GUROBI OPTIMIZER

REMOTE SERVICES
MANUAL

GUROBI

OPTIMIZATION

Version 8.0, Copyright (©) 2018, Gurobi Optimization, LLC

Contents

1 Introduction 4
2 Gurobi Compute Server and Remote Services Overview 5
2.1 Compute Server L e e e 6
2.2 Distributed Algorithms oL 9
2.3 Roles. . . . e 11
Cluster Administrator 11

Administrator 11

Client e e 11

2.4 Simple Example 12

3 Cluster Setup and Administration 13
3.1 Setting up Remote Services 14
Installation 14

Licensing o e 15

Remote Services Agent (grb_rs) oo 15

Configuration 16

Starting Remote Services as a Process 18

Starting Remote Services as a Service 19

Verification e 21

3.2 Forming a Cluster e 22
Connecting Nodes o o 22

Compute Servers and Distributed Workers 24

Grouping 25

Processing State and Scaling oL 25

3.3 Communication Options e 27
Using HT'TPS o 27

Using HTTPS with Self-Signed Certificates 27

Firewalls o . 0 e 28

Router e 28

3.4 Maintaining a Cluster L 30
Managing Runtimes L 30

Upgrading Remote Services 31

4 Using Remote Services 32
4.1 Client Configuration 33
License File e 33

Queueing, Load Balancing, and Job Priorities 34

Submitting Jobs with gurobi_cl oL 34

/9 82 O aQ & »

Issuing Cluster Management Commands: Using grbcluster 34

4.2 Client Commands e e e e e 36

Listing Optimization Jobs 36

Accessing Job Logs 37

Accessing Job Parameters L 38

Listing Cluster Nodes 39

Troubleshooting Connectivity Issues 39
4.3 Administrative Commandso 41

Listing Cluster Licenses 41

Changing the Job Limit o 41

Aborting Jobso 42
Programming with Remote Services 43
5.1 Using an API to Create a Compute Server Job 44
5.2 Performance Considerations on a Wide-Area Network (WAN) 45
5.3 Callbacks e 46
5.4 Developing for Compute Server e 47
5.5 Distributed Algorithms. L 48
5.6 Distributed Algorithm Considerations 50
5.7 Cluster REST API e 51
Using Remote Services with Gurobi Instant Cloud 52
6.1 Client Setup e 53
6.2 Client Commands e e e e 54
6.3 Administrative Commands L 55
6.4 Region Router 56
Migrating from Previous Releases 57
7.1 Referring to Compute Servers 58
7.2 Installation - Ports and Firewalls o 0oL 59
7.3 Installation - Encryptiono L Lo 60
7.4 Command-line options in gurobi_clo oo 61
7.5 Distributed Optimization 62
Appendix A: grb_rs 63
Appendix B: grb_ rs - Configuration Properties 65
Appendix C: grbcluster 68
Appendix D: gurobi_ cl 70
Appendix E: Acknowledgement of 3rd Party Icons 72
Appendix F: Open Source Component Licenses 73

Introduction

Gurobi Remote Services is a set of Gurobi features that allow a cluster of one or more machines to
perform Gurobi computations on behalf of other machines. The most powerful Remote Service is
Compute Server, which allows you to offload all Gurobi computations from a client machine onto
a Remove Services cluster. A second Remote Service allows you to execute distributed algorithms,
wherein multiple machines can be used to accelerate a single optimization computation (e.g., solving
a single MIP model, or performing automatic parameter tuning on a model).

This document is organized into a number of sections. The first section provides an overview
of Gurobi Compute Server and Remote Services The next section provides details on setting up
Remote Services. Then, the following sections provide details on using Remote Services and pro-
gramming with Remote Services. Finally, we discuss using Remote Services with Gurobi Instant
Cloud.

Gurobi Compute Server and Remote Services Overview

This section gives a quick introduction to the various capabilities of Gurobi Remote Services. It
starts with a discussion of common use cases, and continues with a description of some of the more
important Remote Services features. It then continues with a discussion of the different roles that
typically come into play in a Gurobi Remote Services cluster. The client role is fairly simple to
understand, but the administrative and cluster administrative roles require a bit more elaboration.
We'll also talk about the Remote Services agent, which is the program that runs on each Remote
Services node, and grbcluster, which is the program that is used to perform various administrative
tasks. Finally, we give a simple example of how to submit a job from a client to a Compute Server
cluster.

2.1 Compute Server

As noted earlier, Gurobi Compute Server is an optional component of Gurobi Remote Services that
allows you to choose one or more servers to run your Gurobi computations. You can then offload
the work associated with solving optimization problems onto these servers from as many client
machines as you like:

Compute Server client

When considering a program that uses Gurobi Compute Server, you can think of the optimiza-
tion as being split into two parts: the client and the compute server. A client program builds an
optimization model using any of the standard Gurobi interfaces (C, C++, Java, .NET, Python,
MATLAB, R). This happens in the left box of this figure:

Client Machine Compute Server

Model Data
Y

N

C++ API

Java API

NET API
Gurobi

Interactive Python API

Shell g Gurobi Algorithms
MATLAB API

Gurobi
Command y

Solution Data

\ J \ J

Line

All of our API’s sit on top of our C API. The C API is in charge of building the internal
model data structures, invoking the Gurobi algorithms, retrieving solution information, etc. When
running Gurobi on a single machine, the C API would build the necessary data structures in
memory. The Gurobi algorithms would take the data stored in these data structures as input, and
produce solution data as output.

When using a Compute Server, the C API instead passes model data to the server, where it
is stored. When the Gurobi algorithms are invoked, the C API simply passes a message to the

server, indicating that optimization should be performed on the stored model data. Solution data is
computed and stored on the server. When the client program later queries the solution information,
the client sends a message to the server in order to obtain the requested data. All communication
between the client and server happens behind the scenes,

In other words, the overall process can be viewed as happening in three phases:

Client computer uses any Gurobi API

to build model; Gurobi library passes

model data to server

Gurobi Compute Server solves the

model

Gurobi library retrieves results on the

client computer

Of course, programs that use the Gurobi API’s in more complex ways would have additional steps.

Gurobi Compute Servers support queuing and load balancing. You can set a limit on the
number of simultaneous jobs each Compute Server will run. When this limit has been reached,
subsequent jobs will be queued. If you have multiple Compute Server nodes configured in a cluster,
the current job load is automatically balanced among the available servers.

Clients Compute servers

3

~
PR Job queue

[==vy

=

By default, the Gurobi job queue is serviced in a First-In, First-Out (FIFO) fashion. However,
jobs can be given different priorities (through a client license file, or through API calls). Jobs with
higher priorities are then selected from the queue before jobs with lower priorities.

While the Gurobi Compute Server is meant to be transparent to both developers and users,
there are a few aspects of Compute Server usage that you do need to be aware of. These include
performance considerations, APIs for configuring client programs, and a few features that are not
supported for Compute Server applications. These topics will be discussed later in this document.

2.2 Distributed Algorithms

As noted earlier, Gurobi Optimizer implements a number of distributed algorithms that allow you
to use multiple machines to solve a problem faster. Available distributed algorithms are:

e A distributed MIP solver, which allows you to divide the work of solving a single MIP
model among multiple machines. A manager machine passes problem data to a set of worker
machines in order to coordinate the overall solution process.

e A distributed concurrent solver, which allows you to use multiple machines to solve an
LP or MIP model. Unlike the distributed MIP solver, the concurrent solver doesn’t divide
the work among machines. Instead, each machine uses a different strategy to solve the whole
problem, with the hope that one strategy will be particularly effective and will finish much
earlier than the others. For some problems, this concurrent approach can be more effective
than attempting to divide up the work.

e Distributed parameter tuning, which automatically searches for parameter settings that
improve performance on your optimization model (or set of models). Tuning solves your
model(s) with a variety of parameter settings, measuring the performance obtained by each
set, and then uses the results to identify the settings that produce the best overall perfor-
mance. The distributed version of tuning performs these trials on multiple machines, which
makes the overall tuning process run much faster.

These distributed algorithms are designed to be nearly transparent to the user. The user simply
modifies a few parameters, and the work of distributing the computation among multiple machines
is handled behind the scenes by the Gurobi library.

Distributed Workers and the Distributed Manager

Running distributed algorithms requires several machines. One acts as the manager, coordinating
the activities of the set of machines. The others act as workers, receiving tasks from the manager.
The manager typically acts as a worker itself, although not always. More machines generally
produce better performance, although the marginal benefit of an additional machine typically falls
off as you add more.

As we’ll discuss shortly, distributed workers do not require Gurobi licenses. You can add any
machine to a Remote Services cluster to act as a distributed worker. The manager does require
a distributed algorithm license (you’ll see a DISTRIBUTED= line in your license file if distributed
algorithms are enabled).

A typical distributed optimization will look like the following, with all machines belonging to
the same Remote Services cluster:

Dlstrlbuted Worker Distributed Worker

Manager/Distributed Worker Distributed Worker
The workload associated with managing distributed algorithms is quite light, so a machine can

handle both the manager and worker roles without degrading performance.
Another option is to use a machine outside of your Remote Services cluster as the manager:

®
LLINT 1

Dlstrlbuted Worker Distributed Worker

Manager °
LAAR ALLIR

Distributed Worker Distributed Worker

Note that we only allow a machine to act as manager for a single distributed job. If you want
to run multiple distributed jobs simultaneously, you’ll need multiple manager machines.

10

2.3 Roles

Users of Gurobi Remote Services will fall into one of three possible roles: cluster administrator,
administrator, or client. The cluster administrator is in charge of setting up the cluster, adding
and removing nodes, etc. In contrast, administrators do things like monitor the length of the
server queue, kill jobs, etc. Clients are the people that run the programs on client machines that
ultimately submit jobs to a Compute Server cluster. Note that the client role and the administrator
role are often, but not always, performed by the same person. The cluster administrator role is
typically performed by a system administrator.

Gurobi includes a number of tools that are relevant to the people in these roles. These are all
covered in much more detail later on, but we’ll describe how they fit with the various roles in this
section.

Note that a Gurobi Remote Services cluster will have three different passwords, corresponding
to these different roles. You will need to provide the appropriate password for the type of Remote
Services task you wish to perform. Again, the details will be discussed shortly.

Cluster Administrator

As you might expect, the cluster administrator manages a Remote Services cluster. The primary
tool for doing so is grb_ rs, which is the program that runs on the Remote Services node and accepts
requests from client programs. The cluster administrator will need to start this on all of the nodes
of a Remote Services cluster.

A second important administrative tool is grbcluster, which is used to issue commands to an
already running cluster. Examples of cluster administrator commands include adding or removing
nodes, and enabling or disabling job processing on a cluster. This tool provides a variety of
commands, and is used for all three Remote Services roles. You can type grbcluster --help for
a full list of commands.

For more details, please refer to the section about setting up and administering a cluster.

Administrator

An administrator monitors and manages the flow of jobs through a Remote Services cluster. Exam-
ples of administrator commands include aborting jobs, changing cluster parameters and checking
licenses. The primary tool for doing so is grbcluster. You can get a full list of available commands
by typing grbcluster --help.

Client

A Remote Services client submits jobs to the cluster. This is done through a user applica-
tion or through the Gurobi command-line tool gurobi cl (which is documented in the Gurobi
Command-Line Tool section of the Gurobi Reference Manual). Submitting a job to a Remote Ser-
vices cluster is typically just a matter of running the appropriate program. We’ll provide a simple
example in the next section.

Clients can also use grbcluster command to monitor the state of their jobs and of the Remote
Services queue. Example commands include listing active jobs, listing recently executed jobs,
displaying the log of a recent job, etc. You can get a full list of available commands by typing
grbcluster --help.

11

http://www.gurobi.com/documentation/8.0/refman/index.html

2.4 Simple Example

After your cluster has been set up (which will be covered in this section), it is generally a simple
matter to submit a job to it. As noted earlier, you have several options for indicating that you wish
to offload your client Gurobi computation to a Compute Server: through command-line arguments,
a license file, or a programming language API. The precise details will be covered in a later section.
For now, we’ll simply demonstrate the use of command-line arguments using gurobi_cl.

The command gurobi_cl stein9.mps would solve the model stored in file stein9.mps on your
local machine. By adding a command-line argument,

gurobi_cl --server=serverl.company.com:61000 stein9.mps,

we can instead offload the computation to the Gurobi Remote Services cluster that is listening on
port 61000 of machine serverl.company.com:

> gurobi_cl --server=serverl.company.com:61000 stein9.mps
Compute Server job ID: 1e9c304c-abf2-4573-affa-ab924d992f7e
Capacity available on ’serverl.company.com:61000° - connecting...
Established HTTP unencrypted connection

Gurobi Optimizer version 8.0.0 build v8.0.0rcO (linux64)
Copyright (c) 2018, Gurobi Optimization, LLC

Optimal solution found (tolerance 1.00e-04)
Best objective 5.000000000000e+00, best bound 5.000000000000e+00, gap 0.0000%

Compute Server communication statistics:
Sent: 0.0 MBytes in 34 msgs and 0.00s (0.00 MB/s)
Received: 0.0 MBytes in 141 msgs and 0.00s (0.00 MB/s)

The initial log output indicates that a Compute Server job was created, that the Compute
Server cluster had capacity available to run that job, and that an unencrypted HT'TP connection was
established with a server in that cluster. The log concludes with statistics about the communication
performed between the client machine and the Compute Server.

We’ll now move on to discussions of setting up a cluster and using a cluster. The former is
meant for cluster administrators. If you intend to be a client of a Remote Services cluster that has
already been set up, you can skip this section.

12

Cluster Setup and Administration

This section will cover the setup and administration of a Gurobi Remote Services cluster. The
intended audience is the cluster administrator. If you are interested in using a cluster that has
already been set up, you should proceed to the next section.

13

3.1 Setting up Remote Services

The Gurobi Remote Services package must be installed on all the machines that will be part of the
cluster. Your first step is to download and install Remote Services on all relevant server machines.
Once installed, you will need to set up a license, if necessary. Then, the Remote Services agent
must be configured and started as a standard process or as a service. Finally, you should verify
your installation.

Installation

The first step in installing Gurobi Remote Services is to download the installer from our download
page. You'll need to find your platform and choose the corresponding file to download.

GUROBI

OPTIMIZATION PRODUCTS ~ DOWNLOADS RESOURCES ACADEMIA SUPPORT ABOUT

Gurobi Optimizer

Get the software

Gurebi optimization libraries. In addition to the software, the corresponding README file contains installation instructions.

n 64-bit Windows 32-bit Windows 64-bit Linux 64-bit mac0S 64-bit AIX

Make a note of the name and location of the downloaded file.
Your next step will depend on your platform:

Linux installation

On Linux, your next step is to choose a destination directory. We recommend /opt for a shared
installation (you may need administrator priviledges), but other directories will work as well. Copy
the Remote Services distribution to the destination directory and extract the contents. Extraction
is done with the following command:

tar xvfz gurobi_server8.0.0_linux64.tar.gz

This command will create a sub-directory gurobi_server800/1inux64 that contains the com-
plete Linux Remote Services distribution. Assuming that you extracted the Gurobi server archive
in the /opt directory, your <installdir> (which we’ll refer to throughout this document) will be
/opt/gurobi_server800/1linux64.

The Gurobi Optimizer makes use of several executable files. In order to allow these files to be
found when needed, you will have to modify your search path. Specifically, your PATH environment
variable should be extended to include <installdir>/bin. Users of the bash shell should add the
following line to their .bashrc file:

export PATH="${PATH}:/opt/gurobi_server800/linux64/bin"

Users of the csh shell should add the following line to their .cshrc file:
setenv PATH "${PATH}:/opt/gurobi_server800/linux64/bin"

You'll need to close your current terminal window and open a new one after you have made
these changes in order to pick up the new settings.

14

http://www.gurobi.com/downloads/gurobi-optimizer
http://www.gurobi.com/downloads/gurobi-optimizer

In some Linux distributions, applications launched from the Linux desktop won’t read .bashrc
(or .cshrc). You may need to set the Gurobi environment variables in .bash_profile or .profile
instead. Unfortunately, the details of where to set these variables vary widely among different Linux
distributions. We suggest that you consult the documentation for your distribution if you run into
trouble.

Mac OS Installation

On Mac OS, your next step once you've downloaded the Gurobi Remote Services package from
our website is to double-click on the installer (e.g., gurobi_server8.0.0_mac64.pkg for Gurobi
8.0.0) and follow the prompts. By default, the installer will place the Gurobi Remote Services 8.0.0
files in /Library/gurobi_server800/mac64 (note that this is the system /Library directory, not
your personal /Library directory). Your <installdir> (which we’ll refer to throughout this
document) will be /Library/gurobi_server800/mac64.

Windows Installation

On Windows, your next step is to double-click on the Gurobi Remote Services installer that you
downloaded from our website (e.g., GurobiServer-8.0.0-win64.msi for Gurobi 8.0.0).

Note: if you selected Run when downloading you’ve already run the installer and don’t need to
do it again.

By default, the installer will place the Gurobi 8.0.0 files in directory c: /gurobi_server800/win6é4.
The installer gives you the option to change the installation target. We’ll refer to the installation
directory as <installdir>.

Licensing

If you are setting up a Gurobi Compute Server, you will need to download and install a license file
(no license file is required if you only wish to use a machine as a distributed worker for distributed
algorithms). You’ll find detailed instructions for downloading a license in the Retrieiving and
Setting Up a Gurobi License section of the Gurobi Optimizer Quick Start Guide.

We'll just provide a quick summary of the process here. Your first step is to locate and download
your license file from the Gurobi License Center. When you download the license file, we strongly
recommend that you place it in the default location:

e C:\gurobi\ on Windows
e /opt/gurobi/ on Linux
e /Library/gurobi/ on Mac OS

You can also set the environment variable GRB_LICENSE_FILE to point to this file.

Remote Services Agent (grb_rs)

To form a Remote Services cluster, you need to run the Remote Services agent (grb_rs) on all
the nodes that make up the cluster. These agents communicate amongst themselves, and also
with client programs (e.g. gurobi_cl) and tools (e.g., grbcluster), to manage jobs, to provide
information about the state of the cluster, etc.

The primary task of the Remote Services agents is to collectively manage the queueing and the
execution of jobs. The agents work together to balance the load by assigning a new job to the node

15

http://www.gurobi.com/download/licenses/current

with the fewest running jobs whenever possible. If all nodes are at capacity, newly submitted jobs
will be queued, and the first node with available capacity will later execute the job. If a new node
is added to the cluster, it will immediately start processing queued jobs.

The grb_rs executable provides several commands and flags to help in the configuration and
execution of the agent. We will review these commands step by step in the following sections. You
can get the full list of commands in the reference section or by using the command-line help:

> grb_rs --help

In the next sections, we will also use grbcluster to monitor and administrate the cluster. You
can get the full list of commands in the reference section or by using the command-line help:

> grbcluster --help

Configuration

The Remote Services agent has a number of configuration properties that affect its behavior. These
can be controlled using a grb_rs.cnf configuration file. By default, this file must be located
in the same directory as the grb_rs executable. The installation package includes a predefined
configuration file that can be used as a starting point (<installdir>/bin/grb_rs.cnf).

You can edit the default configuraton file or override it as grb_rs will use the following prece-
dence rules:

e command line flag --config
e current directory

e shared directory (C:\gurobi, /opt/gurobi, /Library/gurobi depending on windows, linux
and mac platforms respectively)

e directory where grb_rs is located

The configuration file contains a list of properties of the form PROPERTY=value. Lines that
begin with the # symbol are treated as comments and are ignored. Here is an example:

grb_rs.cnf configuration file
PASSWORD=abcd1234
ADMINPASSWORD=1234abcd

While you could create this file from scratch, we recommend you start with the version of this file
that is included with the product and modify it instead.

Examples of properties that are configured through this file are client and administrator pass-
words, communication options, and job processing options. The command grb_rs properties
lists all the available properties, the default values, and provides documentation for each. Some
properties can be overriden on the command line of grb_rs; the name of the command-line flag
you would use to do so is provided as well.

Some properties are important and must be changed for a production deployment:

16

HOSTNAME: This must be the DNS name of the node that can be resolved from the other nodes or
the clients in your network. grb_ rs tries to get a reasonable default value, but this value may
still not be resolved by clients and could generate connection errors. It this case, you need
to override this name in the configuration file with a fully qualified name of your node, for
example:

HOSTNAME=serverl.mycompany.com

If the names cannot be resolved by clients, another option is to use IP addresses directly, in
this case set this property to the IP address of the node.

CLUSTER_TOKEN: The token is a private key that enables different nodes to join the same cluster.
All nodes of a cluster must have the same token. We recommended that you generate a
brand new token when you set up your cluster. The grb_rs token command will generate a
random token, which you can copy into the configuration file.

PASSWORD: This is the password that clients must supply in order to access the cluster. It can be
stored in clear text or hashed. We recommended that you create your own password, and
that you store it in hashed form. You can use the grb_rs hash command to compute the
hashed value for your chosen password.

grb_rs hash newpass
$$ppEieKZEx1BR-pCSUM1mc40W1G8nZsUOE2IMOhJbzsmV_Yj j

Then copy and paste the value in the configuration file:
PASSWORD=$$ppEieKZEx1BR-pCSUMlmc4oW1G8nZsUOE2IMOhJbzsmV_Yj j

The default password is pass.

ADMINPASSWORD: This is the password that clients must supply in order to run restricted adminis-
trative job commands. It can be stored in clear text or hashed. We recommended that you
create your own password, and that you store it in hashed form. You can use the grb_rs
hash command to compute the hashed value for your chosen password. The default password
is admin.

CLUSTER_ADMINPASSWORD: This is the password that clients must supply in order to run restricted
administrative cluster commands. It can be stored in clear text or hashed. We recommended
that you create your own password, and that you store it in hashed form. You can use the
grb_rs hash command to compute the hashed value for your chosen password. The default
password is cluster.

JOBLIMIT: This property sets the maximum number of jobs that can run concurrently when using
Compute Server on a specific node. The limit can be changed on a running cluster using the
grbcluster config command, in which case the new value will persist and the value in the
configuration file will be ignored from that point on (even if you stop and restart the cluster).

17

HARDJOBLIMIT: Certain jobs (those with priority 100) are allowed to ignore the JOBLIMIT, but
they aren’t allowed to ignore this limit. Client requests beyond this limit are queued. This
limit is set to 0 by default which means that it is disabled.

CLIENT_DETAILS_ADMIN: When a job is submitted, the client hostname, IP, and process ID are
recorded. By default, this information is displayed to any user running the command line
tool grbcluster or the REST API. If this property is set to true, only the administrator
will be able to access this information.

USERNAME_ADMIN: When a job is submitted, the client process username is recorded. By default,
this information is displayed to any user running the command line tool grbcluster or the
REST API. If this property is set to true, only the administrator will be able to access this
information.

The configuration file is only read once, when grb_rs first starts. Subsequent changes to the
file won’t affect parameter values on a running server.
Starting Remote Services as a Process

Once you've installed the Remote Services package (including retrieving and installing your license
file and, for Linux users, setting your PATH variable), starting grb_rs as a standard process is quite
straightforward. From a terminal window with administrator privileges, simply issue the following
command:

> grb_rs

This will start Remote Services agent on the default port (port 80).
You should see output like the following...

info : Reading config file: /home/jones/gurobi_server800/1linux64/bin/grb_rs.cnf

info : Gurobi Remote Services starting...

info : Platform is linux

info : Version is 8.0.0 (build 128)

info : Node address is serverl

info : Accepting worker registration on port 41173...

info : API server, started (HTTP) on port 80...

If you do not have administrator privileges or if the default port is already in use, you will see
an error about opening the port. For example, on Linux you might see an error like this:

fatal : Gurobi Remote Services terminated, listen tcp :80: bind: permission denied
or
fatal : Gurobi Remote Services terminated, listen tcp :80: bind: address already in use

Note that grb_rs does not have to be run with elevated privileges, but it does need elevated
privileges to use the default port 80.

If you’d like to run grb_rs on a non-default port, use the -—port flag or set the PORT property
in the configuration file. For example:

18

> grb_rs —--port=61000

The Remote Services agent (grb_rs) needs a directory to store various files, including the
runtimes, job metadata, job log files, etc. The default location is a directory named data, located
in the same directory as the grb_rs executable (<installdir>/bin/data). If you have a data
directory in your current directory, it will be taken first.

If starting grb_rs produces an error message that indicates that there was a problem creating
the storage service (as shown below), a likely cause is that another grb_rs process is already
running.

fatal : Error creating storage service: Error opening data store: timeout

If you wish to start multiple grb_rs processes on the same machine for testing purposes (this
is not recommended for production use), you will need to make sure each instance of grb_rs is
started on a different port and using a different data directory. The command grb_rs init will
help you by copying the default configuration and the data directory into a current directory.

For example, to start two nodes on the same machine with a hostname of myserver:

1. In a first terminal window, create a new directory nodel,
2. Change your current directory to nodel and run grb_rs init

3. Start the first node:
grb_rs --port=61000

4. In a second terminal window, create a new directory node2,
5. Change your current directory to node2 and run grb_rs init

6. Start the second node on a different port and join the first node:
grb_rs --port=61001 --join=myserver:61000

Starting Remote Services as a Service

While you always have the option of running grb_rs from a terminal and leaving the process
running in the background, we recommended that you start it as a service instead, especially in a
production deployment. The advantage of a service is that it will automatically restart itself if the
computer is restarted or if the process terminates unexpectedly.

grb_rs provides several commands that help you to set it up as a service. These must be
executed with administrator privileges:

grb_rs install: Install the service. The details of exactly what this involves depend on the host
operating system type and version: this uses systemd or upstart on Linux, launchd on
MacOS, and Windows services on Windows.

grb_rs start: Start the service (and install it if it hasn’t already been installed).

grb_rs stop: Stop the service.

19

grb_rs restart: Stop and then start the service.
grb_rs uninstall: Uninstall the service.

Note that the install command installs the service using default settings. If you don’t need
to modify any of these, you can use the start command to both install and start the service.
Otherwise, run install to register the service, then modify the configuration (the details are
platform dependent and are touched on below), and then run start the service.

Note that you only need to start the service once; grb_rs will keep running until you execute the
grb_rs stop command. In particular, it will start again automatically if you restart the machine.

Note also that the start command does not take any flags or additional parameters, and that
all the configuration properties must be set in the grb_rs.cnf configuration file. If you need to
make a change to the configuration, use the command stop then the command start in order to
restart grb_rs with the updated configuration. The one exception is the JOBLIMIT property, which
can be changed on a live server using grbcluster. If you change this property and restart the
server, the new value will persist and the value in the configuration file will be ignored.

The exact behavior of these commands varies depending on the host operating system and
version.

Linux

On Linux, grb_rs supports two major service managers systemd and upstart. The install
command will detect the service manager available on your system and will generate a service
configuration file located in /etc/systemd/system/grb_rs.service or /etc/init/grb_rs.conf
for systemd and upstart, respectively. Once the file is generated, you can edit it to set advanced
properties. Please refer to the documentation of systemd or upstart to learn more about service
configuration.

Use the start and stop commands to start and stop the service. When the service is running,
the log messages are sent to the Linux syslog and to a rotating log file, service.log, located in
the same directory as grb_rs.

The uninstall command will delete the generated file.

Mac OS

On Mac OS, the system manager is called launchd, and the install command will generate a
service file in /Library/LaunchDaemons/grb_rs.plist. Once the file is generated, you can edit it
to set advanced properties. Please refer to the launchd documentation to learn more about service
configuration.

Use the start and stop commands to start and stop the service. When the service is running,
the log messages are sent to the Mac OS syslog and to a rotating log file, service.log, located in
the same directory as grb_rs.

The uninstall command will delete the generated file.

Windows

On Windows, the install command will declare the service to the operating system. If you
wish to set advanced properties for the service configuration, you will need to start the Services
configuration application. Please refer to the Windows Operating System documentation for more
details.

20

Use the start and stop commands to start and stop the service. When the service is running,
the log messages are sent to the Windows event log and to a rotating log file, service.log, located
in the same directory as grb_rs.

The uninstall command will delete the service from the registery.

Verification

Once you have grb_rs running, you can check to make sure that you will be able to submit jobs to
it by issuing the following command from any machine that can reach the server on your network:

> grbcluster nodes --server=serverl --password=pass --long
ADDRESS STATUS TYPE LICENSE PROCESSING #Q #R JL IDLE MEM JCPU STARTED RUNTIMES VERSION
serverl ALIVE COMPUTE VALID ACCEPTING O O 1 43m 42.67 2.53 2017-09-13 20:17:10 [8.0.0] 8.0.0

You are ready to submit jobs if both of the following are true:
e the STATUS column indicates that one or more servers are ALIVE
e the LICENSE column indicates that the license is VALID (or N/A for distributed workers).

If grbcluster is unable to connect or if it does not show any live nodes, then check your
network and the log of the grb_rs nodes (the console output or <installdir>/bin/service.log
if started as a service).

If a node has an INVALID license, the ERROR field will provide more information about the error.
For example:

> grbcluster licenses --server=serverl --password=admin
ADDRESS STATUS TYPE KEY EXP ORG USER APP VER CS DL ERROR
serverl INVALID NODE false 0 No Gurobi license found...

Optionally, you can also check that submitting a job is successful. To this end, you may want
to identify a machine from which the users will typically submit jobs and install the gurobi client
package. Then, you can submit a job running the following command:

> gurobi_cl --server=serverl --password=pass miscO7.mps

For more information on how to install the client and run gurobi_ cl please refer to the section
about using Remote Services.
Note that if you started the node with a specific port, you can specify it in the server URL:

> grbcluster nodes --server=server1:61000 --password=pass

> gurobi_cl --server=server1:61000 --password=pass miscO7.mps

21

3.2 Forming a Cluster

As noted earlier, a cluster consists of a set of one or more nodes, all running grb_rs. This section
explains how to form a cluster. Multi-node clusters provide additional capabilities relative to single-
node clusters. For Compute Server, a multi-node cluster will automatically balance computational
load among the various member nodes. For distributed algorithms, a multi-node cluster enables
various algorithms to distribute work among multiple machines. This section begins by discussing
the different types of nodes that are needed to support both Compute Server and distributed
algorithms. Next, we will explain the grouping feature that can be used to create subsets of nodes
to process some jobs. Finally, we will discuss the dynamic nature of a cluster. The nodes in a
cluster can independently start and stop processing jobs, either to simplify maintenance or to scale
the processing capacity up or down.

Connecting Nodes

Every Remote Services cluster starts with a single node. The steps for starting Remote Services
on a single node, either as a standard process or as a service, were covered in earlier sections.

Before adding nodes into your cluster, you first need to make sure that the cluster token (prop-
erty CLUSTER_TOKEN in the configuration file) has the same value in each node. For better security,
we recommend that you change the predefined value of the token by generating a new one and
pasting the same value into each node configuration file. You can generate a new token with the
following command:

> grb_rs token
GRBTK-604x1ujs59WJI05508nmaNwc1TtjZJAL1UcwN4vTD4gK4nata8oLr9GnubyXrLTkgge/aw2A==

Similarly, the passwords used for client, administrator and cluster administrator must be the
same in all nodes. For better security, it is recommended to change the predefined value of the
passwords by choosing a new password, generating a hash value for that password, and then pasting
the result into each node configuration file. You can generate a hash of your chosen password (e.g.,
mynewpass) with the following command:

> grb_rs hash mynewpass
$$vOUBWKM_9kpY_v2RECV2LBGnlr8qzaGHzf0fMIvrMYwPnJap

Adding nodes to your cluster

Once you've started a single-node cluster, you can add nodes using the --join flag to grb_rs or
the JOIN configuration property. For example, if you’ve already started a cluster on the default
port of server1, you would run the following command on the new node (call it server2) to create
a two-node cluster:

> grb_rs --join=serverl
In the log output for server2, you should see the result of the handshake between the servers:
info : Node serverl, transition from JOINING to ALIVE

Similarly, the log output of server1 will include the line:

22

info : Node server2, added to the cluster

If you are using a non-default port, you can specify the target node port as part of the node
URL in the --join flag and you can specify the port of the current node using the —-port flag.
You could use different ports on the different machines, but it is a good practice to use the same
one, for example 61000. The command would look like this instead:

> grb_rs --join=server1:61000 --port=61000
The JOIN property can also be set through the configuration file in the same way:

JOIN=server1:61000
PORT=61000

When starting grb_rs as a service, you won’t have the opportunity to provide command-line
options, so you’ll need to provide this information through the configuration file.

Once you’ve created a multi-node cluster, you can add additional nodes to that cluster by doing
a JOIN using the name of any member node. Furthermore, the --join flag or the JOIN property
can take a comma-separated list of node names, so a node can still join a cluster even if one of the
member nodes is unavailable. Note that when a list of nodes is specified, the joining node will try
to join all the specified nodes at the same time. Joining nodes is an asynchronous process, if some
target nodes are not reachable, the joining node will retry before giving up on joining. If all the
nodes are reachable, they will all join and form a single cluster.

Checking the status of your cluster

Using grbcluster, you can check the status of the cluster:

> grbcluster --server=serverl --password=pass nodes --long

ADDRESS STATUS TYPE LICENSE PROCESSING #Q #R JL IDLE %MEM %CPU STARTED RUNTIMES VERSION
serverl ALIVE COMPUTE VALID ACCEPTING O O 2 46h59m0Os 9.79 0.50 2017-09-27 17:03:24 [8.0.0] 8.0.0
server2 ALIVE COMPUTE VALID ACCEPTING O O 2 46h46mOs 8.75 0.00 2017-09-27 17:16:11 [8.0.0] 8.0.0

The nodes of the cluster are constantly sharing information about their status. When using
grbcluster, you can use any of the nodes in the --server flag for all global commands.
Each node can be in one of the following states:

ALIVE: The node is up and running.

DEGRADED: The node failed to respond to recent communications. The node could return to the
ALIVE state if it can be reached again. The node will stay in this state until a timeout
(controlled by the configuration property DEGRADED_TIMEOUT), at which point it is considered
as FATILED

FAILED: The node has been in DEGRADED state for too long, and has been flagged as FAILED. A
node will remaine in the FAILED state for a short time, and it will eventually be removed
from the cluster. If the node comes back online, it will not re-join the cluster automatically.

JOINING: The node is in the process of joining the cluster.

LEAVING: The node left the cluster. It will stay in that state for short time period and then it will
be removed from the cluster.

23

You can dynamically add or remove a node from a cluster using the grbcluster join or
grbcluster leave commands. The join command can be useful when you want a node to rejoin
the cluster after a network issue without having to restart the node. For example, if server2 left
the cluster after a failure, it could rejoin using the following command:

> grbcluster --server=server2 --password=cluster join serverl

Compute Servers and Distributed Workers

A Remote Services cluster is a collection of nodes of two different types:

COMPUTE: A Compute Server node supports the offloading of optimization jobs. Features include
load balancing, queueing and concurrent execution of jobs. A Compute Server license is
required on the node. A Compute Server node can also act as a distributed worker.

WORKER: A distributed worker node can be used to execute part of a distributed algorithm. A
license is not necessary to run a distributed worker, because it is always used in conjunction
with a manager (another node or a client program) that requires a license. A distributed
worker node can only be used by one manager at a time (i.e., the job limit is always set to

1).

By default, grb_rs will try to start a node in Compute Server mode and the node license status
will be INVALID if no license is found. In order to start a distributed worker, you need to set the
WORKER property in the grb_rs.cnf configuration file (or the ——worker command-line flag):

WORKER=true

Once you form your cluster, the node type will be displayed in the TYPE column of the output
of grbcluster nodes:

> grbcluster --server=serverl --password=pass nodes --long
ADDRESS STATUS TYPE LICENSE PROCESSING #Q #R JL IDLE %MEM JCPU STARTED RUNTIMES VERSION
serverl ALIVE COMPUTE VALID ACCEPTING O O 2 46h59m0Os 9.79 0.50 2017-09-27 17:03:24 [8.0.0] 8.0.0

server2 ALIVE COMPUTE VALID ACCEPTING O O 2 46h46mOs 8.75 0.00 2017-09-27 17:16:11 [8.0.0] 8.0.0
server3 ALIVE WORKER N/A ACCEPTING O O 1 46h46mOs 8.75 0.00 2017-09-27 17:16:11 [8.0.0] 8.0.0
server4 ALIVE WORKER N/A ACCEPTING O O 1 46h46mOs 8.75 0.00 2017-09-27 17:16:11 [8.0.0] 8.0.0

The node type cannot be changed once grb_rs has started. If you wish to change the node
type, you need to stop the node, change the configuration, and restart the node. You may have to
update your license as well.

Distributed Optimization

When using distributed optimization, distributed workers are controlled by a manager. There are
two ways to set up the manager:

e The manager can be a job running on a Compute Server. In this case, the manager job is
first submitted to the cluster and executes on one of the COMPUTE nodes as usual. When this
job starts, it will also request some number of workers (see parameters DistributedMIPJobs,
ConcurrentJobs, or TuneJobs). The first choice will be WORKER nodes. If not enough are
available, it will use COMPUTE nodes. The workload associated with managing the distributed
algorithm is quite light, so the initial job will act as both the manager and the first worker.

24

e The manager can be the client program itself. The manager does not participate in the
distributed optimization. It simply coordinates the efforts of the distributed workers. The
manager will request distributed workers (using the WorkerPool parameter), and the cluster
will first select the WORKER nodes then, if not enough are available, it will use COMPUTE nodes
as well.

In both cases, the machine where the manager runs must be licensed to run distributed algorithms
(you should see a DISTRIBUTED= line in your license file).

It is typically better to use the Compute Server itself as the distributed manager, rather than
the client machine. This is particularly true if the Compute Server and the workers are physically
close to each other, but physically distant from the client machine. In a typical environment, the
client machine will offload the Gurobi computations onto the Compute Server, and the Compute
Server will then act as the manager for the distributed computation.

Grouping

With the Remote Services grouping feature, you can define a subset of the nodes in your cluster as
a group, and then submit jobs specifically to that group. This can be quite useful when some nodes
in the cluster are different from others. For example, some nodes may have more memory or faster
CPUs. Using this feature, you can force jobs to only run on the appropriate type of machines. If
all nodes of the requested group are at capacity, jobs will be queued until a member of that group
is available.

In order to define a group, you will need to add the GROUP property to the grb_rs.cnf config-
uration file and give a name to the group:

GROUP=group1l

The groups are static and can only be changed in the node configuration file. If you wish to
change the group of a node, you will need to stop the node, edit the configuration, and restart the
node. A node can only be a member of one group.

The grbcluster nodes command displays the assigned group for each node (in the GRP col-
umn):
> grbcluster --server=serverl --password=pass nodes

ADDRESS STATUS TYPE GRP LICENSE #Q #R JL IDLE %MEM %CPU
serverl ALIVE COMPUTE groupl VALID 0 O 2 46h59m0s 9.79 0.50

server2 ALIVE COMPUTE groupl VALID 0 O 2 46h46m0Os 8.75 0.00
server3 ALIVE COMPUTE VALID 0 0 2 46h46m0s 8.75 0.00
server4 ALIVE COMPUTE VALID 0 0 2 46h46mOs 8.75 0.00

With gurobi_cl, you can submit a job to a given group by using the GROUP property of the
client license file (see set up a client license).

Processing State and Scaling

FEach node of the cluster can be in one of three processing states:

ACCEPTING: The node is accepting new jobs.

DRAINING: The node is not accepting new jobs, but it is still processing existing jobs.

STOPPED: The node is not accepting new jobs and no jobs are running.

25

A node always starts in the ACCEPTING state. If you need to perform maintenance on a node, or
if you want the node to leave the cluster in a clean way for other reasons, the cluster administrator
can issue the stop command:

> grbcluster --server=serverl --password=cluster stop

If jobs are currently running, the state will change to DRAINING until the jobs finish, at which point
it will change to STOPPED. If no jobs are running, the state will change to STOPPED immediately. In
the DRAINING or STOPPED states, new jobs are rejected on that node. However, the node is still a
member of the cluster and all the other features, commands, and APIs are still active.

Once a node is in the STOPPED state, you can safely remove it from the cluster (to perform
maintenance, shut it down, etc.). To return it to the cluster and resume job processing, run the
start command:

> grbcluster --server=serverl --password=cluster start

The flag ——server is used to target a specific node in the cluster. Adding the --all flag requests
that the command (e.g., start or stop) be applied to all nodes in the cluster.

By using the start and stop with a cluster of Compute Servers, you can effectively scale your
cluster up or down, depending on the current cluster workload.

e You can scale down the cluster by stopping the processing on some nodes.

e You can scale up the cluster by starting new nodes or resuming processing on some nodes.
As soon as a node starts or resumes processing, it will pick up jobs from the current queue
or wait for new jobs to be submitted.

26

3.3 Communication Options

A node running Gurobi Remote Services communicates with clients through a REST API using
HTTP by default. For more secure deployments, HT'TPS can be enabled. Remote Services also
support self-signed certificates for testing your deployment. Finally, firewalls may have to be
configured to open the port used by the cluster and for advanced networking setup, a remote
servives router can be used.

Using HTTPS

Several properties can be used to configure the communication options. In order to enable HTTPS
with TLS data encryption over the wire, you need to set the TLS property.

TLS=true
You will also need to provide the paths to the private key and the certificate files:

TLS_CERT=cert.pem
TLS_KEY=key.pem

When HTTPS is enabled, the standard HT'TPS port 443 is then used as the default instead of
port 80. As with the port 80, you will need to start grb_rs with elevated privileges. Otherwise,
you will get a permission error. On Linux, you’d see an error message like the following:

fatal : Gurobi Remote Services terminated, listen tcp :443: bind: permission denied

As explained in the installation section, you can change the port using the PORT property. Note
that you cannot mix nodes using HT'TP and nodes using HTTPS in the same cluster. If you
wish to use HT'TPS, all the nodes must be configured in the same way. HTTPS will be used for

communication between the nodes and also between the clients and the nodes.
If you enable HTTPS, you will need to specify the prefix https:// when acccessing any nodes
of the cluster:

> grbcluster --server=https://serverl --password=pass nodes

ADDRESS STATUS TYPE LICENSE #Q #R JL IDLE JMEM ¥CPU
https://serverl ALIVE COMPUTE VALID O O 2 46h59m 9.79 0.50
https://server2 ALIVE COMPUTE VALID O O 2 46h46m 8.75 0.00

Using HTTPS with Self-Signed Certificates

Using self-signed certificates is not recommended for production deployment as it is less secure,
but it can be useful when testing a deployment. If you do not specify a key and a certificate in
the TLS_KEY and TLS_CERT properties, grb_rs will generate them for you at startup. You can also
specify your own self-signed certificate using TLS_KEY and TLS_CERT properties.

To use a self-signed certificate, you’ll need to activate insecure mode by setting the TLS_-
INSECURE property:

TLS_INSECURE=true

When using this mode, the data will be encrypted over the wire, and the default port will be 443,
but the certificate will not be validated.

On the client side, you will also need to activate this mode either by using the —-tls-insecure
flag or by setting the GRB_TLS_INSECURE environment variable:

27

> grbcluster --tls-insecure --server=https://serverl --password=pass nodes
ADDRESS STATUS TYPE LICENSE #Q #R JL IDLE ’MEM ¥%CPU
https://serverl ALIVE COMPUTE VALID O O 2 46h59m 9.79 0.50
https://server2 ALIVE COMPUTE VALID O O 2 46h46m 8.75 0.00

Firewalls

As noted earlier, a node running Gurobi Remote Services communicates with clients through a
REST protocol over HT'TP or HT'TPS using a single port. It uses standard port 80 for HTTP or
443 for HT'TPS by default, but you can choose an arbitrary port through the PORT configuration
property. If there is a firewall between the clients and the nodes of the cluster, the chosen port will
have to be open.

The command line tools and the libraries are also compatible with standard proxy settings
using environment variables HTTP_PROXY and HTTPS_PROXY. HTTPS_PROXY takes precedence over
HTTP_PROXY for https requests. The values may be either a complete URL or a host[:port], in
which case the http scheme is assumed.

If you face connectivity issues with firewalls or proxy servers, we suggest you share this section
with your network administrator.

Router

A Remote Services Router may be used when you need to isolate better the cluster from the clients.
Without a router, the clients need to have direct access to each node in the cluster and the node
DNS name and IP address must be accessible from the clients.

Instead, a router provides a point of contact for all clients and will route the communication to
the appropriate node in the cluster. A Remote Services Router acts as a reverse proxy. Behind a
router, the cluster nodes can use private DNS names or IP addresses as long as all the nodes and
the router can communicate together. Only the router must be accessible from the clients.

In addition, the router will use HT'TP as default and can also use HT'TPS so that the data can
be encrypted from the clients to the router. The router can then route the traffic using HTTPS
or HTTP depending on the configuration of the cluster. It is a common configuration to enable
HTTPS only between the clients and the router while having the router and the nodes communicate
over unencrypted HT'TP in a private network. Using this setup you only have to manage certificates
on the router.

You can get mopre information about the router (grb_rsr) by reading the command line help:

grb_rsr --help

The router uses a configuration file grb_rsr.cnf that must be placed in the same directory as
grb_rsr executable. A predefined configuration file with additional comments is provided. The
following commands lists the available configuration properties:

grb_rsr properties

In a similar way to grb_rs, the router can be started as a service and the log messages will be
stored in the grbrsr-service.log rotating file by default. The log messages will also be sent to
the syslog on mac and linux, and to the service event log on Windows.

grb_rsr start

28

We will refer to the router URL as the full URL to access the router over HT'TP or HTTPS
and using standard port or a custom one. Here are some examples:

http://router.mycompany.com
http://router.mycompany.com: 61001
https://router.mycompany.com
https://router.mycompany.com: 61001

When using the command line tools grbcluster or gurobi_cl, you can specify the router URL
using the —-router flag. You can also add the property ROUTER to your license file. For example,
once you have configured and started the router and your cluster, you can display the cluster status
with the following command:

> grbcluster --router=http://router.mycompany.com --server=serverl ---password=pass nodes
ADDRESS STATUS TYPE LICENSE #Q #R JL IDLE %MEM ¥CPU
serverl ALIVE COMPUTE VALID O O 2 46h59m 9.79 0.50
server2 ALIVE COMPUTE VALID O O 2 46h46m 8.75 0.00

For the clients using the Gurobi Optimizer API, you will need to either set the ROUTER property
in the license file or construct an empty environment and set the CSRouter parameter before starting
the environment.

For clients using the cluster REST API for monitoring purpose, you will need to use the
router URL instead of a node address, and you can pass the selected node address in the header
X-GUROBI-SERVER. This way, the client communicates with the router and the router will use the
header value to forward the request to the selected node. In case the node address is incorrect or
does not exist, the router will return the HTTP error code 502.

29

3.4 Maintaining a Cluster

To expand a bit on our earlier description, a Remote Services cluster consists of a set of one or more
nodes running the Remote Services agent, as well as a set of runtimes that enable those nodes to
execute optimization jobs. You can think of a runtime as a specific version of the Gurobi Optimizer
that solves the optimization problems that are offloaded to a node in the cluster. In this section,
we will first explain how to update and manage the runtimes. We will then explain how to upgrade
the cluster to a new version of the Remote Services and runtimes.

Managing Runtimes

A runtime is an executable built to run jobs using a given version of the Gurobi Optimizer. Each
node in the cluster can handle multiple runtimes, so different Gurobi versions can be supported on
the same node at the same time. The Gurobi Remote Services agent will automatically select the
appropriate runtime, depending on the version of the Gurobi Optimizer library used by the client
program.

Runtime executables, named grb_rsw, are installed in the data directory of a node, under the
following directory structure (the version numbers used in this example are just for demonstration
purpose):

grb_rs
data/
runtimes/
v8.0.0/
grb_rsw
v8.0.1/
grb_rsw

The Remote Services agent will select the latest technical release that matches the major and
minor version of the client. With the example above, if the client uses version 8.0.0, runtime version
8.0.1 will be selected. If later a version 8.0.2 is installed, the same client will use it without any
modification.

Note that the Remote Services agent should be no older than the runtimes you deploy for it.
Thus, for example, you can deploy runtime version 8.0.0 in an agent version 8.5, but not vice-versa.
Note also that the ability to support different versions in a single Compute Server only started with
version 8.0, so older versions such as 7.0 or 7.5 are not supported.

Deploying Runtimes

The Remote Services installation package will contain the latest supported runtime, which will be
ready to use. You don’t need to take any action to install a runtime when you first install Remote
Services.

When new versions are released, you have the choice of reinstalling Remote Services with the
latest runtimes or deploying only the runtimes that you need.

To deploy a specific runtime to a running node, you first need to stop the processing on that
node:

grbcluster --server=serverl --password=cluster stop

30

Once all running jobs have finished processing and the node processing state has changed to
STOPPED, you can deploy the new runtime using the grbcluster deploy command:

> grbcluster --server=serverl --password=cluster deploy gurobi_server801/linux64/bin/data/runtimes/v8.0.1/grb_rsw

You can examine the list of available runtimes using the grbcluster nodes command. Available
versions are listed in the RUNTIMES column:

> grbcluster --server=serverl --password=pass nodes --long

ADDRESS STATUS TYPE LICENSE PROCESSING #Q #R JL IDLE %MEM JCPU STARTED RUNTIMES VERSION
serverl ALIVE COMPUTE VALID ACCEPTING O O 2 46h59m 9.79 0.50 2017-09-27 17:03:24 [8.0.0,8.0.1] 8.0.0
server2 ALIVE COMPUTE VALID ACCEPTING O O 2 46h46m 8.75 0.00 2017-09-27 17:16:11 [8.0.0] 8.0.0

You can remove an old runtime using grbcluster undeploy:
> grbcluster --server=serverl --password=cluster undeploy 8.0.0

> grbcluster --server=serverl --password=pass nodes --long

ADDRESS STATUS TYPE LICENSE PROCESSING #Q #R JL IDLE JMEM JCPU STARTED RUNTIMES VERSION
serverl ALIVE COMPUTE VALID ACCEPTING O O 2 46h59m 9.79 0.50 2017-09-27 17:03:24 [8.0.1] 8.0.0
server2 ALIVE COMPUTE VALID ACCEPTING O O 2 46h46m 8.75 0.00 2017-09-27 17:16:11 [8.0.0] 8.0.0

After deploying or undeploying, you can resume the job processing on the node, at which point
new jobs will use the latest runtimes:

> grbcluster --server=serverl --password=cluster start

You can use the flag -—all-stopped with the deploy or undeploy commands to deploy or
undeploy to multiple nodes at a time. Note that this flag will only apply to nodes that are already
STOPPED, so you should issue the stop command fist (typically with the --all flag) to stop the
nodes.

In conclusion, you can incrementally deploy new runtimes on cluster nodes as they become
available without having to reinstall Remote Services. This works only for technical releases, and
if you do not need to deploy a fix in the Remote Services stack.

Upgrading Remote Services

While you can deploy new technical releases within an existing Remote Services installation, a new
major or minor release will require a Remote Services upgrade. The upgrade must be done on all
nodes in your cluster. The steps are as follows:

1. Stop all nodes in your cluster.

2. Install the new Remote Services package on all nodes, and adjust the configuration file (grb_-
rs.cnf) to reflect any changes you made previously. If you started grb_rs as a service, you
will need to uninstall the service first, and then install it again.

3. If necessary, upgrade your license file (or modify GRB_LICENSE_FILE to point to the new
license file).

4. Start and join all the nodes to re-form the cluster.

See the earlier section on setting up Remote Services for details on installing the Remote Services
package, and the section on processing state for details on starting and stopping nodes.

31

Using Remote Services

The Gurobi Compute Server feature was designed to be almost entirely transparent to both the
developers and the users of the programs that use it. However, there are a few topics that you
may need to be aware of, including setting up a Compute Server client, setting job priorities,
performance considerations, callbacks, and a few coding practices for Compute Server.

32

4.1 Client Configuration

Client configuration is generally quite straightforward. Assuming you’ve installed the Gurobi Op-
timizer on your client machine already, the main remaining tasks are to set up a client license and
possibly adjust job priorities, which affects the order in which jobs are processed. This section
presents further information.

License File

A client program will always need to be told how to reach the Remote Services cluster. There
are generally two ways to do this. The first is through the programming language APIs. We’ll
discuss this option in a later section on programming with Remote Services. The second is through
a license file. You can create a client license file yourself or edit an existing one, using your favorite
text editor (Notepad is a good choice on Windows). The license file should be named gurobi.lic.

The license file contains a list of properties of the form PROPERTY=value. Lines that begin with
the # symbol are treated as comments and are ignored. The license file must be placed in your
home directory or in one of the following locations:

e C:\gurobi\ on Windows
e /opt/gurobi/ on Linux
e /Library/gurobi/ on Mac OS

You can also set the environment variable GRB_LICENSE_FILE to point to this file.
Here are the properties you can set:

COMPUTESERVER: The fully qualified name of the main node used to access the cluster, plus the
protocol scheme and port (if needed). For example, use serverl to access a cluster using
HTTP on the default port, or https://serverl.company.com: 61000 to access a cluster over
HTTPS using port 61000. You can also specify a comma-separated list of names so that other
nodes can be used in case the first node can’t be reached.

PASSWORD: The client password to access the cluster.

PRIORITY: Job Priority. Higher priority jobs take precedence over lower priority jobs. Priorities
will be discussed in more detail shortly.

GROUP: Job group. If your cluster has been set up with groups, you can specify the group to submit
the job to. The job will only be executed on nodes that are members of this group.

TIMEOUT: Queuing timeout. A job that has been sitting in the queue for longer than the specified
TIMEOUT value (in seconds) will return with a JOB_REJECTED error.

HANGUPTIME: Disconnect timeout. When a running job loses the connection to the node where the
job is running, it will try to reconnect for the specified time (in seconds).

Here is a complete example:

COMPUTESERVER=serverl.mydomain.com:61000
PASSWORD=abcd
PRIORITY=10

33

The gurobi_cl or grbcluster tools provide command-line flags that allow you to set most of
these properties. These tools will read the license file, but values specified via these command-line
flags will override any values provided in the license file.

Queueing, Load Balancing, and Job Priorities

As noted earlier, Gurobi Compute Servers support job priorities. You can assign an integer priority
between -100 and 100 to each job (the default is 0). When choosing among queued jobs, the
Compute Server will run the highest priority job first. Note that servers will never preempt running
jobs.

We have chosen to give priority 100 a special meaning. A priority 100 job will start immediately,
even if this means that a server will exceed its job limit. You should be cautious with priority 100
jobs, since submitting too many at once could lead to very high server loads, which could lead to
poor performance and even crashes in extreme cases. Note that this feature must be enabled by
the cluster administrator using the HARDJOBLIMIT configuration property.

As with most job properties, priorities can be set either through a programming language API
or through the license file.

Submitting Jobs with gurobi_cl

The Gurobi command-line tool can be used to submit optimization jobs to a Compute Server. The
following gives a simple example:

> gurobi_cl --server=serverl --password=passwordl miscO7.mps

Note that we’ve included connection information for the Compute Server (in this case, the server
name is serverl, we're using the default port 80, and the password is passwordl). You could also
provide connection information in a license file:

COMPUTESERVER=serverl
PASSWORD=passwordl

Assuming the license file is found by gurobi_cl, you would then be able to omit the connection
information:

> gurobi_cl miscO7.mps

Issuing Cluster Management Commands: Using grbcluster

Your primary tool for issuing cluster management commands is a command-line program called
grbcluster. The format of cluster management commands is:

grbcluster command [--flags]x*
You can also ask for general help:
grbcluster --help

or help with a specific command:

34

grbcluster command --help

Cluster management commands can be run from any machine that can access the server using
HTTP or HTTPS. You’ll need the client password for your Compute Server cluster for most of
these commands, and your admin password for others (administrative commands).

35

4.2 Client Commands

The commands in this section are meant to be run by someone acting in a client role. They require
the client password, which is the same password that is required to submit a job. Client commands
will also accept the administrator or cluster administrator passwords.

Listing Optimization Jobs

Optimization jobs running on a Compute Server cluster can be listed by using the jobs command.
For example:

> grbcluster --server=serverl --password=pass jobs

JOBID ADDRESS STATUS #Q STIME PRIO
d2a6c505 serverl RUNNING 2017-10-04 20:43:21 0

Note that you can get more information by using the --long flag. With this flag, you will also display the complete job
ID that is unique instead of the short ID.

> grbcluster --server=serverl --password=pass jobs --long

JOBID ADDRESS STATUS #Q STIME USER PRIO RUNTIME PID HOST IP
d2a6cb05-... serverl RUNNING 2017-10-04 20:43:21 userl O 8.0.0 4920 machinel xxx...

The jobs command only shows jobs that are currently running. To obtain information on jobs
that were processed recently, run the recent command:

> grbcluster --server=serverl --password=pass recent

JOBID ADDRESS STATUS STIME USER OPT
64af5552 serverl COMPLETED 2017-10-06 17:58:30 user1l OPTIMAL

The information displayed by the jobs and recent commands can be changed using the --view
flag. The default view for the two commands is the status view. Alternatives are:

status - List all jobs and their statuses

model - List all jobs, and include information about the models solved
simplex - List jobs that used the SIMPLEX algorithm

barrier - List jobs that used the BARRIER algorithm

mip - list jobs that used the MIP algorithm

For example, the model view gives details about the model, including the number of rows,
columns and nonzeros in the constraint matrix:

> grbcluster --server=serverl --password=pass recent --view=model
JOBID STATUS STIME SOLVE ROWS COLS NONZ ALG OBJ DURATION
64af5552 COMPLETED 2017-10-06 17:58:30 COMPLETED 396 322 1815 MIP 1.2000126e+09 52.17s

To get an explanation of the meanings of the different fields within a view, add the --describe
flag. For example:

> grbcluster recent --view=model --describe

JOBID - Unique job ID, use --long to display full ID
STATUS - Job status
STIME - Job status updated time

36

SOLVE - Solve status

ROWS - Number of rows

COLS - Number of columns

NONZ - Number of non zero

ALG - Algorithm MIP, SIMPLEX or BARRIER
0BJ - Best objective

DURATION - Solve duration

For a Mixed-Integer Program (MIP), the mip view provides progress information for the branch-
and-cut tree. For example:

> grbcluster --server=serverl --password=pass recent --view=mip
JOBID STATUS STIME 0BJBST 0BJBND NODCNT SOLCNT CUTCNT NODLFT
64af5552 COMPLETED 2017-10-06 17:58:30 1.2000126e+09 1.200000244173974e+09 178942 10 0 6046

Again, --describe explains the meanings of the different fields:

> grbcluster recent --view mip --describe

JOBID - Unique job ID, use --long to display full ID
STATUS - Job status

STIME - Job status updated time

0BJBST - Current best objective

OBJBND - Current best objective bound

NODCNT - Current explored node count

SOLCNT — Current count of feasible solutions found
CUTCNT - Current count of cutting planes applied
NODLFT - Current unexplored node count

DURATION - Solve duration

Note that the jobs command provides live status information, so you will for example see
current MIP progress information while the solve is in progress.

The other views (simplex and barrier) are similar, although of course they provide slightly
different information.

Accessing Job Logs

Gurobi Optimizer log output from a previous or currently running job can be retrieved by using
the log command. For example:

> grbcluster --server=serverl --password=pass log 78400806

MIR: 3
Flow cover: 43

Explored 178942 nodes (1207578 simplex iterations) in 93.24 seconds
Thread count was 2 (of 2 available processors)

Solution count 10: 1.20001e+09 1.35001e+09 1.50001e+09 ... 1.65835e+09

Optimal solution found (tolerance 1.00e-04)
Best objective 1.200012600000e+09, best bound 1.200000244174e+09, gap 0.0010%

37

The argument to this command is the JOBID for the job of interest (which can be retrieved
using the jobs command), you can use the full ID or the short ID. If you don’t specify a JOBID,
the command will display the log for the last job submitted.

The log command accepts the following arguments:

Usage:
grbcluster log <JOBID> [flags]

Important flags:

-b, --begin Display log from the beginning
-f, --continuous Display log continuously until job completion
-n, ——lines int Display only the last n lines (default 10)

For example, to get the entire log, from the beginning of the job, use the -b (or --begin) flag.

> grbcluster --server=serverl --password=pass log 78400806 -b

You can get a continuous feed of the log for a running optimization job with the -f (or
--continuous) flag.

Accessing Job Parameters

The Gurobi Optimizer provides a number of parameters that can be modified by the user. The
params command allows you to inspect the values of these parameters in a Compute Server job:

> grbcluster --server=serverl --password=pass params e7022667

TimeLimit= 60

The argument to this command is the JOBID for the job of interest (which can be retrieved
using the jobs command), you can use the full ID or the short ID. If you don’t specify a JOBID,
the command with display the changed parameters of the last job submitted.

The following example illustrates how the grbcluster params command can be used in prac-
tice. The first step is to start an optimization job on a Compute Server cluster with one modified
parameter:

> gurobi_cl --server=serverl --password=pass TimeLimit=120 glass4.mps

Once the job starts, you can use the grbcluster jobs command to retrieve the associated
JOBID (or you can read it off from the output of gurobi_cl). For jobs that have been already
processed, you would run the recent command instead.

> grbcluster --server=serverl --password=pass jobs
JOBID ADDRESS STATUS #Q STIME PRIO
e88a496f serverl RUNNING 2017-10-06 23:09:34 0

Once you obtain the JOBID, the params command shows the modified parameter settings for
the job:

> grbcluster --server=serverl --password=pass params e88a496f
TimeLimit= 120

The full list of Gurobi parameters can be found in the Parameters section of the Gurobi Refer-
ence Manual.

38

http://www.gurobi.com/documentation/8.0/refman/index.html
http://www.gurobi.com/documentation/8.0/refman/index.html

Listing Cluster Nodes

The nodes command provides a list of nodes in the cluster, along with status information on those
nodes. For example:

> grbcluster nodes --server=serverl --password=pass
ADDRESS STATUS TYPE LICENSE #Q #R JL IDLE MEM %CPU

serverl ALIVE COMPUTE VALID 0 0 2 23hi3m 9.77 0.00
server2 ALIVE COMPUTE VALID 0 0 2 23him 8.75 0.00

The --server flag can point to any node in the cluster.
You can also get more information using the —-long flag:

> grbcluster nodes --server=serverl --password=pass --long
ADDRESS STATUS TYPE LICENSE PROCESSING #Q #R JL IDLE %MEM %CPU STARTED RUNTIMES VERSION

serverl ALIVE COMPUTE VALID ACCEPTING O O 2 23h13m 9.77 0.00 2017-09-28 00:03:24 [8.0.0] 8.0.0
server2 ALIVE COMPUTE VALID ACCEPTING O O 2 23him 8.75 0.00 2017-09-28 00:16:11 [8.0.0] 8.0.0

Add the --describe flag to see an explanation of each field:

> grbcluster nodes --describe

ADDRESS - Node address

STATUS - Node status (ALIVE, FAILED, JOINING, LEAVING, DEGRADED)

TYPE - Node type (COMPUTE: compute server, WORKER: distributed worker)
GRP - Group name for job affinity (not displayed if empty or restricted)
LICENSE - License status (N/A, VALID, INVALID, EXPIRED)

PROCESSING- Processing state (ACCEPTING, DRAINING, STOPPED), use --long

#Q - Number of jobs in queue

#R - Number of jobs running

JL - Job Limit (maximum number of running jobs)

IDLE - Idle time since the last job execution (in minutes)

#MEM - Percentage of memory currently used on the machine

%CPU - Percentage of CPU currently used on the machine

STARTED - Node start time, use --long

RUNTIMES - Deployed runtime versions, use —--long
VERSION

Remote Services Agent version, use —--long

Troubleshooting Connectivity Issues

You can test to see if a Remote Services node is reachable with the ping command:

> grbcluster ping --server=serverl --password=pass
Node is not reachable

The latency command provides additional detail:

> grbcluster latency --server=serverl --password=pass
ADDRESS LATENCY NBERR

serverl 1.12813ms O

server2 1.218103ms O

39

This will display the latency from the client machine to each node in the cluster.
Add the --describe flag to see an explanation of each field:

> grbcluster latency --describe

ADDRESS - Node address
LATENCY - latency between the local client and a node
NBERR - Number of errors

40

4.3 Administrative Commands

The commands in this section are meant to be run by someone acting as an administrator. They
require the administrator password, and they will also accept the cluster administrator password.

Listing Cluster Licenses
The 1licenses command displays license status information for each node in a cluster:

> grbcluster licenses --server=serverl --password=admin

ADDRESS STATUS TYPE KEY EXP ORG USER APP VER CS DL ERROR
serverl VALID NODE gurobi 8 true O
server2 VALID NODE gurobi 8 true O

Add the --describe flag to see an explanation of each field:

> grbcluster licenses --describe

ADDRESS - Node address

STATUS - license status

TYPE - License type

KEY - License Cloud Key

EXP - License expiration

ORG - Assigned organization

USER - Assigned username

APP - Assigned application name

VER - Maximum runtime version supported

CS - Indicate if Compute Server features are enabled
DL - Maximum number of workers for a distributed job (Distributed Limit)
ERROR - License error message

If a node has an INVALID license, you can run the following command to learn more:

> grbcluster licenses --server=serverl --password=admin
ADDRESS STATUS TYPE KEY EXP ORG USER APP VER CS DL ERROR
serverl INVALID NODE false 0 No Gurobi license found...

Note that the licenses command can be used at any time to check the validity and attributes of
licenses on all the nodes of the cluster (expiration date, distributed limit etc).
You'll need to supply the adminstrator password to run this command.

Changing the Job Limit

Fach node of a Remote Services has a job limit, which indicates the maximum of jobs that can
be run simultaneously on that node. This job limit can be changed using the grbcluster config
command, together the with --job-1limit= flag. For example, to change the job limit to 5:

> grbcluster config --server=serverl --password=admin --job-limit=5

Changes to the job limit parameter only apply to the specified node; other nodes in the cluster

are unaffected. Once changed, the new value will persist, even if you stop and restart the node.
Recall that you can run the nodes command to view the current job limits for each node in a
cluster:

41

> grbcluster --server=serverl --password=admin nodes

ADDRESS STATUS TYPE LICENSE #Q #R JL IDLE %MEM %CPU
serverl ALIVE COMPUTE VALID O O 2 29m 9.97 0.00
server2 ALIVE COMPUTE VALID O O 2 30m 8.86 1.00

The JL column shows the job limit, which is 2 for both nodes in the cluster in this example.
We can change the limit for one node:

> grbcluster config --server=serverl --password=admin --job-limit=5

By rerunning the nodes command, we can see that the limit for server1 has been changed to
D:

> grbcluster --server=serverl --password=admin nodes

ADDRESS STATUS TYPE LICENSE #Q #R JL IDLE JMEM JCPU
serverl ALIVE COMPUTE VALID O O 5 1h7m 10.12 0.00
server2 ALIVE COMPUTE VALID O O 2 1h6m 8.92 0.00

Aborting Jobs

Jobs that are running on a Compute Server can be aborted by using the abort command. For
example:

> grbcluster --server=serverl --password=admin abort e7022667

The following steps illustrate how you would start and subsequently abort a job. First, use the
Gurobi command-line tool (gurobi_cl) to start a long-running optimization job on your Compute
Server:

> gurobi_cl --server=serverl --password=pass glass4.mps

Once the job starts, you can use the grbcluster jobs command to retrieve the associated
JOBID (or you can read it off from the output of gurobi_cl):

> grbcluster --server=serverl --password=pass jobs
JOBID ADDRESS STATUS #Q STIME PRIO
8f9b15d9 serverl RUNNING 2017-10-10 17:30:33 0

The full or short JOBID can be used to abort the job as follows

> grbcluster --server=serverl --password=admin abort 8f9b15d9

If no JOBID is specified, the most recently started job will be aborted.
After the abort command is issued, the status of the job can be retrieved using the recent
command:

> grbcluster --server=serverl --password=pass recent

JOBID ADDRESS STATUS STIME USER OPT
8f9b15d9 serverl ABORTED 2017-10-10 17:41:33 userl OPTIMAL

As you can see, the status of the job has changed to ABORTED.

42

Programming with Remote Services

While applications that use Remote Services can generally be built without having to consider
where they will be run, there are a few aspects of Remote Services that programmers should be
aware. These are covered in this section.

43

5.1 Using an API to Create a Compute Server Job

As was noted earlier, a Remote Services client program will always need to be told how to reach
the Remote Services cluster. This can be done in two ways. The first is through a license file. This
approach is described in an earlier discussion. It requires no changes to the application program
itself. The same program can perform optimization locally or remotely, depending on the settings
in the license file.

Your second option for specifying the desired Compute Servers is through API calls. You would
first construct an empty environment (using GRBemptyenv in C or the appropriate GRBEnv con-
structor in the object-oriented interfaces), then set the appropriate parameters on this environment
(typically ComputeServer and ServerPassword), and then start the empty environment (using
GRBstartenv in C or env.start() in the object-oriented interfaces).

To give a simple example, if you’d like your Python program to offload the optimization com-
putation to a Compute Server named serverl, you could say:

env = Env(empty=True)
env.setParam(GRB.Param.ComputeServer, "serverl:61000")
env.setParam(GRB.Param.ServerPassword, "passwd")
env.start()

model = read("miscO7.mps", env)

model.optimize ()

An equivalent Java program would look like this:

GRBEnv env = new GRBEnv(true);

env.set (GRB.StringParam.ComputeServer, "server1:61000");
env.set (GRB.StringParam.ServerPassword, "passwd");
GRBModel model = new GRBModel(env, "miscO7.mps");

model .optimize();

We refer you to the Gurobi Reference Manual for details on these routines.

44

http://www.gurobi.com/documentation/8.0/refman/index.html

5.2 Performance Considerations on a Wide-Area Network (WAN)

While using Gurobi Compute Server doesn’t typically require you to make any modifications to
your code, performance considerations can sometimes force you to do some tuning when your client
and server are connected by a slow network (e.g., the internet). We’ll briefly talk about the source
of the issue, and the changes required to work around it.

In a Gurobi Compute Server, a call to a Gurobi routine often results in a network message
between the client and the server. While each individual message is not that expensive, sending
hundreds or thousands of messages can be quite time-consuming. Compute Server makes heavy
use of caching to reduce the number of such messages, and this caching generally works well, so
you don’t need to be too concerned about it.

Furthermore, when building a model, our lazy update approach avoids the issue entirely. You
should feel free to build your model one constraint at a time, for example. Your changes are
communicated to the server in one large message when you request a model update.

Having said that, we should add that not all methods are batched or cached. As a result, we
suggest that you avoid doing the following things:

e Retrieving the non-zero values for individual rows and columns of the constraint matrix
(using, for example, GRBgetconstrs in C, GRBModel: :getRow in C++, GBModel.getRow in
Java, GRBModel.GetRow in .NET, and Model.getRow in Python).

e Retrieving individual string-valued attributes.

Of course, network overhead depends on both the number of messages that are sent and the sizes
of these messages. We automatically perform data compression to reduce the time spent transfering
very large messages. However, as you may expect, you will notice some lag when solving very large
models over slow networks.

45

5.3 Callbacks

As you might imagine, since the actual optimization task runs on a remote system in a Compute
Server environment, Gurobi callbacks give different behavior than they do when the task runs
locally. In particular, callbacks are both less frequent and more restrictive. You will only receive
MESSAGE, BARRIER, SIMPLEX, MIP, MIPSOL and MULTIOBJ callbacks; you will not receive PRESOLVE
or MIPNODE callbacks. As a result, you will only have access to a subset of the callback information
that you would be able to obtain when running locally. You can still request that the optimization
be terminated from any of the callbacks you receive. Please refer to the Callback Code section of
the Gurobi Reference Manual for more information on the various callback codes.

46

http://www.gurobi.com/documentation/8.0/refman/index.html

5.4 Developing for Compute Server

With only a few exceptions, using Gurobi Compute Server requires no changes to your program.
This section covers the exceptions. We’ll talk about program robustness issues that may arise
specifically in a Compute Server environment, and we’ll give a full list of the Gurobi features that
aren’t supported in Compute Server.

Coding for Robustness

Client-server computing introduces a few robustness situations that you wouldn’t face when all of
your computation happens on a single machine. Specifically, by passing data between a client and
a server, your program is dependent on both machines being available, and on an uninterrupted
network connection between the two systems. The queuing and load balancing capabilities of
Gurobi Compute Server can handle the vast majority of issues that may come up, but you can take
a few additional steps in your program if you want to achieve the maximum possible robustness.

The one scenario you may need to guard against is the situation where you lose the connection
to the server while the portion of your program that builds and solves an optimization model is
running. Gurobi Compute Server will automatically route queued jobs to another server, but jobs
that are running when the server goes down are interrupted (the client will receive a NETWORK error).
If you want your program to be able to survive such failures, you will need to architect it in such
a way that it will rebuild and resolve the optimization model in response to a NETWORK error. The
exact steps for doing so are application dependent, but they generally involve encapsulating the
code between the initial Gurobi environment creation and the last Gurobi call into a function that
can be reinvoked in case of an error.

Features Not Supported in Compute Server

As noted earlier, there are a few Gurobi features that are not supported in Compute Server. We've

mentioned some of them already, but we’ll give the full list here for completeness. You will need to

avoid using these features if you want your application to work in a Compute Server environment.
The unsupported features are:

e Lazy constraints: While we do provide MIPSOL callbacks, we don’t allow you to add lazy
constraints to cut off the associated MIP solutions.

e User cuts: The MIPNODE callback isn’t supported, so you won’t have the opportunity to add
your own cuts. User cuts aren’t necessary for correctness, but applications that heavily rely
on them may experience performance issues.

e Multi-threading within a single Gurobi environment: This isn’t actually supported in
Gurobi programs in general, but the results in a Compute Server environment are sufficiently
difficult to track down that we wanted to mention it again here. All models built from an
environment share a single connection to the Compute Server. This one connection can’t
handle multiple simultaneous messages. If you wish to call Gurobi from multiple threads
in the same program, you should make sure that each thread works within its own Gurobi
environment.

e Advanced simplex basis routines: The C routines that work with the simplex basis
(GRBFSolve, GRBBSolve, GRBBinvColj, GRBBinvRowi, and GRBgetBasisHead) are not sup-
ported.

47

5.5 Distributed Algorithms

Gurobi Remote Services allow you to perform distributed optimization. All you need is a cluster
with more than one node. The nodes can be either Compute Server or distributed worker nodes.
Ideally these nodes should all give very similar performance. Identical performance is best, es-
pecially for distributed tuning, but small variations in performance won’t hurt overall results too
much.

Choosing an Appropriate Cluster

Before launching a distributed optimization job, you should run the grbcluster nodes command
to make sure the cluster contains more than one live machine:

> grbcluster nodes --server=serverl:port --password=pass

If you see multiple live nodes, then that cluster is good to go:

ADDRESS STATUS TYPE LICENSE #Q #R JL IDLE ¥MEM ¥%CPU
server1:61000 ALIVE COMPUTE VALID O O 1 43mOs 42.67 2.53
server2:61000 ALIVE WORKER N/A 0 0 1 <is 42.67 1.76

We should reiterate a point that was raised earlier: you do not need a Gurobi license to run
Gurobi Remote Services on a machine. While some services are only available with a license, any
machine that is running Gurobi Remote Services will provide the Distributed Worker service.

Running A Distributed Algorithm

Running a distributed algorithm is simply a matter of setting the appropriate Gurobi parameter.
Gurobi supports distributed MIP, concurrent LP and MIP, and distributed tuning. These are
controlled with three parameters: DistributedMIPJobs, ConcurrentJobs, and TuneJobs, respec-
tively. These parameters indicate how many distinct distributed worker jobs you would like to

start. Keep in mind that the initial Compute Server job will act as the first worker.
To give an example, if you have a cluster consisting of two machines (serverl and server?2),
and if you set TuneJobs to 2 in grbtune...

> grbtune --server=server1:61000 --password=passwd TuneJobs=2 miscO7.mps
...you should see output that looks like the following...
Capacity available on ’server1:61000’ - connecting...

Using Compute Server as first worker
Started distributed worker on server2:61000

Distributed tuning: launched 2 distributed worker jobs

This output indicates that two worker jobs have been launched, one on machine serverl and the

other on machine server2. These two jobs will continue to run until your tuning run completes.
Similarly, if you launch distributed MIP...

> gurobi_cl --server=server1:61000 --password=passwd DistributedMIPJobs=2 miscO7.mps
...you should see the following output in the log...

Using Compute Server as first worker

Started distributed worker on server2:61000

Distributed MIP job count: 2

Note that distributed workers are allocated on a first-come, first-served basis, so if multiple
users are sharing a cluster, you should be prepared for the possibility that some or all of your
distributed workers may be busy when you request them. Your program will grab as many as it
can, up to the requested count. If none are available, it will return an error.

48

Using a Separate Manager

While distributed workers always need to be part of a Remote Services cluster, note that the
manager itself does not. Any machine that is licensed to run distributed algorithms can act as the
manager. You simply need to set WorkerPool and WorkerPassword parameters to point to the
Remote Services cluster that contains your distributed workers. To give an example:

> gurobi_cl WorkerPool=server1:61000 WorkerPassword=passwd DistributedMIPJobs=2 misc07.mps
...you should see the following output in the log...

Started distributed worker on server1:61000
Started distributed worker on server2:61000

Distributed MIP job count: 2

In this case, the distributed computation is managed by the machine where you launched this
command, and the two distributed workers come from your Remote Services cluster.

Compute Server Considerations

As noted earlier, Gurobi Compute Servers, can be used for distributed optimization as well. Com-
pute Servers offer a lot more flexibility than distributed workers, though, so they require a bit of

additional explanation.

The first point you should be aware of is that one Compute Server node can actually host
multiple distributed worker jobs. Compute Server nodes allow you to set a limit on the number of
jobs that can run simultaneously. Each of those jobs can be a distributed worker. For example, if
you have a cluster that contains a pair of Compute Server nodes, each with a job limit of 2, then
issuing the command...

> gurobi_cl --server=server1:61000 --password=passwd DistributedMIPJobs=3 miscO7.mps
...would produce the following output...

Capacity available on ’server1:61000’ - connecting...

ﬁ;ing Compute Server as first worker

Started distributed worker on server2:61000
Started distributed worker on server1:61000

Compute Server assigns a new job to the machine with the most available capacity, so assuming that
the two servers are otherwise idle, the first distributed worker job would be assigned to serveri,
the second to server2, and the third to serveri.

49

5.6 Distributed Algorithm Considerations

So far in this section, we’ve focused almost entirely on configuration and setup issues for the
distributed algorithms in this section. These algorithms have been designed to be nearly indis-
tinguishable from the single machine versions. Our hope is that, if you know how to use the
single machine version, you'll find it straightforward to use the distributed version. The distributed
algorithms respect all of the usual parameters. For distributed MIP, you can adjust strategies,
adjust tolerances, set limits, etc. For concurrent MIP, you can allow Gurobi to choose the set-
tings for each machine automatically or you can use concurrent environments to make your own
choices. For distributed tuning, you can use the usual tuning parameters, including TuneTimeLimit,
TuneTrials, and TuneQutput.

Performance Across Distributed Workers

There are a few things to be aware of when using distributed algorithms, though. One relates
to relative machine performance. As we noted earlier, distributed algorithms work best if all of
the workers give very similar performance. For example, if one machine in your worker pool were
much slower than the others in a distributed tuning run, any parameter sets tested on the slower
machine would appear to be less effective than if they were run on a faster machine. Similar
considerations apply for distributed MIP and distributed concurrent. We strongly recommend
that you use machines with very similar performance. Note that if your machines have similarly
performing cores but different numbers of cores, we suggest that you use the Threads parameter
to make sure that all machines use the same number of cores.

Callbacks

Another difference between the distributed algorithms and our single-machine algorithms is in the
callbacks. The distributed MIP and distributed concurrent solvers do not provide the full range of
callbacks that are available with our standard solvers. They will only provide the MIP, MIPNODE,
and POLLING callbacks. See the Callback section of the Gurobi Reference Manual). for details on
the different callback types.

Logging

The distributed algorithms provide slightly different logging information from the standard algo-
rithms. Consult the Distributed MIP Logging section of the Gurobi Reference Manual). for
details.

50

http://www.gurobi.com/documentation/8.0/refman/index.html
http://www.gurobi.com/documentation/8.0/refman/index.html

5.7 Cluster REST API

Fach node in the cluster also exposes a REST API in order to support advanced integration.
The API follows standard REST principles and can be used in various languages and tools (Java,
Pyhton, Node, curl...).

The base URL of the API is the node address followed by the API prefix /api/v1. For example,
if a node is runnning on serverl.company.com using HTTP on the default port, the base URL
will be:

http://serverl/api/vl
If it is using HTTPS on a custom port 61000, the base URL will be
https://server1:61000/api/vl

The API is composed of several endpoints. In order to access an API endpoint, you will also
need to provide a the password in the header X-GUROBI-CSPASSWORD. The password can be the
client or administrator password depending on the endpoint.

We distinguish between the cluster and the node endpoints. Cluster endpoints provide cluster-
wide APIs and any of the nodes from the same cluster can be used. On the other hand, node
endpoints provides node specific APIs, for example to manage the configuration of a node or access
a running or recently completed job on a specific node. Here is a summary of the cluster endpoint:

GET /cluster/licenses: Lists the licenses

GET /cluster/mnodes: Lists the nodes

GET /cluster/jobs: Lists the jobs

GET /cluster/jobs/id: Returns a job description

DELETE /cluster/jobs/id/processing: Aborts a job - Administrator password is required.
Here is a summary of the node endpoints:

GET /ping: Pings a node

GET /config: Gets current configuration

POST /config: Updates the configuration - Administrator password is required.

GET /jobs/id/log: Returns the log of an active job

GET /jobs/id/metrics: Returns the metrics of an active job

GET /jobs/id/parameters: Returns the parameters of an active job

The detailed and interactive documentation is also provided using the Swagger format and
available directly on a node, for example:

http://serverl/swagger.html

o1

Using Remote Services with Gurobi Instant Cloud

Our Gurobi Instant Cloud product is built on top of Amazon’s Elastic Compute Cloud (EC2)
platform. When you launch an Instant Cloud instance, we launch a machine on EC2 and start
Gurobi Remote Services for you on that machine. You also have the option of launching multiple
machines, in which case we’ll create a Remote Services cluster for you. Once you have set up your
client with a client license file, you will be able to use grbcluster to monitor and administer the
cluster. Note, however, that cluster administrative commands are not accessible, since the Gurobi
Instant Cloud Manager already plays the cluster administrator role. Note also that communication
with your Instant Cloud instance will always use HT'TPS, and it will go through a region router.

52

6.1 Client Setup

To access the cluster started by Instant Cloud, you first need to download the machine or pool
license file from the Instant Cloud manager. You can download the default license file from the
license panel, the pool license from the pool panel, or the machine license from the machine panel.
Then, you need to save this file in your home directory or in one of the following locations:

e C:\gurobi\ on Windows
e /opt/gurobi/ on Linux
e /Library/gurobi/ on Mac OS

You can also set the environment variable GRB_LICENSE_FILE to point to this file.

93

6.2 Client Commands

Once you have set up your client license file and started an Instant Cloud instance, you can use
grbcluster to list the nodes in your cluster or issue other client commands. Instances can be started
by submitting a job through the gurobi_cl command-line tool, through the Gurobi programming
language APIs, or manually through the Instant Cloud Manager website.

If you try to run grbcluster without first starting an instance, you will get the following error:

fatal : Instant Cloud pool default has no machines
If your instance is in the process of starting, you will get the following error:

fatal : Instant Cloud pool default is not ready

If your instance is up and running, grbcluster will list the nodes in your cluster:

> grbcluster nodes

ADDRESS STATUS TYPE GRP LICENSE #Q #R JL IDLE %MEM JCPU
ip-172-31-31-180 ALIVE COMPUTE m-HkQmbubhWH1g7m VALID O O 2 12mOs 27.08 1.98
ip-172-31-62-109 ALIVE COMPUTE m-HJSXmb_-2WBKLX VALID O O 2 12mOs 27.49 0.00

To obtain additional details (about the license file, the cloud pool, or the name of the server),
you can use the verbose mode with the -v flag:

> grbcluster -v nodes

verb : Reading license file /licenses/gurobi.lic

verb : Accessing Instant Cloud pool 999999-poolb

verb : Using remote services on node ip-172-31-31-180

ADDRESS STATUS TYPE GRP LICENSE #Q #R JL IDLE ¥MEM JCPU

ip-172-31-31-180 ALIVE COMPUTE m-HkQmbubhWH1g7m VALID 0 0 2 12m0s 27.08 1.98
ip-172-31-62-109 ALIVE COMPUTE m-HJSXmb_-2WBKLX VALID 0 0 2 12m0s 27.49 0.00

You can use grbcluster to perform all of the same client commands on an Instant Cloud cluster
that you’d perform on a cluster running locally. You can monitor running and recently processed
jobs, access log files, view parameters, etc.

54

6.3 Administrative Commands

Gurobi Instant Cloud allows you to perform administrative commands (to abort a job, change the

job limit, etc.), but you’ll need to retrieve the administrator password to do so. The administrator

password can be retrieved from the Instant Cloud Manager. For a running machine, you will find

the administrator password in the Machines area, within machine details under the PASSWORDS tab.

If you have no running machine, you can find it in the Settings area, under passwords settings.
For example, you can abort a specific job:

> grbcluster --password=XXXXXXXXX abort 3545d9de-8de4-4666-9491-5d60e2e56186
Or, you can set the job limit of a specific Compute Server node:

> grbcluster --server=ip-172-31-62-109 --password=XXXXXXXXX config --job-1limit=10

95

http://cloud.gurobi.com/manager

6.4 Region Router

Starting with version 8.0, all communications between clients and the Gurobi Instant Cloud use
the HTTPS protocol. This means that your communications are secured and encrypted using
standard internet protocols. In addition, Gurobi servers enforce the latest encryption policies (TLS
v1.2 and above only). For better security, the dedicated machines started by Instant Cloud on
your behalf cannot be accessed directly. All communications must transit through a secured and
highly-available region router acting as a reverse proxy. This also facilitates the integration with
clients, as only the standard HTTPS protocol and standard port 443 need to be open if a firewall
is in place.

The region router is automatically detected and used based on the pool definition or the machine
license file.

56

Migrating from Previous Releases

While the new Compute Server provides a similar set of features to the previous release, a few of
the mechanics are quite different.

o7

7.1 Referring to Compute Servers

One important difference between version 8.0 and previous versions relates to clustering. Previous
releases supported queueing and load balancing among multiple servers, but this clustering was
handled on the client side. Your client program would explicitly list the Compute Server nodes
that your job could run on, and the client would negotiate with those servers to determine where
and when it ran. In the new Compute Server, you form explicit clusters of nodes, and your client
simply needs to refer to any member of the cluster in order to run a job on any node in the cluster.

Another important difference is in how you to refer to Compute Server nodes. While it has
always been the case that you need to provide both the name of the Compute Server node and the
port number that Remote Services is listening on, those were separated in previous releases. For
example, you might say:

> gurobi_cl --server=serverl --port=61000

In version 8.0, communication happens through a REST API, so you now use standard HTTP
syntax to refer to servers:

> gurobi_cl --server=server1:61000
...Ol...

> gurobi_cl --server=http://serverl:61000

58

7.2 Installation - Ports and Firewalls

In previous releases, grb_rs required a large range of ports to be open (61000 through 65000 by
default). Version 8.0 only requires a single port, which simplifies the installation and the setup of
firewalls. The default port depends on the protocol: port 80 for HT' TP and port 443 for HTTPS.
In order to use these default ports, you will need to be an administrator to start grb_rs, and also
make sure that they are not already in use. You can also choose a custom port (e.g., port 61000).
Refer to the sections about starting grb_rs as a standard process or service for more details.

99

7.3 Installation - Encryption

In previous releases, data exchanged between a client and grb_rs was encrypted by default with
a proprietary protocol using AES encryption. Version 8.0 supports standard TLS encryption over
HTTPS. However, you will need to explicitly activate this protocol and setup certificates. grb_rs
can also help you by generating self-signed certificates, if necessary.

60

7.4 Command-line options in gurobi__cl

Several options of gurobi_cl have been removed and replaced as the following:

-—status: Listing the jobs and the status of a node is now available using the grbcluster command
line tool. The command grbcluster nodes lists all the nodes of the cluster with some metrics
(CPU and memory usage), number of jobs in queue and running, processing status, license
status etc. The command grbcluster jobs lists all the jobs running in the cluster. Note
that you can also list the license status with the command grbcluser licenses.

--killjob: Killing a job is supported by the grbcluster abort command.

--joblimit: Changing the job limit of each node is now supported by the grbcluster config
command.

--newadminpassword: It is not possible to change dynamically the password anymore. If you need
to change a password, you will need to stop the node, edit the grb_rs.cnf configuration file,
and finally restart the node Also, all the nodes in the cluster should have the same passwords
to avoid any inconsistent behavior.

61

7.5 Distributed Optimization

If you used distributed algorithms in previous releases, you'll find that the meaning of the WorkerPool
parameter has changed. In previous releases, the client program was responsible for listing all ma-

chines that could be used as distributed workers. In the new release, the workers should all belong

to a single Remote Services cluster, and your client program simply needs to point to any node of

the cluster.

62

Usage:
grb_rs [flags] Start the remote services as a standard process
grb_rs --help Display usage
grb_rs command [flags] Execute a specific command
grb_rs command --help Display more information about a command

Flags can be set using --flag=value or the short form -f=value if defined.
A boolean flag can be enabled using --flag or the short form -f if defined.

Configuration Helper Commands:

hash Hash a password

init Clone the default data directory and configuration to current
directory

token Generate a cluster token

properties Display help about configuration properties

Service Commands:

install Install the service

restart Start or restart the service (install the service if necessary)
start Start the service (install the service if necessary)

stop Stop the service

uninstall Uninstall the service

With no command, grb_rs will start the remote services as a standard process
and the following flags are available for quick configuration. The full list
of properties can be displayed with the ’grb_rs properties’ command and the
properties can be set in the grb_rs.cnf configuration file.

Logging Flags:

—--console-ts Add timestamps to console log messages
--logfile string Log to a rotating log file
--logfile-max-age int Limit the rotating log file to a number of days
--logfile-max-size int Limit the size of each file to a size in Mb
--no-console Disable log to console
--syslog Log to syslog or Windows event log

-v, ——verbose Enable verbose logging

Configuration Flags:
-c, ——config string Location of the configuration file

63

Appendix A: grb_rs

--data string

—-hostname
—-idle-shutdown int

--join string
--port int

—-—-service
--worker

Security Flags:

--tls

--tlscert string
--tlskey string
--tls-insecure

General Flags:

--version
--help

(default: ’grb_rs.cnf’)

Location of the data root directory
(default: ’data’)

Overrides the public name on this name

Shutdown if the server is idle for more than the
specified time limit (minutes)

Join a cluster using the specified cluster
representative node address

Start the node on the given port

Indicates if it is started by a service manager

Declare this node as a distributed worker

Use TLS for communication encryption

Path to TLS certificate file

Path to TLS key file

Use TLS but disable verification of certificates
works with self-signed certificates

Display version information
Display usage

64

The following list of properties can also be displayed using the grb_rs properties command.

ADMINPASSWORD: Type string. Client password to administrate the jobs. The password can be in
clear or can be hashed using ’grb_ rs hash’ command for better security.

AWS: Type bool, use —-—aws to override on the command line. Enable AWS configuration using ec2
user-data.

AWS_HOSTNAME_MODE: Type string. Indicates how to get the node name on AWS: ’'public’ or ’pri-
vate’. The public mode will assign the EC2 public DNS name, whereas the private mode will
assign the base name of the private DNS name. The private mode is used with a Gurobi
router.

CLIENT_DETAILS_ADMIN: Type bool. Indicates client details such as host, IP are only accessible as
an admin user When a job is submitted, the client hostname, IP, and process ID are recorded.
By default, this information is displayed to any user running the command line tool grbcluster
or the REST API. If this property is set to true, only the administrator will be able to access
this information.

CLOUDKEY: Type string. Cloud license key.

CLUSTER_ADMINPASSWORD: Type string. Client password to administrate the cluster. The password
can be in clear or can be hashed using ’grb_ rs hash’ command for better security.

CLUSTER_TOKEN: Type string. Unique cluster identifier. The token is en encrypted key to let nodes
communicates between each other. All nodes of a cluster must have the same token. Use
‘grb_ rs token’ command to generate a new token.

CONSOLE_TS: Type bool, use ——console-ts to override on the command line. Add timestamps to
console log messages.

DATA_DIR: Type string (default data), use -—data to override on the command line. Root directory
to store remote services data.

DEGRADED_TIMEOUT: Type int (default 60). Timeout to evict a node that is DEGRADED from the
cluster. 0 for no timeout.

FILE_DESCRIPTOR_LIMIT: Type int (default 2048). Maximum nunber of file descriptors.
FIXED_JOBLIMIT: Type bool. Indicates if the job limit can be changed once the node started.

GROUP: Type string. Node grouping for job affinity assignment.

65

Appendix B: grb_rs - Configuration Properties

HARDJOBLIMIT: Type int (default 0). A hard limit on the number of simultaneous client jobs.
Certain jobs (those with priority 100) are allowed to ignore the JOBLIMIT, but they aren’t
allowed to ignore this limit. Client requests beyond this limit are queued. Use 0 to disable.

HOSTNAME: Type string, use ——hostname to override on the command line. Advertised hostname of
the cluster node.

IDLESHUTDOWN: Type int (default -1), use -—idle-shutdown to override on the command line. Idle
time limit (minutes) to trigger a shutdown of the server, -1 to disable.

IDLESHUTDOWN_COMMAND: Type string. Command to execute when the idle shutdown is reached,
for example to shutdown the machine.

IDLESHUTDOWN_STOPPED: Type int (default -1). Idle time limit (minutes) to trigger a shutdown of
the machine once the processing state is STOPPED, -1 to disable.

IDLETIMEQUT: Type int (default 0). Default idle timeout in seconds. If a job does not send a
command for more than the timeout, it will be terminated. Use 0 to disable.

IGNOREPRIORITIES: Type bool. Disable job priority handling.

JOBLIMIT: Type int (default 2). A limit on the number of client jobs that are allowed to run on
the server at a time. Client requests beyond this limit are queued.

JOIN: Type string, use --join to override on the command line. List of other nodes to join.
JOIN_TIMEOUT: Type int (default 20). Timeout for a successful join, use 0 to disable.

KEEPALIVE_TIMEQOUT: Type int (default 60). Default keep alive timeout in seconds. If a job does
not send a keep alive message for more than the timeout, it will be terminated.

LICENSEID: Type string. Cloud license ID.

LOGFILE: Type string, use -—logfile to override on the command line. Enable logging to a rotating
log file.

LOGFILE_MAX_AGE: Type int (default 5), use —-logfile-max-age to override on the command line.
Limit the rotating log file to a number of days.

LOGFILE_MAX_SIZE: Type int (default 500), use --logfile-max-size to override on the command
line. Limit the size of each file to a size in Mb.

MAX_QUEUE: Type int (default 1000). Maximum number of jobs in the queue.
MAX_RECENT: Type int (default 50). Maximum number of executed jobs in the recent history.
NOQUEUE: Type bool. Disable job queueing.

NO_CONSOLE: Type bool, use ——no-console to override on the command line. Disable the console
log.

PASSWORD: Type string. Client password to access the cluster. The password can be in clear or can
be hashed using ’grb_ rs hash’ command for better security.

66

PORT: Type int, use —-port to override on the command line. Port number for the REST API.
REGISTRATION_PORT: Type int. Port used to register worker, 0 means a dynamic port.

SYSLOG: Type bool, use --syslog to override on the command line. Log to syslog or windows
event log.

THREADLIMIT: Type int (default -1). Maximum number of threads used by a worker.
TLS: Type bool, use --tls to override on the command line. Enable TLS encryption protocol.

TLS_CERT: Type string, use ——tlscert to override on the command line. Path to TLS certificate
file. If not specified, a self-signed certificate will be generated.

TLS_INSECURE: Type bool, use --tls-insecure to override on the command line. Enable TLS
encryption protocol but skip certificate verification. This mode can be used with self-signed
certificate so that data is encrypted.

TLS_KEY: Type string, use —-tlskey to override on the command line. Path to TLS key file. If
not specified, a key will be generated to self-sign a certificate.

USERNAME_ADMIN: Type bool. Indicates that job username is only accessible as an admin user When
a job is submitted, the client process username is recorded. By default, this information is
displayed to any user running the command line tool grbcluster or the REST API. If this
property is set to true, only the administrator will be able to access this information.

VERBOSE: Type bool, use -—verbose to override on the command line. Enable vebose logging.

WORKER: Type bool, use ——worker to override on the command line. Declare the node as a dis-
tributed worker.

67

Appendix C: grbcluster

Usage:
grbcluster --help Display usage
grbcluster command [flags] Execute a specific command
grbcluster command --help Display more information about a command

Flags can be set using --flag=value or the short form -f=value if defined.
A boolean flag can be enabled using --flag or the short form -f if defined.

Client Commands:

jobs List the active jobs

latency Test node communication latency

log Displays the log of a job

nodes List the cluster nodes

params List the changed parameters of a job
ping Indicates if a node is reachable
recent List the recently executed jobs

Administrator Commands:

abort Abort a submitted job
config Change the job limit property of a node
licenses List the cluster licenses

Cluster Administrator Commands:

deploy Deploy a Gurobi Optimizer runtime on one or several nodes
join Request a node to join another node to form a cluster

leave Request a node to leave the cluster

start Enable job processing on a node

stop Disable job processing on a node

undeploy Undeploy a Gurobi Optimizer runtime from one or several nodes

Global Flags:
--console-ts Add timestamps to console log messages

--help Display usage
-v, —-verbose Enable verbose logging
--version Display version information

If a valid Gurobi license file is accessible at the predefined locations or
using the variable GRB_LICENSE_FILE, the license file will provide default
values for some connection parameters (server, password, router). If the

68

license file references a Gurobi Instant Cloud pool, it will resolve the
connection parameters of the pool. However, the password of the administrator
or the cluster administrator must be passed explicitly.

grbcluster is compatible with standard proxy settings using environment
variables HTTP_PROXY and HTTPS_PROXY. HTTPS_PROXY takes precedence over
HTTP_PROXY for https requests. The values may be either a complete URL or
a "host[:port]", in which case the "http" scheme is assumed.

69

Usage:
gurobi_cl --help

Appendix D: gurobi_cl

Display usage

gurobi_cl [flags] [param=value]* filename Optimize a model file

gurobi_cl [flags]

Execute a command

Gurobi parameters are documented in the Gurobi Reference Manual.

Flags can be set using --flag=value or the short form -f=value if defined.
A boolean flag can be enabled using --flag or the short form -f if defined.

Flags:
-h, --help
--license
-t, —--tokens
-v, —-version

Compute Server Flags:
--group string
-p, ——password string

--priority int

-r, —-router string
-s, —-server string

--tls-insecure

Instant Cloud Flags:
--accessid string
--secretkey string
--pool string

Display usage

Display license information

List license tokens currently in use
Display version information

Cluster group name, overrides license file GROUP
Password, overrides license file PASSWORD
(default "pass")
Job priority, overrides license file PRIORITY
(default 0, min -100, max 100)
Router URL, overrides license file property ROUTER
Cluster representative node address,
overrides license file COMPUTESERVER
Skip TLS certificate verification,
overrides GRB_TLS_INSECURE variable

Access ID, overrides license file CLOUDACCESSID
Secret Key, overrides license file CLOUDKEY
Pool name, overrides license file POOL

If a valid Gurobi license file is accessible at the predefined locations or
using the variable GRB_LICENSE_FILE, the license file will provide default
values for some connection parameters (server, password, router). If the
license file references a Gurobi Instant Cloud pool, it will resolve the

connection parameters of

the pool.

70

The server URL can also specify the protocol and the port:

server.company.com Use HTTP on standard port 80
server.company.com:61000 Use HTTP on port 61000
https://server.company.com Use HTTPS on standard port 443
https://server.company.com:61000 Use HTTPS on port 61000

If you wish to get the status of your compute server cluster, list the nodes

and the jobs, or check the status of your licenses, please use the grbccluster

command line tool. To learn more about grbcluster, type the following command:
grbcluster --help

gurobi_cl is compatible with standard proxy settings using environment
variables HTTP_PROXY and HTTPS_PROXY. HTTPS_PROXY takes precedence over
HTTP_PROXY for https requests. The values may be either a complete URL or
a "host[:port]", in which case the "http" scheme is assumed.

Examples:
gurobi_cl miscO7.mps
gurobi_cl Record=1 Method=2 ResultFile=p0033.s0l InputFile=p0033.mst \
InputFile=p0033.hnt.gz LogFile=p0033.1log p0033.mps
gurobi_cl --server=server.company.com --password=pass miscO7.mps

Visit www.gurobi.com/documentation/8.0 for further details on how to use
this program.

71

Appendix E: Acknowledgement of 3rd Party Icons

The icons used in this document come from the Open Security Architecture.

72

http://www.opensecurityarchitecture.org

Appendix F: Open Source Component Licenses

Copyright (c) 2015, Dave Cheney <dave@cheney.net>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLTIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The MIT License (MIT)
Copyright (c) 2014 Nate Finch

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the ‘‘Software’’), to deal
in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

73

THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or

74

Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including

the original version of the Work and any modifications or additioms

to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent

to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

Grant of Patent License. Subject to the terms and conditions of

this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable

by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)

75

with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modificatiomns, or

76

for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditioms.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

. Disclaimer of Warranty. Unless required by applicable law or

agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor

has been advised of the possibility of such damages.

. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,

and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf

77

of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don’t include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://wwuw.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

The MIT License (MIT)
Copyright (c) 2013 Ben Johnson

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the ‘‘Software’’), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

78

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Copyright (c) 2013 Julien Schmidt. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* The names of the contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ‘‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL JULIEN SCHMIDT BE LIABLE FOR ANY

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 2012 The Go Authors. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

79

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.

* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (C) 2013-2016 by Maxim Bublis <b@codemonkey.ru>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LTABLE FOR ANY CLAIM, DAMAGES OR OTHER LTABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

gopsutil is distributed under BSD license reproduced below.

80

Copyright (c) 2014, WAKAYAMA Shirou
A1l rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name of the gopsutil authors nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

internal/common/binary.go in the gopsutil is copied and modifid from golang/encoding/binary.go

Copyright (c) 2009 The Go Authors. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.

81

* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright (c) 2012 Alex Ogier. All rights reserved.
Copyright (c) 2012 The Go Authors. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.

* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

82

The MIT License (MIT)
Copyright (c) 2014 Jeremy Saenz

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LTABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Copyright (c) 2009 The Go Authors. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.

* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright since 2015 Showmax s.r.o.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Copyright 2016 SmartBear Software

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at [apache.org/licenses/LICENSE-2.0] (http://www.apache.or;

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

84

	Introduction
	Gurobi Compute Server and Remote Services Overview
	Compute Server
	Distributed Algorithms
	Roles
	Cluster Administrator
	Administrator
	Client

	Simple Example

	Cluster Setup and Administration
	Setting up Remote Services
	Installation
	Licensing
	Remote Services Agent (grb_rs)
	Configuration
	Starting Remote Services as a Process
	Starting Remote Services as a Service
	Verification

	Forming a Cluster
	Connecting Nodes
	Compute Servers and Distributed Workers
	Grouping
	Processing State and Scaling

	Communication Options
	Using HTTPS
	Using HTTPS with Self-Signed Certificates
	Firewalls
	Router

	Maintaining a Cluster
	Managing Runtimes
	Upgrading Remote Services

	Using Remote Services
	Client Configuration
	License File
	Queueing, Load Balancing, and Job Priorities
	Submitting Jobs with gurobi_cl
	Issuing Cluster Management Commands: Using grbcluster

	Client Commands
	Listing Optimization Jobs
	Accessing Job Logs
	Accessing Job Parameters
	Listing Cluster Nodes
	Troubleshooting Connectivity Issues

	Administrative Commands
	Listing Cluster Licenses
	Changing the Job Limit
	Aborting Jobs

	Programming with Remote Services
	Using an API to Create a Compute Server Job
	Performance Considerations on a Wide-Area Network (WAN)
	Callbacks
	Developing for Compute Server
	Distributed Algorithms
	Distributed Algorithm Considerations
	Cluster REST API

	Using Remote Services with Gurobi Instant Cloud
	Client Setup
	Client Commands
	Administrative Commands
	Region Router

	Migrating from Previous Releases
	Referring to Compute Servers
	Installation - Ports and Firewalls
	Installation - Encryption
	Command-line options in gurobi_cl
	Distributed Optimization

	Appendix A: grb_rs
	Appendix B: grb_rs - Configuration Properties
	Appendix C: grbcluster
	Appendix D: gurobi_cl
	Appendix E: Acknowledgement of 3rd Party Icons
	Appendix F: Open Source Component Licenses

