in the Gurobi Reference Manual.

Flags can be set using --flag=value or the short form -f=value if defined.
A boolean flag can be enabled using --flag or the short form -f if defined.

Flags:
-h, --help Display usage

--license Display license information
-t, --tokens List license tokens currently in use
-v, --version Display version information

Compute Server and Cluster Manager Flags:
--group=string Cluster group placement, overrides license file GROUP
--manager=string Cluster Manager URL, overrides license file CSMANAGER

-p, --password=string Password, overrides license file PASSWORD
(default "pass")

--priority=int Job priority, overrides license file PRIORITY
(default 0, min -100, max 100)

-r, --router=string Router URL, overrides license file property ROUTER
-s, --server=string Cluster representative node address,

overrides license file COMPUTESERVER
--tls-insecure Skip TLS certificate verification,

overrides license file CSTLSINSECURE
--username=string Username for Cluster Manager authentication

overrides license file USERNAME

Instant Cloud Flags:
--accessid=string Access ID, overrides license file CLOUDACCESSID
--secretkey=string Secret Key, overrides license file CLOUDKEY
--pool=string Pool name, overrides license file POOL

If a valid Gurobi license file is accessible at the predefined locations or
using the variable GRB_LICENSE_FILE, the license file will provide default
values for some connection parameters (server, password, router). If the
license file references a Gurobi Instant Cloud pool, it will resolve the
connection parameters of the pool.

The server URL can also specify the protocol and the port:
server.company.com Use HTTP on standard port 80
server.company.com:61000 Use HTTP on port 61000
https://server.company.com Use HTTPS on standard port 443
https://server.company.com:61000 Use HTTPS on port 61000

90

If you wish to get the status of your compute server cluster, list the nodes
and the jobs, or check the status of your licenses, please use the grbccluster
command line tool. To learn more about grbcluster, type the following command:

grbcluster --help

gurobi_cl is compatible with standard proxy settings using environment
variables HTTP_PROXY and HTTPS_PROXY. HTTPS_PROXY takes precedence over
HTTP_PROXY for https requests. The values may be either a complete URL or
a "host[:port]", in which case the "http" scheme is assumed.

Examples:
gurobi_cl misc07.mps
gurobi_cl Record=1 Method=2 ResultFile=p0033.sol InputFile=p0033.mst \

InputFile=p0033.hnt.gz LogFile=p0033.log p0033.mps
gurobi_cl --server=server.company.com --password=pass misc07.mps

Visit www.gurobi.com/documentation/9.0 for further details on how to use
this program.

91

Appendix G: Acknowledgement of 3rd Party Icons

The icons used in this document come from the Open Security Architecture.

92

http://www.opensecurityarchitecture.org

Appendix H: Open Source Component Licenses

In this section, we list the different open source components used in the remote services implemen-
tation. For each component, the reference indicates an URL to access the source code or a public
NPM module name.

Component reference: https://github.com/pkg/errors

Copyright (c) 2015, Dave Cheney <dave@cheney.net>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Component reference: https://gopkg.in/natefinch/lumberjack.v2

The MIT License (MIT)

Copyright (c) 2014 Nate Finch

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the ‘‘Software’’), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

93

THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Component reference: https://github.com/aws/aws-sdk-go
Component reference: https://github.com/spf13/cobra

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes

94

of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

95

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly

96

negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don’t include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Component reference: https://github.com/boltdb/bolt

The MIT License (MIT)

Copyright (c) 2013 Ben Johnson

Permission is hereby granted, free of charge, to any person obtaining a copy of

97

this software and associated documentation files (the ‘‘Software’’), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Component reference: https://github.com/julienschmidt/httprouter

Copyright (c) 2013 Julien Schmidt. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* The names of the contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ‘‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL JULIEN SCHMIDT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Component reference: https://github.com/kardianos/osext

Copyright (c) 2012 The Go Authors. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright

98

notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.

* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Component reference: https://github.com/satori/go.uuid

Copyright (C) 2013-2016 by Maxim Bublis <b@codemonkey.ru>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Component reference: https://github.com/shirou/gopsutil

gopsutil is distributed under BSD license reproduced below.

Copyright (c) 2014, WAKAYAMA Shirou
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,

99

are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name of the gopsutil authors nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

internal/common/binary.go in the gopsutil is copied and modifid from golang/encoding/binary.go.

Copyright (c) 2009 The Go Authors. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.

* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

100

Component reference: https://github.com/spf13/pflag

Copyright (c) 2012 Alex Ogier. All rights reserved.
Copyright (c) 2012 The Go Authors. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.

* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Component reference: https://github.com/urfave/negroni

The MIT License (MIT)

Copyright (c) 2014 Jeremy Saenz

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

101

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Component reference: https://go.googlesource.com/sys

Copyright (c) 2009 The Go Authors. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.

* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Component reference: https://github.com/Showmax/go-fqdn

Copyright since 2015 Showmax s.r.o.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

102

Component reference: https://github.com/phyber/negroni-gzip

The MIT License (MIT)

Copyright (c) 2013 Jeremy Saenz
2014 David O’Rourke

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Component reference: https://github.com/dgrijalva/jwt-go

Copyright (c) 2012 Dave Grijalva

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Component reference: https://github.com/inconshreveable/mousetrap

Copyright 2014 Alan Shreve

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

103

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Component reference: https://github.com/StackExchange/wmi

The MIT License (MIT)

Copyright (c) 2013 Stack Exchange

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Component reference: https://github.com/go-ole/go-ole

The MIT License (MIT)

Copyright c© 2013-2017 Yasuhiro Matsumoto, <mattn.jp@gmail.com>

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

104

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Component reference: https://github.com/mongodb/mongo-go-driver.git

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain

105

separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works

106

that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be

107

liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don’t include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Component reference: @date-io/*

MIT License

Copyright (c) 2017 Dmitriy Kovalenko

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

108

in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Component reference: @material-ui/*

The MIT License (MIT)

Copyright (c) 2014 Call-Em-All

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Component reference: @axios/*

Copyright (c) 2014-present Matt Zabriskie

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

109

all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Component reference: babel-polyfill

MIT License

Copyright (c) 2014-present Sebastian McKenzie and other contributors

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Component reference: classnames

The MIT License (MIT)

Copyright (c) 2018 Jed Watson

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

110

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Component reference: js-cookie

MIT License

Copyright (c) 2018 Copyright 2018 Klaus Hartl, Fagner Brack, GitHub Contributors

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Component reference: jss

The MIT License (MIT)
Copyright (c) 2014-present Oleg Isonen (Slobodskoi) & contributors

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

111

Component reference: moment

Copyright (c) JS Foundation and other contributors

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Component reference: prop-types

MIT License

Copyright (c) 2013-present, Facebook, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Component reference: query-string

112

MIT License

Copyright (c) Sindre Sorhus <sindresorhus@gmail.com> (sindresorhus.com)

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Component reference: react
Component reference: react-dom
Component reference: @hot-loader/react-dom

MIT License

Copyright (c) Facebook, Inc. and its affiliates.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Component reference: react-hot-loader

113

MIT License

Copyright (c) 2016 Dan Abramov

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Component reference: react-router-dom

MIT License

Copyright (c) React Training 2016-2018

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Component reference: recharts

The MIT License (MIT)

Copyright (c) 2015 recharts

114

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Component reference: swagger-ui
Component reference: swagger-ui-dist

Copyright 2019 SmartBear Software

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
[apache.org/licenses/LICENSE-2.0](http://www.apache.org/licenses/LICENSE-2.0)

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

115

	Introduction
	Overview
	Client-Server Optimization
	Client API
	Queuing and Load Balancing
	Cluster Manager
	Interactive and Non-Interactive Optimization
	Distributed Algorithms

	Architecture
	Architecture Topologies

	Security
	User Roles
	Authentication
	Encryption
	Security in a Self-Managed Cluster

	Simple Example
	Log In to the Cluster
	Submitting an Interactive Job
	Submitting a Non-Interactive Job

	Cluster Setup and Administration
	Quick Cluster Manager Installation
	Installing the Remote Services Package
	Linux Installation
	Mac OS Installation
	Windows Installation

	Installing a Cluster Manager
	Installing the Database
	Cluster Manager Server (grb_rsm)
	Configuring the Cluster Manager
	Starting the Cluster Manager as a Process
	Starting the Cluster Manager as a Service
	Verification

	Installing a Cluster Node
	Licensing
	Remote Services Agent (grb_rs)
	Configuring a Cluster Node
	Starting a Cluster Node as a Process
	Starting a Cluster Node as a Service
	Verification

	Forming a Cluster
	Connecting Nodes
	Compute Servers and Distributed Workers
	Grouping
	Processing State and Scaling

	Communication Options
	Enabling HTTPS
	Using HTTPS with Self-Signed Certificates
	Firewalls
	Using a Router without a Cluster Manager

	Using Remote Services
	Client Configuration
	Client License File
	Generating a Client License with grbcluster
	Queueing, Load Balancing, and Job Priorities

	Job Commands
	Submitting Interactive Jobs
	Listing Jobs
	Accessing Job Logs
	Accessing Job Parameters
	Aborting Jobs
	Accessing the Job History

	Batch Commands
	Creating Batches
	Listing Batches
	Aborting Batches
	Retrying Batches
	Discarding Batches

	Repository Commands
	Uploading a File to the Repository
	Using a File from the Repository
	Deleting a File from the Repository

	Node Commands
	Listing Cluster Nodes
	Troubleshooting Connectivity Issues
	Listing Cluster Licenses
	Changing the Job Limit

	Distributed Algorithms
	Distributed Workers and the Distributed Manager
	Configuration
	Running a Distributed Algorithm as an Interactive Job
	Submitting a Distributed Algorithm as a Batch
	Using a Separate Distributed Manager

	Programming with Remote Services
	Using an API to Create a Compute Server Job
	Using an API to Create a Batch
	Performance Considerations on a Wide-Area Network (WAN)
	Callbacks
	Developing for Compute Server
	Distributed Algorithm Considerations
	Cluster REST API

	Using Remote Services with Gurobi Instant Cloud
	Client Setup
	Client Commands
	Administrative Commands
	Region Router

	Appendix A: grb_rs
	Appendix B: grb_rs - Configuration Properties
	Appendix C: grb_rsm
	Appendix D: grb_rsm - Configuration Properties
	Appendix E: grbcluster
	Appendix F: gurobi_cl
	Appendix G: Acknowledgement of 3rd Party Icons
	Appendix H: Open Source Component Licenses

